JVI Accepted Manuscript Posted Online 26 July 2017 J. Virol. doi:10.1128/JVI.00279-17 Copyright © 2017 American Society for Microbiology, All Rights Reserved.

- Full title: Role of Viral Hemorrhagic Septicemia Virus Matrix (M) Protein in Suppressing Host 1
- 2 Transcription

3

- **Authors:** Qi Ke ^{a1}*, Wade Weaver ^a*, Adam Pore ^a, Bartolomeo Gorgoglione ^a, Julia Halo 4
- Wildschutte ^{a2}, Peng Xiao ^{b3}, Brian S. Shepherd ^c, Allyn Spear ^c, Krishnamurthy Malathi ^a, Carol A. 5
- Stepien ^d, Vikram N. Vakharia ^b, Douglas W. Leaman ^a† 6

7

- Affiliations: Department of Biological Sciences, The University of Toledo, Toledo, Ohio, 43606 8
- USA^a; Institute of Marine and Environmental Technology, University of Maryland Baltimore 9
- County, Baltimore, Maryland 21202 USA^b; USDA/ARS/School of Freshwater Sciences/University 10
- of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204 USAc; NOAA Pacific 11
- Marine Environmental Laboratory (PMEL), 7600 Sand Point Way NE, Seattle, WA 98115 USA^d 12

13

- Corresponding author phone: 1-937-775-3180; Fax: 1-937-775-4678; Email: 14
- douglas.leaman@wright.edu; Address: Wright State University, 4035 Colonel Glenn Hwy., Suite 15
- 300, Beavercreek, OH 45431, USA 16

17

*Q.K and W.W. contributed equally to this work 18

19

Running Title: VHSV M in host immune suppression 20

21

22

23

¹ Present address: The University of North Carolina at Chapel Hill, 6111 Marsico Hall, 125 Mason Farm Road, CB #7290, Chapel Hill, NC 27599 USA

² Present address: Bowling Green State University, 521A Life Sciences Building, Bowling Green, OH 43403 USA

³ Present Address: Institute of Oceanology, Chinese Academy of Sciences, Qingdao 26607, P.R. CHINA

Abstract

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Viral Hemorrhagic Septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the northern hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antiviral genes expression. By systematically screening each of the six VHSV structural and nonstructural genes, we have identified matrix protein (M) as its most potent anti-host protein. VHSV-IVb M alone suppressed mitochondrial antiviral signaling protein (MAVS) and type I IFNinduced gene expression in a dose-dependent manner. M also suppressed the constitutively active SV40 promoter and globally decreased cellular RNA levels. Chromatin immunoprecipitation (ChIP) studies illustrated that M inhibited RNA polymerase II (RNAP II) recruitment to gene promoters, and decreased RNAP II CTD Ser2 phosphorylation during VHSV infection. However, transcription directed by RNAP I-III was suppressed by M. To identify regions of functional importance, M proteins from a variety of VHSV strains were tested in cell-based transcriptional inhibition assays. M protein of a particular VHSV-Ia strain, F1, was significantly less potent than -IVb M at inhibiting SV40/luc expression, yet differed by just four amino acids. Mutation of D62 to alanine alone, or in combination with an E181 to alanine mutation (D62A/E181A), dramatically reduced the ability of -IVb M to suppress host transcription. Introducing either M D62A or D62A/E181A mutations into VHSV-IVb via reverse genetics resulted in viruses that replicated efficiently but exhibited less cytotoxicity and reduced anti-transcriptional activities, implicating M as a primary regulator of cytopathicity and host transcriptional suppression.

44

45

46

47

48

49

Importance: Viruses must suppress host antiviral responses to replicate and spread between hosts. In these studies, we identified the matrix protein of the deadly fish Novirhabdovirus, VHSV, as a critical mediator of host suppression during infection. Our studies indicated that M alone could block cellular gene expression at very low expression levels. We identified several subtle mutations

in M that were less potent at suppressing host transcription. When these mutations were engineered

back into recombinant viruses, the resulting viruses replicated well but elicited less toxicity in infected cells and activated host innate immune responses more robustly. These data demonstrated that VHSV M plays an important role in mediating both virus-induced cell toxicity and viral replication. Our data suggest that its roles in these two processes can be separated to design effective attenuated viruses for vaccine candidates.

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

50

51

52

53

54

Introduction

Higher eukaryotes have evolved complex innate immune systems that serve as the first line of defense against pathogens like bacteria, fungi and viruses. Host cells detect conserved pathogenassociated molecular patterns (PAMPs) via germline-encoded pattern recognition receptors (PRRs) (1), which, once activated, initiate signaling cascades to produce anti-pathogenic factors such as type I interferons (IFNs) and other pro-inflammatory cytokines (2). The retinoic acid-inducible gene 1 (RIG-I)-like helicases (RLHs) including RIG-I, melanoma differentiation associated factor 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) are cytoplasmic PRRs, expressed in both immune and nonimmune cells, which are essential for detection of intracellular RNA products, primarily of viral origin (3). Upon activation, both RIG-I and MDA5 recruit and activate MAVS (mitochondrial antiviral signaling protein; also called IPS-1/Cardif/VISA) (4), leading to activation of downstream signaling molecules and induction of type I IFNs and other dsRNA/virally regulated genes (5-7). Secreted IFNs binds to the cognate type I IFN receptor (IFNAR) complex and activate signal transducer and activator of transcription (STAT)-dependent signaling cascades that lead to transcription of IFN-stimulated genes (ISGs) (8). ISG proteins impact a variety of cellular functions, including transcriptional and translational regulation, proand anti-apoptotic processes, cell signaling, etc., and work together to establish an antiviral state (9). Perturbation of the viral detection or IFN response pathways leads to enhanced sensitivity to most viruses.

The IFN system is highly conserved from mammals down to bony fish (10-12). Teleost

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

IFNs are similar to mammalian type I IFNs based on coding sequences and crystalline structure analysis, although the fish genes differ from their mammalian counterparts by the inclusion of introns (13-15). All of the critical signaling molecules in the viral detection and IFN response pathways have been cloned from multiple fish species, including RLHs, Janus kinase (JAK) and STAT signaling molecules and a number of traditional ISGs, such as Mx (13,16-18). These studies suggest that the innate antiviral pathways and proteins in teleost fish share many regulatory features in common with their mammalian orthologues.

Viral Hemorrhagic Septicemia virus (VHSV) causes severe disease and mortality among more than 90 marine and freshwater fish species worldwide (19,20). VHSV is a bullet-shaped, enveloped, non-segmented negative sense single-stranded RNA virus in the Novirhabdovirus genus of the Rhabdoviridae family (20). Its 11-kb viral genome contains 6 genes encoding (in order from 3'-to-5'): nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), NonVirion protein (NV), and RNA-dependent RNA polymerase (L) (21,22). Replication occurs entirely in the cytoplasm using a combination of virally encoded and host-derived factors. VHSV isolates are classified in four genotypes (designated I to IV) based on phylogenetic analysis (23). Each group is endemic to specific geographic regions, with freshwater strains included in genotypes I and IV, and each appears to infect regional fish species (24). Genotype I is further divided into five sublineages (Ia-Ie), with the -Ia strain responsible for most outbreaks in European freshwater rainbow trout farms (20,23,25,26). Genotype IV viruses are further divided into three sublineages - -IVa, -IVb and -IVc (24). In 2005, VHSV-IVb was first isolated from muskellunge (Esox masquinongy) from Lake Ontario and subsequently found in an archived sample from Lake St. Clair dating back to 2003 (isolate MI03GL) (27). VHSV-IVb caused massive die-offs among many freshwater species during the next decade and continues to pose a potential threat to both fish farming and the sport fishing industry in the Great Lakes watershed (28-30). VHSV-IVb has been isolated from at least 31 fish species including muskellunge, yellow perch and walleye (28) and has been detected in all five of the Laurentian Great Lakes (31,32). However, unlike the European -Ia sublineage, -IVb has

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

124

125

126

127

low pathogenicity for rainbow trout (33). Despite intensive management and surveillance, VHSV is still detectable among many asymptomatic fish in the Great Lakes region (34).

As with other viruses, VHSV must suppress or evade components of the host antiviral responses in order to propagate. Studies have suggested that NV protein from the -IVb sublineage suppressed apoptosis (35) and from the -Ia sublineage suppressed innate immune responses (36,37). M protein has been implicated in cellular apoptosis and transcriptional suppression in the related fish Novirhabdovirus Infectious Hematopoietic Necrosis virus (IHNV) (38). Several M variants have been found for VHSV-IVb (39), but little else is known about VHSV-IVb anti-host processes.

We have undertaken a systematic study of VHSV-IVb proteins to identify which might contribute to anti-host activities. VHSV infection of fish cells led to activation of the virus detection system, but the virus quickly suppressed IFN production and antiviral gene expression. By screening each of the six viral structural and nonstructural genes, we have identified M protein as the most potent anti-host protein expressed by VHSV-IVb. Comparative studies with M isolated from other VHSV strains or other fish Novirhabdoviruses identified mutations that reduced antitranscriptional function. In particular, point mutations of the aspartic acid at residue 62 (D62G or D62A) and/or the glutamic acid residue at position 181 (E181A) had combinatorial effects on M anti-transcriptional potential (D62A/E181A). When reverse engineered into recombinant viruses the M single and double mutations led to reduced anti-host activities that altered viral cytopathicity and antiviral genes expression. These data suggested that VHSV M is a pivotal component of the VHSV suppression of host antiviral responses, and that targeting M for mutation has the potential to undermine this anti-host function without destroying the viral replication function of M.

123

Results

VHSV inhibits IFN antiviral signaling

To study the effect of VHSV infection on host innate immune detection and IFN production, EPC cells were treated with or without IFN (EPC-derived type I IFN) either 24 h prior to, or 16 or 24 h

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

post infection (h.p.i). VHSV-IVb was used at MOI 1 and cellular cytopathic effects (CPE) were assessed at 72 h.p.i. (Fig. 1A). Infection resulted in significant CPE, which was completely prevented by IFN pretreatment (Fig. 1A). In contrast, IFN added 16 or 24 h.p.i. was ineffective at blocking viral CPE, despite the fact that no cell death was observed at the time of IFN addition (Fig. 1A). These data suggest that upon infection, VHSV produces a factor or factors that are capable of shutting down host IFN-mediated antiviral responses. To further dissect the interplay between viral infection and cellular IFN production, EPC cells were transiently transfected with a luciferase reporter under the control of the IFN-responsive IFITM1 promoter. Cells were left uninfected or infected with VHSV for 24 or 48 h and untreated or treated with IFN for the final 6 h prior to the luciferase assay (Fig. 1B). As expected, viral infection alone led to a 6- to 10-fold increase in IFN-induced transcription from the IFITM1 promoter as compared to uninfected cells (Fig. 1B). However, this induction was far less than that observed with IFN treatment alone. More importantly, viral infection suppressed responsiveness to exogenous by 80-90% as compared to IFN treatment alone (Fig. 1B). These data provide evidence that VHSV is capable of inhibiting IFN production in host cells, and/or blocking their response to IFN.

VHSV-IVb M inhibits host gene expression

To identify viral proteins involved in the inhibitory effect of VHSV on host IFN responsiveness, each of the six VHSV structural and nonstructural genes was cloned into pcDNA3.1 expression plasmid and then co-transfected along with IFITM1/luc and EPC-derived MAVS in EPC cells. Ectopic MAVS expression was sufficient to induce endogenous IFN expression and release, which fed back on the cells to activate the IFITM1 promoter. Although several of the viral genes had subtle effects on IFITM1 induction, only the pcDNA3.1 M plasmid (pCD-M) potently decreased IFITM1 promoter activation (Fig. 2A). Conversely, NV was able to upregulate luciferase activity from the IFITM1 promoter. Although each of the Myc tagged VHSV genes was clearly expressed in the EPC cells, VHSV M was consistently reduced in expression due to feedback inhibition of the

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

plasmid promoter (Fig. 2B). To determine whether the impact of M was downstream of IFN expression, cells were transiently transfected with pCD-M and IFITM1/luc and then treated with IFN for 24 h. VHSV-IVb M potently inhibited luciferase expression with an IC50 less than 0.5 ng plasmid/5×10⁵ cells (Fig. 2C). For analysis of pathways upstream of IFN, EPC cells were cotransfected with MAVS, pCD-M and an IFN promoter-luciferase reporter plasmid (IFN/luc) for 24 h. M again potently blocked induction of luciferase activity in a dose-dependent manner (Fig. 2D), with 80% inhibition observed at concentrations of just 0.5 ng of pCD-M/5×10⁵ cells. The potent inhibition of both IFN and ISG transcriptional induction suggested that M either selectively targeted components of both pathways, or that it was a general inhibitor of gene transcription or translation. To test this, pCD-M was co-transfected with an unrelated, constitutively active SV40 promoter-luciferase reporter (SV40/luc). VHSV M again potently inhibited SV40 promoter activity in a dose-dependent manner (Fig. 2E), suggesting that M inhibits a general step in cellular protein expression - either transcription or translation. To clarify whether M functioned as a transcriptional or translational inhibitor, cells again were co-transfected with pCD-M and SV40/luc plasmids and luciferase mRNA was quantified via RT-qPCR (Fig. 3A). M co-expression induced a dosedependent decrease in luciferase mRNA expression, strongly implicating an impact on cellular RNA transcription or half-life. Since the impact of M on luciferase mRNA was not as potent as that observed when measuring luciferase activity (Fig. 3A compared to 2E), we reasoned that M either exhibited secondary effects on mRNA translation or that luciferase mRNA expression begins in cells before the co-transfected M can elicit an inhibitory effect. Thus, to measure the impact of M on transcriptional initiation instead of pre-existing steady mRNA levels, we co-transfected pCD-M with a regulatable plasmid encoding a mouse SEAP (secreted embryonic alkaline phosphatase) reporter gene under the transcriptional control of a tetracycline responsive element (Tet). After 24 h, transfected cells were left unstimulated or were treated with doxycycline for 24 h prior to RNA extraction and RT-qPCR analysis of SEAP mRNA levels. Under these conditions, SEAP mRNA induction was completely inhibited by M co-expression (Fig. 3B). Taken together, these data

suggest that the primary anti-host effect of VHSV-IVb M is to inhibit host cellular transcription during viral infection.

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

180

181

VHSV M blocks nascent cellular RNA synthesis

Previous studies focused on the anti-host role of Vesicular Stomatitis Virus (VSV) M protein and demonstrated direct inhibition of host transcription (40). To determine if VHSV M behaved similarly, we utilized an analog of uracil, 5-ethynyl uridine (EU), to study active (nascent) cellular RNA synthesis. EU contains an alkyne that can react with an azide-modified fluorophore to give fluorescent signal (41,42). EPC cells were left untreated, treated with α -Amanitin (1 μ g/ml), Actinomycin D (1 µg/ml) or infected with VHSV-IVb (MOI 1) for 24 h then pulsed with EU for 2 h, labeled with the Click-iT reagent and imaged. Untreated, labeled cells showed nuclear RNA staining with strong puncta representing rRNA synthesis. α-Amanitin, which inhibits predominantly RNAP II-mediated transcription at the dose used (43), showed strongly suppressed nuclear labeling, albeit with residual rRNA nucleolar staining (Fig. 4A). In contrast, Actinomycin D, which inhibits RNAP I, II and III, and thus served as a control for complete transcriptional inhibition, suppressed all RNA synthesis in treated cells. EU staining in VHSV infected cells mimicked the pattern observed with α-Amanitin treatment, although residual nucleolar staining in VHSV infected cells was demonstrably less than in α-Amanitin treated cells (Fig. 4A). These data suggested that VHSV-IVb potently inhibited activity of all three RNA polymerases to varying degrees. To assess a direct role for M in the observed virus-dependent inhibition of host transcription, we co-transfected pCD-M with a CMV-regulated green fluorescent protein (GFP) plasmid (CMV/GFP, used as a marker of transfection) into EPC cells for 24 h and then labeled cells with 5-EU. M transfected cells exhibited decreased nascent cellular RNA staining as compared to GFP-only transfected control cells (Fig. 4B). The nascent cellular RNA reduction mirrored that observed upon viral infection, implicating M as a contributing viral protein.

To more precisely define which transcriptional responses might be inhibited by M, we tested

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

U6/luc reporter was employed to monitor RNAP III-dependent transcription, and a rainbow trout rRNA intergenic sequence region (ITS-1/luc) reporter was used to assess RNAP I-dependent transcription. Luciferase mRNA levels were measured by RT-qPCR since RNAP I and III do not promote efficient protein production. VHSV-IVb M inhibited the activity of all three promoters, but the RNAP II-regulated promoter appeared to be slightly more sensitive to the inhibitory effects of M than were the RNAP I and RNAP III promoters (Fig. 4C,D). Previous studies had implicated VSV M in suppression of all three RNA polymerases with different efficacy (44), and our studies suggest that VHSV-IVb M is similarly effective in blocking RNAP I-III dependent transcription. Subcellular localization studies using the myc/his tagged M revealed both nuclear and cytoplasmic localization, consistent with a proposed role both in viral packaging and host transcriptional suppression (Fig. 5A, B). In addition to direct inhibition of cellular transcription, previous studies on VSV M protein had implicated a role in blocking nuclear export of mRNAs (45-48). To determine whether VHSV infection alters the subcellular distribution of cellular mRNAs, EPC cells (5×10⁶) either were left uninfected or were infected with VHSV-IVb strain (MOI 1) for 24 h. Cells were separately treated with Leptomycin B (LMB) for 3 h as a control for nuclear export inhibition. After treatment or infection, cells pellets were spiked with 1×10⁵ human (HEK 293) cells to serve as an internal control. The cell mixtures then were separated into nuclear and cytoplasmic fractions and RNA isolated from each. RT-qPCR then was performed to assess the subcellular distribution of fish β-actin mRNA in the uninfected, infected or LMB treated cells. To control for variability in fractionation fidelity or RNA extraction efficiency, human GAPDH mRNA was quantified in parallel and used to normalize the β-actin mRNA values. Since the human cells had not been infected or treated with LMB, the human GAPDH mRNA distribution in the

VHSV M inhibitory potency on RNAP I, II and III promoters in cell-based luciferase assays. The

SV40/luc reporter was used again as an indicator of RNAP II-dependent transcription. A human

spiked HEK 293 cells was expected to be identical in each sample, and the human primers were

designed and validated not to cross-react with EPC GAPDH cDNA (data not shown). VHSV

infection resulted in a decrease in overall β-actin mRNA levels, but had only a moderate impact on the nuclear to cytoplasmic ratio as compared to uninfected cells (Fig. 5C, D). In contrast, LMB altered dramatically the proportion of mRNA in the nucleus relative to the cytoplasm (Fig. 5C, D). From these data, we cannot rule out a minor role for M in altering mRNA subcellular localization, but its primary anti-host effect appears to be the inhibition of nascent transcription.

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

232

233

234

235

236

VHSV-IVb M protein disrupted RNAP II activity and recruitment

To gain further insight into the mechanism by which M inhibits host transcription, we used chromatin immunoprecipitation (ChIP) to assess the impact of VHSV-IVb M on recruitment of RNAP II to a core promoter sequence. EPC cells were co-transfected with Tet-mSEAP (as in Fig. 3) and pCD-M for 24 h and then left untreated or treated with doxycycline for 4 h, after which ChIP analyses were performed using an RNAP II antibody and primers representing TATA-proximal primers. RNAP II was constitutively bound to the promoter, but binding was augmented upon doxycycline treatment (Fig. 6A). With pCD-M co-transfection, both uninduced and induced RNAP II binding was significantly decreased (Fig. 6A).

The C-terminal domain (CTD) of RPB1, the largest RNAP II subunit, consists of 25 to 52 tandem copies of a conserved YSPTSPS heptapeptide repeat (49). During transcript elongation, the RNAP II CTD is phosphorylated, predominantly at Ser2 and Ser5 residues, and these modifications indicate different phases of transcription and RNAP II activity (50-52). Early in the transition from preinitiation to elongation, the CTD is phosphorylated primarily on Ser5 residues. During elongation, phosphorylation occurs mainly on Ser2 residues to generate elongation-proficient RNAP II, and by the 3' end of the gene CTD phosphorylation is dominated by Ser2 residues. To address which phase of transcription was impacted, we infected EPC cells with VHSV for 0-72 h and assessed total and Ser2 phosphorylated RNAP II levels by immunoblotting. Ser2 phosphorylation decreased during the course of a VHSV infection and, interestingly, total RNAP II exhibited a mobility shift from a slower migrating form to a more rapidly migrating band over the

course of the infection (Fig. 6B). Together, these data suggest that VHSV-IVb M protein inhibits host cellular transcription to suppress host immune responses by disrupting RNAP II recruitment and subsequent phosphorylation, thereby preventing transcriptional initiation and elongation.

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

258

259

260

Comparative studies on fish rhabdoviral M proteins

Many of the observed VHSV-IVb M effects on EPC cells mirrored those observed previously with VSV M in mammalian cells (44). To extend our studies beyond IVb M, we assessed the effects of M proteins from various VHSV sublineages, as well as M proteins from the related fish rhabdoviruses Infectious Hematopoietic Necrosis virus (IHNV), Spring Viremia of Carp virus (SVCV) and Snakehead Rhabdovirus (SHRV), in cell-based luciferase inhibition assays. Each M gene was cloned into pcDNA3.1 and co-transfected with SV40/luc into EPC cells for 24 h, after which time luciferase assays were performed. Like VHSV-IVb M, all rhabdoviral M proteins inhibited luciferase expression to varying degrees, although M from SVCV and SHRV exhibited less activity than those in VHSV and IHNV (Fig. 7A) and, in the case of SHRV, required higher plasmid concentrations to exhibit inhibition in these cells (data not shown). Subsequently western blotting analysis was used to confirm the expression of rhabdoviral M proteins (Fig. 7B). Although all VHSV strain M proteins had similar activities to -IVb M, one important exception was a variant M protein from VHSV-Ia strain (F1), which exhibited significantly less inhibition than M from the -IVb strain when monitoring nascent RNA synthesis (Fig. 7C). This -Ia M variant differed from -IVb M at only four amino acid positions (T9I, D62G, E181A and V198A). In order to determine which of these changes impacted anti-transcriptional activity, we mutated these same residues in various combinations within the VHSV-IVb M background. The two residues that impacted activity the most were at 62 and 181. Reverse mutations (G62D, G62D and A181E) within the -Ia (F1) backbone rescued the anti-transcriptional efficacy of M (data not shown), whereas -IVb M mutated singly at position 62 or doubly at 62 and 181 (D62A, D62A and E181A) each experienced about 90% reduction in efficacy (Fig. 8A,B). The effect of these mutations on global host

transcription was also assessed by measuring RNAP II phosphorylation. For these studies, EPC cells were transfected with either WT or mutant M Myc-His encoding plasmids for 48 h, and RNAP II C-terminal domain (CTD) serine-2 phosphorylation was assessed using a RNAP II phosphoserine-2 specific antibody (aRNAP II-Ps2) in immunofluorescence experiments. Cells expressing either of the VHSV M constructs were visualized using an anti-Myc monoclonal antibody (mAb) and FITC conjugated goat-anti-mouse antibody. These studies showed cells expressing the mutant M proteins exhibited more prominent RNAP II-Ps2 staining as compared to the RNAP II-Ps2 staining seen in WT M expressing cells (Fig. 8C). These data suggested that the D62A or D62A/E181A M mutants were not as effective as WT M at inhibiting RNAP II phosphorylation.

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

284

285

286

287

288

289

290

291

292

293

Recombinant VHSV harboring M mutations

Recombinant VHSV harboring the D62A and D62A/E181A mutations were generated using a reverse genetic system (53). Recombinant viruses containing the mutant M genes were viable, and were compared to recombinant wild type (rWT) VHSV in a series of cell-based studies. To assess viral replication, EPC cells were infected for 0, 18, 36, 54, 72, or 96 h at a MOI = 0.1 or 1.0 with either D62A, D62A/E181A, or rWT VHSV. Media and cells were harvested at each time point. A viral yield assay was used to compare the ability of mutant viruses to replicate to that of rWT virus by titering the media from each time point in 1:10 serial dilutions on Bluegill Fry (BF-2) cells. At an MOI = 0.1, replication of rWT virus peaked at 54 h, while M D62A and M D62A/E181A viruses peaked at 96 h and 72 h, respectively (Fig. 9A). M D62A virus replication was similar to rWT virus at 72 h and then exceeded rWT titers at 96 h (Fig. 9A). M D62A/E181A virus yielded titers that were several orders of magnitude less than that of rWT or M D62A viruses (Fig. 9A). However, at MOI 1, all three viruses reach similar titers after 96 h (Fig. 9B), suggesting that other factors affecting viral replication, such as viral cytotoxicity and restriction by the innate immune response were impacted by these mutations.

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

Transcriptional Inhibition by rWT VHSV and mutants

The abilities of the rWT and mutant M containing viruses to suppress host transcription were assessed first by using the constitutively active SV40/luc reporter. EPC cells were transfected with the SV40/luc for 6 h and then infected for 24 h with each virus (MOI = 0.1 or 1), after which luciferase activity was quantified. The rWT virus was 2- to 2.5-fold more effective at inhibiting luciferase activity as compared to M D62A and M D62A/E181A viruses (Fig. 10A), mirroring the impact of the transfected M proteins (see Fig. 8C). To examine the effect of mutant M and rWT viruses on class II specific gene expression, EPC cells were infected with each of the three viruses for 24 h at a MOI = 1. Cells were subjected to analysis by immunofluorescence microscopy using a RNAP II phospho-serine-2 specific antibody as a surrogate for class II gene transcriptional activity, with values quantified by a mean grey scale intensity within the nuclei (Fig. 10B, C). Anti-VHSV staining, carried out in parallel cultures (due to secondary antibody conflict), indicated that virtually all cells were infected. Only rWT virus significantly inhibited RNAP II phospho-serine-2 staining, suggesting that the anti-transcriptional effects of M D62A and M D62A/E181A viruses were markedly reduced as compared to rWT VHSV.

Cytopathic effects of rWT VHSV and mutants

The reduced transcriptional inhibitory activities of the M D62A and M D62A/E181A mutant viruses suggested that induction of host cell cytopathicity was likely to be less severe for the mutant viruses as compared to rWT VHSV. To assess the impact of viral titer on cytopathicity, EPC cells were infected with each of the viruses for 96 h at MOIs ranging from 0.0001 to 10. After that time, cells were fixed in trichloroacetic acid and stained with Sulforhodamine-B to quantify viable cells. This assay showed that the mutant viruses induced significantly fewer cytopathic effects at MOI < 1.0 (Fig. 10D). Interestingly, in EPC cells infected with mutant M viruses, plaques formed that initially appeared similar to those for rWT virus, but over the course of the experiment the mutant

virus plaques remained smaller than those generated by the rWT virus, and in some cases refilled with cells after initial formation (Fig. 10E).

To monitor global cellular RNA synthesis, we again used the Click-iT chemistry reaction with AlexaFluor-594 (AF-594) and 5-EU, and then assessed incorporation with both fluorescent microscopy and flow cytometry. EPC cells were left untreated or were treated with Actinomycin-D (1 h prior to EU addition) or infected with mutant or WT viruses (24 h). The 5-EU was added for the last hour of treatment/infection, after which labeled cells were subjected to flow cytometry to quantify EU positive versus negative cells (Fig. 11A-C, G-I). To ensure robust infection, cells on coverslips from each treatment were subjected to immunofluorescence microscopy using a aVHSV primary and a FITC conjugated goat-anti-rabbit secondary antibody after the Click-iT reaction was completed (Fig. 11D-F, J-L). Flow cytometric data suggested that the mutant M containing viruses were roughly 80% less effective at inhibiting host transcription as compared to rWT VHSV.

348

349

350

351

352

353

354

355

356

357

358

359

360

361

336

337

338

339

340

341

342

343

344

345

346

347

Innate immune activation by VHSV rWT and mutants

To determine how differences in transcriptional inhibition impacted antiviral activity release, media collected from control or infected cells were UV irradiated to inactivate live virus and subjected to IFN bioassay (Fig. 12). The mutant M viruses both elicited enhanced release of antiviral activity (expressed in units IFN/mL; uIFN/mL) as compared to rWT VHSV. M D62A induced 1.9- and 22.5-fold more uIFN/mL than rWT at MOIs = 0.1 and 1, respectively, whereas the M D62A/E181A virus induced 2.25- and 49.4-fold more uIFN/mL than rWT virus at MOIs = 0.1 and 1, respectively (Fig. 12).

To determine whether the enhanced antiviral activity correlated with altered innate immune gene expression, EPC cells were infected with M D62A, M D62A/E181A or rWT viruses for 96 h at MOIs = 0.1 and 1, with both media and cells collected at 0, 4, 18, 36, 54, 72, and 96 h.p.i. cDNA was made from RNA extracted from the collected cells that was spiked with 1.0 ng of in vitro transcribed GFP RNA for normalization, since virus infection alone leads to suppression of host

RNA synthesis and would impact reference gene expression. Expression of IFN, IFN-responsive Mx-1 and VHSV RNA was quantified with RT-qPCR (Fig. 13). At both MOIs, the M D62A virus induced more IFN and Mx-1 transcription than the M D62A/E181A and rWT viruses. However, when these values were normalized to the amount of viral RNA, the M D62A/E181A virus induced 5 and 4.5-fold more IFN and Mx-1 mRNA, respectively than the M D62A virus at MOIs = 1. The mutant M viruses also consistently induced 10 fold more IFN mRNA than rWT virus at MOIs = 0.1 and 1, respectively. These data suggested that the mutant M viruses led to greater expression of IFN throughout the course of infection when compared to rWT.

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

362

363

364

365

366

367

368

369

Discussion

Most viruses have evolved mechanisms to inhibit the expression or function of host innate immune genes during virus replication (54,55). Inhibition of host transcription is a common strategy used by RNA viruses that replicate entirely within cytoplasm. Shutting down host transcription not only frees up cellular translational machinery that can be used for biosynthesis of viral gene products, but it also inhibits the host antiviral responses by preventing synthesis of antiviral proteins. One clear example of an anti-host protein found within the rhabdovirus family is the VSV M protein, which potently inhibits host gene expression, thereby suppressing host antiviral responses including upregulation of type I IFNs (56,57). VSV M also may block mRNA export from the nucleus (47,48,58). These anti-host functions of VSV M are separable from its critical role in viral assembly and budding, but are still essential for efficient viral replication (59-61). The salmonid rhabdovirus IHNV M protein also inhibits host-directed gene expression (38).

Here we report that VHSV-IVb infection suppressed host IFN-mediated antiviral responses, with expression of M alone capable of inhibiting MAVS-mediated IFN expression, as well as IFNmediated transcriptional responses in cell-based luciferase assays (Fig. 2). Importantly, viral infection or transfected VHSV M also inhibited transcription from a constitutively active SV40 promoter driven luciferase construct (Fig. 3), suggesting that VHSV M acts similarly to other

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

rhabdoviral M proteins in shutting down general transcription and/or post-transcriptional events. This possibility was enforced and clarified by the observation that VHSV infection or ectopic expression of M led to decreased host nascent RNA transcription. Our results support the hypothesis that VHSV M protein inhibits host transcription as a means of promoting viral dissemination.

VSV M protein blocked host transcription directed by all three host RNA polymerases (RNAP I-III: (44)). We tested the inhibitory potency of VHSV M on three different luciferase constructs driven by the RNAP I-dependent Atlantic salmon ITS1 promoter, the RNAP IIdependent SV40 promoter and the human RNAP III-dependent U6 promoter, respectively. VHSV M co-transfection inhibited transcription mediated by all three RNA polymerases (Fig. 4). Interestingly, EU staining of nascent RNA synthesis in VHSV-infected and M-transfected cells resembled the pattern of α -Amanitin treatment (Fig. 4). Since α -Amanitin targets RNAP II and III, but not RNAP I, this suggests that M may target all three host RNAPs through a common mechanism, which may not be equally efficacious in all instances. Since continued rRNA synthesis would benefit the virus, it is possible that residual RNAP I activity is an evolutionary outcome of otherwise indiscriminate host RNAP suppression.

The mechanism of VHSV M transcriptional inhibition remains unclear. Previous studies of VSV M suggested that the TATA-binding protein (TBP) subunit TFIID was a potential target of M. TFIID isolated from VSV infected cells was inactive in an in vitro transcription assay, but transcription activity could be reconstituted by adding purified recombinant TBP to the experimental system (40). Our ChIP assay results implicated an M-dependent suppression of both basal and doxycycline-induced recruitment of RNAP II to the minimal CMV promoter region of a Tet-mSEAP reporter gene (Fig. 6). Taken together, our data suggest that VHSV M inhibited RNAP II-directed transcription by interrupting RNAP II promoter binding, perhaps by targeting one or more basal transcription factors. However, it remains uncertain whether this inhibition is direct, or indirect via suppression of regulatory pathways involved in RNA polymerase synthesis and

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

subcellular transport. Future studies will need to address this question, however a possible role for VHSV M in perturbation of nuclear import/export was revealed in our RNA localization studies (Fig. 5). Although not conclusive, the increased nuclear to cytoplasmic ratios in VHSV infected cells suggest additional similarities to VSV M function (47,48), and provides further evidence that the observed effects of M on luciferase inhibition using our various constructs can be attributed to pre-translational effects.

M proteins from a variety of VHSV strains and several closely related fish viruses, including IHNV, SHRV and SVCV all inhibited SV40 promoter activity in EPC cells, which is consistent with the suppression of host protein expression being a conserved role for M protein among rhabdoviruses. Interestingly, a novel M clone isolated from a VHSV F1 strain (Ia substrain) sample was less potent than other M proteins in inhibiting transcription (Fig. 7). When comparing this F1 M sequence with that of WT IVb M, just four amino acids differences (T9I, D62G, E181A and V198A) were present. We tested a range of targeted mutations at these positions and found that G62D conversion in the Ia M clone enhanced function to approximately that of the IVb M (data not shown). To further investigate the impact of the M alternatives (using more traditional alanine substitutions), two mutant M constructs (D62A and D62A/E181A) were made within the IVb M background. Both exhibited decreased ability to inhibit cellular gene expression as compared to WT IVb M (Fig. 8). The predicted secondary structure of VHSV M is quite similar to that of VSV M even though amino acid conservation between the two is low (data not shown). The aspartic acid residue at position 62 is conserved across multiple VSV and VHSV strains (62). In the VSV M protein, this aspartic acid (D92) is located between helices $\alpha 1$ and $\alpha 2$, and is surface exposed (62). It may play a critical role in the anti-host function of M by serving in a structural capacity, or as a site for protein-protein interactions with host factors involved in regulating transcription. Regardless, conservation of this aspartic acid residue across viruses is striking, and worthy of additional investigations.

The two M protein point mutants (M D62A and M D62A/E181A) that exhibited

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

significantly reduced anti-transcriptional potential in cell-based studies (Fig. 8) were incorporated into an rWT VHSV backbone, using a reverse genetic system. The primary goal was to determine if the M mutants would support M's critical functions in viral replication, and if so, whether anti-host functions of the resulting viruses were impacted. Both M D62A and M D62A/E181A viruses were viable, which allowed us to investigate the abilities of these mutant viruses to replicate, elicit cytotoxic effects, inhibit host transcription and/or otherwise modulate host gene expression. The M D62A/E181A virus exhibited reduced replicative capabilities at an MOI 0.1 as compared to the WT and D62A viruses (Fig. 9). These data suggested that the D62A/E181A mutation, but not the D62A mutation alone, elicited a restrictive effect on propagation, perhaps implicating a role for E181 in viral packaging or budding. For VSV M, F208 is structurally homologous to VHSV M E181 and helps coordinate the positioning of a superiorly located α-helix that forms the border of the hydrophobic pocket VSV M utilizes in multimerization during viral skeleton formation (63). Thus, loss of electron density at this position could allow for a larger degree of freedom in the superior α helix, leading to a malformed hydrophobic pocked and deficient polymerization, and thus reduced replication. However, the most striking effects of the D62A and D62A/E181A mutations were their reduced abilities to suppress transcriptional responses in EPC cells (Figs. 8, 10, 11 and 13). As such, an alternative explanation for the reduced replication of the double mutant might be that enhanced IFN production in infected cells was capable of restricting propagation so effectively that the virus could not spread far beyond the initially infected cells, particularly if replication was even slightly delayed.

Although the D62A virus fared better than the double mutant in viral yield assays, its inability to suppress gene expression led to decreased cytopathicity and plaque spread at low MOI (Fig. 10). Since the D62 residue is highly conserved among rhabdoviruses, we would predict that it is structurally or functionally important. Molecular modeling predicted that residue D62 of VHSV M is in a random coil located proximal to the globular domain (64). Mutations within this region impacted the localization of VSV M (65), suggesting that the D62A mutation may have affected the

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

ability of M D62A mutants to localize properly, as opposed to causing a more general loss in structural integrity. Other functions have been ascribed to the orthologous region of the VSV M protein, including regulation of membrane association (66) and protein turnover (59), although both of those studies utilized larger deletions or multiple amino acid mutations as compared to the point mutation here. Outside of this specific coil domain, the N-terminus of VSV M has been implicated in other aspects of host inhibition, including association with RAE1/NUP98 (45,48) or suppression of eIF2α phosphorylation (M51R) (67). Whether VHSV M also engages these conserved proteins and/or whether D62A mutations impact these same cellular functions, directly or indirectly, will have to await future studies.

Overall, our data provide insight into the various and critical roles of VHSV M protein in viral replication and host suppression. The findings are consistent with many previous studies of VSV M, and confirm a conserved role for M in host suppression among many rhabdoviruses. Our results show that, like VSV M, the anti-host functions of VHSV M can be uncoupled from the viral packaging functions, and as such lays the groundwork for studies directed towards developing disabled or attenuated recombinant viruses useful in host response and/or immunization studies, as well as more in-depth functional analyses of the mechanisms behind the observed biological effects of VHSV M and its mutants.

483

484

485

486

487

488

489

490

491

Materials and Methods

Cell lines and culture conditions

Epithelioma papulosum cyprinid (EPC) cells were purchased from the American Type Culture Collection (ATCC, Rockville, MD; CRL-2872). The cells were grown in Eagle's Minimum Essential Medium (EMEM) (Fisher) supplemented with 10% fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA) and 1% penicillin/streptomycin (Invitrogen) (complete EMEM) at 22° C in a 5% CO₂ enriched environment. Human Embryonic Kidney (HEK)-293 cells were purchased from ATCC (CRL-1573), grown in complete Dulbecco's MEM at 37° C in a 5% CO2 enriched

environment. α-Amanitin (Santa Cruz Biotechnology, Inc. CA) and Actinomycin-D (Sigma-Aldrich, St. Louis, MO) were used at a final concentration of 1 µg/ml, while Leptomycin B (LMB) was used at 10 µg/ml.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

492

493

494

Plasmids

Expression vectors for EPC MAVS and EPC IFN were obtained from Dr. Michel Brémont (French National Institute for Agricultural Research, Jouy-en-Josas Cedex, France), the VHSV L expression plasmid was reported previously (53), the Tet-mSEAP construct was obtained from Dr. Fan Dong (University of Toledo, Toledo, USA) and the IFN-luciferase reporter was obtained from Dr. John Hiscott (Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy). Other plasmids used included the IFN-induced transmembrane-1 (IFITM-1)/luc plasmid, derived from the pDW9-27CD2, SV40/βgal (Promega), SV40/luc (modified from SV40/βgal). VHSV-IVb M, NV, G, and N coding sequences were PCR amplified with appropriate primers (Table 1). All fragments were cloned into pcDNA 3.1 (-) myc/his A (Invitrogen), or p3xFLAG-CMV-14 (Sigma-Aldrich). IHNV, SVCV and SHRV M cDNAs were PCR cloned from viral stocks using targeted primers (Table 1).

Luciferase driven by human U6 promoter reporter construct (pGL3-U6-Luc) was generated by subcloning human U6 promoter from pLKO.1 puro vector (Addgene plasmid # 10879) into pGL3 luciferase reporter vector (Promega #E1751) upstream of luciferase gene using Gibson Assembly (NEB #E5520). Rainbow trout RNAP I promoter luciferase construct (pGL3-ITS1-Luc) was generated by subcloning rainbow trout rRNA intergenic sequence region ITS1 into pGL3 luciferase reporter vector between two Hind III sites.

513

514

515

516

517

Recombinant virus production.

Construction of a full-length infectious clone of VHSV has been described earlier (68). This clone was used as a backbone to introduce desired mutations in the M gene, which is flanked by unique NheI and PvuII restriction sites in the full-length clone. To construct plasmid pVHSV-D62A,

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

PvuII restriction enzymes and cloned between NheI-PvuII sites of the full-length VHSV clone. To construct plasmid pVHSV-D62A/E181A, another set of primers were used to effect the Glu to Ala mutation at position 181 of the M protein. Using the single mutant cDNA fragment as a template, another PCR was carried out with the flanking NheI-forward and PvuII-reverse primers to obtain a PCR product of 712-bp. DNA of the PCR product was sequenced to confirm the presence of two mutations (D62A/E181A). This product was double digested with NheI-PvuII and cloned into the full-length VHSV clone, as described above. To generate recombinant viruses, EPC cells were transfected with plasmids pVHSV-D62A and pVHSV-D62A/E181A along with the support plasmids, using a protocol described earlier (69). Briefly, plasmids pVHSV or its derivatives were diluted in 500 µl Opti-MEM medium. Next, Lipofectamine LTX reagent (Invitrogen) was added, according to manufacturer's instructions, and incubated for 30 min at room temperature. The plasmid-Lipofectamine reaction mixture was added to the EPC monolayer in a six-well plate without replacing the growth medium. The transfection mixture was removed after 8 h of incubation at 28° C, and the transfected cells were washed and maintained in Eagle's MEM containing 10% FBS at 14° C for 5 d. Cell monolayer was observed for the development of virus-induced CPE. After 5 d of incubation, the cells were submitted to three cycles of freeze thawing. Supernatant was clarified at 8,000 × g in a microcentrifuge and used to inoculate fresh cell monolayers in T-25 flasks at 14° C. The supernatant was harvested and clarified for further characterization of the recombinant viruses. To verify that recovered viruses contain the introduced mutations, genomic RNA was extracted from partially purified virus using an RNeasy Mini Kit (Qiagen, Hilden, Germany), and subjected to reverse transcription to obtain

cDNA fragments of the VHSV genome, which were sequenced completely to confirm the presence

primers were designed to effect Asp to Ala mutation at amino acid position 62 (D62A) in the M

protein, and used in PCR along with flanking NheI-forward and PvuII-reverse primer to amplify a

PCR fragment of 712 bp. The obtained PCR product was subjected to DNA sequencing to confirm

the presence of introduced mutation (D62A). This fragment was double digested with NheI and

of introduced mutations in the M gene.

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

544

VHSV Amplification and Purification

The VHSV-IVb MI03GL isolate was kindly provided by Dr. James Winton (United States Geological Survey, Seattle, Washington). VHSV F1strain was kindly provided by Dr. Gale Kurath (United States Geological Survey, Seattle, Washington). VHSV-IVb isolates and recombinant viruses were amplified for subsequent purification by infecting a confluent monolayer of BF-2 cells in a 15 cm tissue culture dish with a 1:1000 (v/v) dilution of un-purified virus stock in serum-free EMEM. Viral adsorption was allowed to proceed for 1 h before virus-containing media was replaced with complete EMEM. Virus was cultured until the onset of cytopathicity was observed (72 h). Virus containing media and attached cells were subjected to a freeze-thaw cycle before the removal of cell debris by low speed centrifugation (4,000 \times g, 30 min). The resulting supernatant was clarified using a 0.22 µm syringe-tip filter, then subjected to ultra-centrifugation through a 25% (w/v) sucrose pad at 25,000 rpm for 3 h at 4° C. The virus-containing pellet was resuspended overnight at 4° C in PBS. Virus stocks were titered by 1:10 serial dilutions using confluent EPC cells then divided into 100 µL aliquots and stored at -80° C until use.

560

561

562

563

564

565

566

567

568

569

Virus Yield and IFN-Bioassays

To assess viral replication, EPC cells were infected for 0, 4, 18, 36, 54, 72, or 96 h at a MOI = 0.1 or 1.0 with either M D62A, M D62A/E181A, or rWT VHSV. Media and cells were harvested at each time point. A viral yield assay was used to compare the ability of mutant viruses to replicate to that of rWT virus by titering the media from each time point in 1:10 serial dilutions on BF-2 cells. At 72 h.p.i., plaques were counted and a final viral concentration in plaque forming units per mL (pfu/mL) was calculated for each time point. Antiviral assays were completed using UV irradiated media (70 mJ/cm²) from each time point which was applied overnight to EPC cells in 1:3 serial dilutions. Cells treated with irradiated media were subjected to virus challenge using sucrose

purified rWT VHSV for 72 h and then were fixed and stained with crystal violet. Stained wells were dried overnight and dye was dissolved with 30% (v/v) acetic acid for spectrophotometric quantification. Absorbance values of treated wells were normalized to values obtained by untreated and uninfected wells and 1 unit of IFN was defined as the amount necessary to provide 50% protection from virus CPE.

575

576

577

578

579

580

570

571

572

573

574

Transfection

EPC cell transfections were performed by using Polyjet reagent (SignaGen, Gaithersburg, MD) following the manufacturer's instructions. Briefly, plasmids were mixed with Polyjet in serum-free EMEM for 20 min then added to cells in serum-free medium. Media were changed to complete medium after 3 h incubation. Plasmid concentrations in all transfection experiments were equalized between samples by inclusion of empty vector.

582

583

584

585

586

587

588

589

590

591

592

593

594

595

581

Click-iT RNA Alexa Fluor 594 Imaging and Immunofluorescence Microscopy

Click-iT reactions were performed using a Click-iT RNA Imaging Kit (Invitrogen). For fluorescent microscopy, cells were seeded on Poly-L-Lysine coated coverslips in a 6-well culture dish and grown to ~70% confluence. For flow cytometry, cells were plated identically, but without coverslips. Wells were then infected with either rWT, M D62Aor M D62A/E181A viruses at a MOI = 1.0 for 24 h. At 23 h.p.i., an uninfected well was treated with Actinomycin-D (1 μg/mL) for 1 h before 5-ethynyl uridine (EU) was added to all wells to a final concentration of 1 mM. Cells were allowed to incorporate EU for 1 h before monolayers were washed with PBS and coverslips removed. Cells remaining on the plate were harvested by the addition of Versene (0.02% (w/v) EDTA in PBS) and centrifuged at 700 × g for 5 min at 4° C. Cells on coverslips and in Eppendorf tubes were fixed and permeabilized by the addition of Fixation Buffer [4.0% (w/v) Paraformaldehyde in TBST (pH = 7.5)] for 30 min at room temperature. Cells were washed once with 100 mM Glycine in PBS to quench paraformaldehyde induced auto-fluorescence, and then

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

once in PBS. Cells were incubated with in Click-iT reaction cocktail for 30 min at room temperature in the dark then washed with Click-iT reaction rinse buffer. For immunofluorescent costaining, cells on coverslips were blocked for 30 min at room temperature (1% BSA in PBS), then with primary antibody (in 1% BSA in PBS) for 1 h. Cells were washed in PBS 3 times for 5 min each, then FITC conjugated secondary antibody conjugated (in 1% BSA in PBS) was added for 1 h at room temperature. After a PBS wash, the cover slips were mounted to slides with ProLong Gold Antifade Mountant with DAPI (Life Technologies, Carlsbad, CA) for 24 h, then imaged on an Olympus IX81 inverted fluorescent microscope. For flow cytometric analysis, cells were pelleted, then resuspended in 1% (w/v) BSA and incubated at 4° C in the dark until flow cytometry data collection using a BD Scientific LSRFortessa using the Allophycocyanin (APC) 650/660 nm excitation/emission filter. Flow data were then analyzed using the FLOWJO Single Cell Analysis Software v.10. (BD Biosciences, San Jose, CA)

Luciferase assays/β-gal assays

Cells were transfected with the appropriate plasmids in 12-well tissue culture plate at a density ~70% for 24 or 48 h. After media removal, cells were washed with PBS twice then lysed for 15 min on ice in 150 μl Cell Culture Lysis Reagent 5× (diluted to 1× in water) (Promega, Madison, WI). Half of the clarified lysate was used to assess luciferase activity while the other half was used for β-galactosidase activity determination using 50 μl β-gal buffer (60 mM Na₂HPO₄, 40 mM NaH₂PO₄, 10 mM KCl, 2 mM MgSO₄, 2.6 μM ortho-Nitrophenyl-β-D-galactopyranoside, 3.2 μl β-mercaptoethanol). The mixture was incubated 1 h at 37°C and then absorbance read at 414 nm using a plate reader (SpectraMax, Molecular Devices, Sunnyvale, CA). The luciferase reading was normalized to the β-gal reading. To obtain a fold induction value, each values of sample was normalized to the value of negative control.

Cell fractionation

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Cells transiently transfected with pCD-M were fractionated into nuclear membrane (NM), soluble nuclear (SN), mitochondrial (M) and cytoplasmic (C) fractions using differential centrifugation. Briefly, three 10 cm plates were transfected with pCD-M. The following day, cells were scraped from the plate and resuspended in 5 vol mitochondrial isolation buffer (220 mM mannitol, 68 mM sucrose, 10 mM HEPES pH 7.4, 10 mM KCl, 1 mM EGTA, 1 mM EDTA, 1 mM MgCl2). Cells were incubated for 5 min on ice and then dounce homogenized. Homogenate was centrifuged for 10 min at 1000g. The supernatant was further centrifuged for 10 min. at 10,000g providing the mitochondrial pellet and cytoplasmic fraction (supernatant). The previous pellet was resuspended with RIPA lysis buffer (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris pH 8.0, 1 mM PMS) and incubated on ice for 15 min. Finally the lysate was centrifuged at 10,000g for 10 min. to provide the nucleoplasm and nuclear membrane extracts. Both final pellet fractions were washed three times with the buffer used in the previous step.

Immunoblotting

Cell lysate was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as previously described (69). Briefly, samples were run on 12.5% gel. Proteins then were transferred to Immobilon-P Polyvinylidene Fluoride (PVDF) membrane and blocked in 1% BSA in TBST. Membranes were incubated overnight with primary antibody (1:1000 in 1% BSA in TBST) at 4°C, membranes washed in TBST then incubated with secondary antibody conjugated with HRP in 1% BSA in TBST (1 h at room temperature). Membranes were washed in TBST and incubated with Enhanced Chemiluminescence reagent (Pierce, Rockford, IL) for 2 min then visualized using UVP ChemiDoc-It² 510 Imager.

Real-time qPCR

EPC cells transfected with various plasmids or infected with indicated viruses were subjected to RNA isolation using TRIzol (Invitrogen), according to the manufacturer's protocol. Moloney

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

Downloaded from http://jvi.asm.org/ on August 28, 2017 by UMBC

Murine Leukemia Virus Reverse Transcriptase (M-MLV-RT) (Promega, Madison, WI) was used to reverse transcribe 1 µg of isolated RNA. Reverse transcription reactions were carried out by incubating 1 µg of RNA with 100 ng of random hexamer primer and water to a total volume of 7 μL at 70° C for 10 min. For RT-qPCR studies with recombinant viruses, 1 ng of in vitro transcribed GFP RNA also was added to the reaction to serve as an internal control for normalization, since virus infection itself shuts down endogenous RNA synthesis. Reactions were briefly cooled to 4° C before adding 13 µL of M-MLV-RT mixture [4 µL M-MLV-RT 5x reaction buffer, 2 µL of 5 mM dNTPs (Invitrogen), 0.5 µL M-MLV-RT (Promega), and water to 13 µL]. Samples then were incubated 1 h at 42° C, cDNA samples diluted 1:10 with water then subjected to qPCR using GFP, EPC β-actin, VHSV M, Mx-1, and EPC IFN primers (Table 1). RT-qPCR was performed using 5 μL of Radiant Green Lo-ROX 2× qPCR kit (Alkali Scientific, Pompona Beach, FL), 1 μL diluted cDNA, 50 ng of each primer, and water to a total volume of 10 μL. Reactions and data collection were performed with a Bio-Rad C1000 Real Time Thermocycler for 3 min initial denaturation at 95° C, followed by 40 cycles of 15 s 95° C denaturation and 30 s 60° C elongation. Readings were taken at the end of each elongation step. Threshold numbers were obtained by an automated single point threshold within the log-linear range. Samples were normalized to EPC β-actin or GFP, and relative gene expression levels were calculated using the $2^{-\Delta\Delta CT}$ method.

ChIP Assay

The chromatin immunoprecipitation (ChIP) assay was performed as previously described with the following modifications (70). Briefly, 10^7 cells were cross-linked with 1% formaldehyde for 10 minutes and then quenched with 125 mM glycine for 5 minutes at room temperature. Nuclei were prepared in Cell Lysis Buffer (5 mM Tris-HCl pH 8, 85 mM KCl, 0.5% NP-40, 0.5 mM PMSF, 1X protease inhibitor cocktail (PIC, Thermo Scientific) on ice for 10 minutes and sonicated to yield chromatin fragments (200 to 700 bp). Immunoprecipitations were performed overnight at 4 °C using 1 µg of anti-RNAP II a A304-405A (Bethyl Laboratories, Montgomery, TX) or IgG, and then incubated with protein A agarose (EMD Millipore, Billerica, MA), which was pre-equilibrated with sonicated herring sperm DNA and BSA. Immunoprecipitated material was washed extensively, and the cross-links were reversed. DNA from the eluted chromatin was purified by PCR purification kit following manufacturer's instructions (Qiagen). Differences in DNA enrichment for ChIP samples were determined by qPCR using 4% of the precipitated sample DNA and 1% of the input DNA. The primers used for ChIP assay are listed in Table 1.

680

681

682

683

674

675

676

677

678

679

Statistics

Data management, analysis, and graphing was done in Microsoft Excel 2016. Analysis was performed by two-tailed, unpaired Student's t-tests. Graphs represent the statistical mean ± standard error of the mean (SEM).

685

686

687

688

689

690

691

692

693

694

695

696

697

698

684

Acknowledgements: This manuscript benefitted from critical comments provided by anonymous reviewers. This study was funded by NSF DBI-1354806/1354684 (D.W.L, C.A.S., V.N.V.) and USDA/ARS CRIS project # 5090-31320-004-00D, under specific cooperative agreement #58-3655-9-748 (D.W.L., C.A.S.). The views contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. Mention of trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion of other products that may be suitable. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for governmental purposes. The authors would also like to thank Shelby Powell, Tyler Williams, Tyler Popil and Jacob Blandford for technical assistance with some of the experiments described herein. PMEL contribution number 4623.

REFERENCES 699

- 1. Janeway, C.A., 1989. Approaching the asymptote? Evolution and revolution in immunology. 700
- 701 Cold Spring Harbor symposia on quantitative biology 54, 1-13.
- 2. Janeway Jr, C.A., Medzhitov, R., 2002. Innate immune recognition. Annual review of 702
- immunology 20, 197-216. 703
- 3. Loo, Y.M., Gale, M., Jr., 2011. Immune signaling by RIG-I-like receptors. Immunity 34, 680-704
- 692. 705
- 4. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K.J., Takeuchi, O., 706
- 707 Akira, S., 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon
- induction. Nat Immunol 6, 981-988. 708
- 5. Lin, R., Mamane, Y., Hiscott, J., 1999. Structural and functional analysis of interferon regulatory 709
- factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol 19, 710
- 2465-2474. 711
- 6. Seth, R.B., Sun, L., Ea, C.K., Chen, Z.J., 2005. Identification and characterization of MAVS, a 712
- mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 713
- 669-682. 714
- 7. Yoneyama, M., Suhara, W., Fukuhara, Y., Fukuda, M., Nishida, E., Fujita, T., 1998. Direct 715
- triggering of the type I interferon system by virus infection: activation of a transcription 716
- factor complex containing IRF-3 and CBP/p300. EMBO J 17, 1087-1095. 717
- 718 8. Platanias, L.C., 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev
- 719 Immunol 5, 375-386.
- 9. Stark, G.R., 2007. How cells respond to interferons revisited: from early history to current 720
- 721 complexity. Cytokine Growth Factor Rev 18, 419-423.
- 722 10. Galabov, A.S., 1981. Induction and characterization of tortoise interferon. Methods Enzymol
- 78, 196-208. 723
- 11. Altmann, S.M., Mellon, M.T., Distel, D.L., Kim, C.H., 2003. Molecular and functional analysis 724
- 725 of an interferon gene from the zebrafish, Danio rerio. J Virol 77, 1992-2002.

- 12. Schultz, U., Kaspers, B., Staeheli, P., 2004. The interferon system of non-mammalian 726
- vertebrates. Dev Comp Immunol 28, 499-508. 727
- 13. Zou, J., Tafalla, C., Truckle, J., Secombes, C.J., 2007. Identification of a second group of type I 728
- IFNs in fish sheds light on IFN evolution in vertebrates. J Immunol 179, 3859-3871. 729
- 14. Sun, B., Robertsen, B., Wang, Z., Liu, B., 2009. Identification of an Atlantic salmon IFN 730
- multigene cluster encoding three IFN subtypes with very different expression properties. 731
- Dev Comp Immunol 33, 547-558. 732
- 15. Zou, J., Gorgoglione, B., Taylor, N. G. H., Summathed, T., Lee, P-T., Panigrahi, A., Genet, C., 733
- Chen, Y.-M., Chen, T.-Y., Ul Hassan, M., Mughal, S. M., Boudinot, P., Secombes, C. J., 734
- 2014. Salmonids have an extraordinary complex Type I IFN system: characterization of the 735
- IFN locus in rainbow trout Oncorhynchus mykiss reveals two novel IFN subgroups. J 736
- Immunol 193 (5), 2273-2286. 737
- 16. Chang, M., Collet, B., Nie, P., Lester, K., Campbell, S., Secombes, C.J., Zou, J., 2011. 738
- 739 Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in
- Rainbow trout (Oncorhynchus mykiss). J Virol 85, 8403-8412. 740
- 741 17. Biacchesi, S., LeBerre, M., Lamoureux, A., Louise, Y., Lauret, E., Boudinot, P., Bremont, M.,
- 742 2009. Mitochondrial antiviral signaling protein plays a major role in induction of the fish
- innate immune response against RNA and DNA viruses. J Virol 83, 7815-7827. 743
- 744 18. Verrier, E.R., Langevin, C., Benmansour, A., Boudinot, P., 2011. Early antiviral response and
- 745 virus-induced genes in fish. Dev Comp Immunol 35, 1204-1214.
- 19. Manual of Diagnostic Tests for Aquatic Animals, In Manual of Diagnostic Tests for Aquatic 746
- 747 Animals. The World Organisation for Animal Health; 2016
- 748 20. Einer-Jensen, K., Ahrens, P., Forsberg, R., Lorenzen, N., 2004. Evolution of the fish
- rhabdovirus viral haemorrhagic septicaemia virus. J Gen Virol 85, 1167-1179. 749
- 21. Schutze, H., Mundt, E., Mettenleiter, T.C., 1999. Complete genomic sequence of viral 750
- 751 hemorrhagic septicemia virus, a fish rhabdovirus. Virus Genes 19, 59-65.

- 22. Ammayappan, A., Vakharia, V.N., 2009. Molecular characterization of the Great Lakes viral 752
- 753 hemorrhagic septicemia virus (VHSV) isolate from USA. Virol J 6, 171.
- 23. Snow, M., Cunningham, C.O., Melvin, W.T., Kurath, G., 1999. Analysis of the nucleoprotein 754
- gene identifies distinct lineages of Viral Haemorrhagic Septicaemia virus within the 755
- 756 European marine environment. Virus Res 63(1/2): 35-44.
- 24. Pierce, L.R., Stepien, C.A., 2012. Evolution and biogeography of an emerging quasispecies: 757
- diversity patterns of the fish Viral Hemorrhagic Septicemia virus (VHSv). Mol Phylogenet 758
- 759 Evol 63, 327-341.
- 25. Stone, D.M., Ferguson, H.W., Tyson, P.A., Savage, J., Wood, G., Dodge, M.J., Woolford, G., 760
- Dixon, P.F., Feist, S.W., Way, K., 2008. The first report of viral haemorrhagic septicaemia 761
- in farmed rainbow trout, Oncorhynchus mykiss (Walbaum), in the United Kingdom. J Fish 762
- Dis 31, 775-784. 763
- 26. Toplak, I., Hostnik, P., Rihtaric, D., Olesen, N.J., Skall, H.F., Jencic, V., 2010. First isolation 764
- and genotyping of viruses from recent outbreaks of viral haemorrhagic septicaemia (VHS) 765
- in Slovenia. Dis Aquat Organ 92, 21-29. 766
- 767 27. Elsayed, E., Faisal, M., Thomas, M., Whelan, G., Batts, W., Winton, J., 2006. Isolation of viral
- 768 haemorrhagic septicaemia virus from muskellunge, Esox masquinongy (Mitchill), in Lake
- St Clair, Michigan, USA reveals a new sublineage of the North American genotype. J Fish 769
- 770 Dis 29, 611-619.
- 771 28. Lumsden, J.S., Morrison, B., Yason, C., Russell, S., Young, K., Yazdanpanah, A., Huber, P.,
- Al-Hussinee, L., Stone, D., Way, K., 2007. Mortality event in freshwater drum Aplodinotus 772
- 773 grunniens from Lake Ontario, Canada, associated with viral haemorrhagic septicemia virus,
- 774 type IV. Dis Aquat Organ 76, 99-111.
- 29. Groocock, G.H., Getchell, R.G., Wooster, G.A., Britt, K.L., Batts, W.N., Winton, J.R., Casey, 775
- R.N., Casey, J.W., Bowser, P.R., 2007. Detection of viral hemorrhagic septicemia in round 776
- 777 gobies in New York State (USA) waters of Lake Ontario and the St. Lawrence River. Dis

- Aquat Organ 76, 187-192. 778
- 779 30. Gagne, N., Mackinnon, A.M., Boston, L., Souter, B., Cook-Versloot, M., Griffiths, S., Olivier,
- G., 2007. Isolation of viral haemorrhagic septicaemia virus from mummichog, stickleback, 780
- striped bass and brown trout in eastern Canada. J Fish Dis 30, 213-223. 781
- 31. Thompson, T.M., Batts, W.N., Faisal, M., Bowser, P., Casey, J.W., Phillips, K., Garver, K.A., 782
- Winton, J., Kurath, G., 2011. Emergence of Viral hemorrhagic septicemia virus in the North 783
- American Great Lakes region is associated with low viral genetic diversity. Dis Aquat 784
- 785 Organ 96, 29-43.
- 32. Cornwell, E.R., Eckerlin, G.E., Getchell, R.G., Groocock, G.H., Thompson, T.M., Batts, W.N., 786
- Casey, R.N., Kurath, G., Winton, J.R., Bowser, P.R., 2011. Detection of viral hemorrhagic 787
- septicemia virus by quantitative reverse transcription polymerase chain reaction from two 788
- fish species at two sites in Lake Superior. J aquat animal health 23, 207-217. 789
- 33. Kim, R., Faisal, M., 2010. Comparative susceptibility of representative Great Lakes fish species 790
- 791 to the North American viral hemorrhagic septicemia virus Sublineage IVb. Dis Aquat
- Organ 91, 23-34. 792
- 34. Kim, R., Faisal, M., 2011. Emergence and resurgence of the viral hemorrhagic septicemia virus 793
- 794 (Novirhabdovirus, Rhabdoviridae, Mononegavirales). Journal of Advanced Research 2, 9-
- 23. 795
- 796 35. Ammayappan, A., Vakharia, V.N., 2011. Nonvirion protein of novirhabdovirus suppresses
- 797 apoptosis at the early stage of virus infection. J Virol 85, 8393-8402.
- 36. Choi, M.K., Moon, C.H., Ko, M.S., Lee, U.-H., Cho, W.J., Cha, S.J., Do, J.W., Heo, G.J., 798
- 799 Jeong, S.G., Hahm, Y.S., 2011. A nuclear localization of the infectious haematopoietic
- 800 necrosis virus NV protein is necessary for optimal viral growth. PLoS One 6, e22362.
- 37. Kim, M.S., Kim, K.H., 2013. The role of viral hemorrhagic septicemia virus (VHSV) NV gene 801
- in TNF-alpha- and VHSV infection-mediated NF-kappaB activation. Fish Shellfish 802
- 803 Immunol 34, 1315-1319.

- 38. Chiou, P.P., Kim, C.H., Ormonde, P., Leong, J.A., 2000. Infectious hematopoietic necrosis 804
- virus matrix protein inhibits host-directed gene expression and induces morphological 805
- changes of apoptosis in cell cultures. J Virol 74, 7619-7627. 806
- 39. Stepien, C.A., Pierce, L.R., Leaman, D.W., Niner, M.D., Shepherd, B.S., 2015. Gene 807
- Diversification of an Emerging Pathogen: A Decade of Mutation in a Novel Fish Viral 808
- Hemorrhagic Septicemia (VHS) Substrain since Its First Appearance in the Laurentian 809
- Great Lakes. PLoS One 10, e0135146. 810
- 40. Yuan, H., Yoza, B.K., Lyles, D.S., 1998. Inhibition of host RNA polymerase II-dependent 811
- transcription by vesicular stomatitis virus results from inactivation of TFIID. Virology 251, 812
- 383-392. 813
- 41. Tornoe, C.W., Christensen, C., Meldal, M., 2002. Peptidotriazoles on solid phase: [1,2,3]-814
- triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes 815
- to azides. J Org Chem 67, 3057-3064. 816
- 42. Rostovtsev, V.V., Green, L.G., Fokin, V.V., Sharpless, K.B., 2002. A stepwise huisgen 817
- cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal 818
- 819 alkynes. Angew Chem Int Ed Engl 41, 2596-2599.
- 820 43. Dixon, P., Feist, S., Kehoe, E., Parry, L., Stone, D., Way, K., 1997. Isolation of viral
- haemorrhagic septicaemia virus from Atlantic herring Clupea harengus from the English 821
- 822 Channel. Dis Aquat Organ 30, 81-89.
- 44. Ahmed, M., Lyles, D.S., 1998. Effect of vesicular stomatitis virus matrix protein on 823
- transcription directed by host RNA polymerases I, II, and III. J Virol 72, 8413-8419. 824
- 825 45. Faria, P.A., Chakraborty, P., Levay, A., Barber, G.N., Ezelle, H.J., Enninga, J., Arana, C., van
- 826 Deursen, J., Fontoura, B.M., 2005. VSV disrupts the Rae1/mrnp41 mRNA nuclear export
- pathway. Mol Cell 17, 93-102. 827
- 46. Her, L.S., Lund, E., Dahlberg, J.E., 1997. Inhibition of Ran guanosine triphosphatase-828
- 829 dependent nuclear transport by the matrix protein of vesicular stomatitis virus. Science 276,

- 1845-1848. 830
- 47. Petersen, J.M., Her, L.S., Varvel, V., Lund, E., Dahlberg, J.E., 2000. The matrix protein of 831
- vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and 832
- associated with nuclear pore complexes. Mol Cell Biol 20, 8590-8601. 833
- 48. von Kobbe, C., van Deursen, J.M., Rodrigues, J.P., Sitterlin, D., Bachi, A., Wu, X., Wilm, M., 834
- Carmo-Fonseca, M., Izaurralde, E., 2000. Vesicular stomatitis virus matrix protein inhibits 835
- host cell gene expression by targeting the nucleoporin Nup98. Mol Cell 6, 1243-1252. 836
- 837 49. Corden, J.L., 1990. Tails of RNA polymerase II. Trends Biochem Sci 15, 383-387.
- 50. O'Brien, T., Hardin, S., Greenleaf, A., Lis, J.T., 1994. Phosphorylation of RNA polymerase II 838
- C-terminal domain and transcriptional elongation. Nature 370, 75-77. 839
- 51. Bensaude, O., Bonnet, F., Casse, C., Dubois, M.F., Nguyen, V.T., Palancade, B., 1999. 840
- Regulated phosphorylation of the RNA polymerase II C-terminal domain (CTD). Biochem 841
- Cell Biol 77, 249-255. 842
- 843 52. Komarnitsky, P., Cho, E.J., Buratowski, S., 2000. Different phosphorylated forms of RNA
- polymerase II and associated mRNA processing factors during transcription. Genes Dev 14, 844
- 2452-2460. 845
- 53. Ammayappan, A., Kurath, G., Thompson, T.M., Vakharia, V.N., 2011. A reverse genetics 846
- system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is 847
- 848 required for pathogenicity. Mar Biotechnol (NY) 13, 672-683.
- 849 54. Holland, J.J., Peterson, J.A., 1964. Nucleic Acid and Protein Synthesis during Poliovirus
- Infection of Human Cells. J Mol Biol 8, 556-575. 850
- 851 55. Wertz, G.W., Youngner, J.S., 1970. Interferon production and inhibition of host synthesis in
- 852 cells infected with vesicular stomatitis virus. J Virol 6, 476-484.
- 56. Ferran, M.C., Lucas-Lenard, J.M., 1997. The vesicular stomatitis virus matrix protein inhibits 853
- transcription from the human beta interferon promoter. J Virol 71, 371-377. 854
- 855 57. Ahmed, M., McKenzie, M.O., Puckett, S., Hojnacki, M., Poliquin, L., Lyles, D.S., 2003.

- Ability of the matrix protein of vesicular stomatitis virus to suppress beta interferon gene 856
- 857 expression is genetically correlated with the inhibition of host RNA and protein synthesis. J
- Virol 77, 4646-4657. 858
- 58. Clinton, G.M., Little, S.P., Hagen, F.S., Huang, A.S., 1978. The matrix (M) protein of vesicular 859
- stomatitis virus regulates transcription. Cell 15, 1455-1462. 860
- 59. Dancho, B., McKenzie, M.O., Connor, J.H., Lyles, D.S., 2009. Vesicular stomatitis virus matrix 861
- protein mutations that affect association with host membranes and viral nucleocapsids. J 862
- 863 Biol Chem 284, 4500-4509.
- 60. Mebatsion, T., Weiland, F., Conzelmann, K.K., 1999. Matrix protein of rabies virus is 864
- responsible for the assembly and budding of bullet-shaped particles and interacts with the 865
- transmembrane spike glycoprotein G. J Virol 73, 242-250. 866
- 61. Black, B.L., Rhodes, R.B., McKenzie, M., Lyles, D.S., 1993. The role of vesicular stomatitis 867
- virus matrix protein in inhibition of host-directed gene expression is genetically separable 868
- 869 from its function in virus assembly. J Virol 67, 4814-4821.
- 62. Gaudier, M., Gaudin, Y., Knossow, M., 2002. Crystal structure of vesicular stomatitis virus 870

- 871 matrix protein. EMBO J 21, 2886-2892.
- 872 63. Graham, S.C., Assenberg, R., Delmas, O., Verma, A., Gholami, A., Talbi, C., Owens, R.J.,
- Stuart, D.L., Grimes, J.M., Bourhy, H., 2008. Rhabdovirus matrix protein structures reveal a 873
- 874 novel mode of self-association. PLoS Pathogens, 4(12), e1000251.
- 875 64. Roy, A., Kucukural, A., Zhang, Y., 2010. I-TASSER: a unified platform for automated protein
- structure and function prediction. Nature Protocols, 5, 725-738. 876
- 877 65. Glodowski, D. R., Petersen, J. M., Dahlberg, J. E., 2002. Complex nuclear localization signals
- 878 in the matrix protein of vesicular stomatitis virus. J Biol Chem 277, 46864–46870.
- 66. Ogden, J. R., Pal, R., and Wagner, R. R., 1986. Mapping regions of the matrix protein of 879
- stomatitis virus which bind to ribonucleocapsids, liposomes and monoclonal 880 vesicular
- 881 antibodies. J Virol 58, 860-868.

883

884

885

- 67. Connor, J. H. and Lyles, D. S. 2005. Inhibition of Host and Viral Translation during Vesicular Stomatitis Virus Infection. J Biol Chem 280, 13512–13519.
- 68. Ammayappan, A., Lapatra, S.E., Vakharia, V.N., 2010. A vaccinia-virus-free reverse genetics system for infectious hematopoietic necrosis virus. J Virol Methods 167, 132-139.
- 69. Lai, S.H., Jiang, G.B., Yao, J.H., Li, W., Han, B.J., Zhang, C., Zeng, C.C., Liu, Y.J., 2015. 886
- Cytotoxic activity, DNA damage, cellular uptake, apoptosis and western blot analysis of 887 ruthenium(II) polypyridyl complex against human lung decarcinoma A549 cell. J Inorg 888
- 889 Biochem 152, 1-9.
- 70. Boyd, K.E., Wells, J., Gutman, J., Bartley, S.M., Farnham, P.J., 1998. c-Myc target gene 890 specificity is determined by a post-DNA binding mechanism. Proc Natl Acad Sci USA 95, 891 892 13887-13892.
 - Figure Legends
 - Fig. 1. VHSV-IVb infection blocks IFN responsiveness. A) EPC cells were left untreated or treated with IFN (10 U/ml) and infected with VHSV-IVb (MOI = 0.1) at the different time points indicated. Cytopathic effects (CPE) were assessed at 72 h.p.i. B) EPC cells were transfected with a luciferase reporter driven by the IFITM1 promoter (IFITM1/luc) for 24 h followed by infection with VHSV-IVb for 24 or 48 h, with or without EPC IFN treatment. Luciferase values were quantified 6 h later and normalized to the uninfected, IFN treated control.

900

901

902

903

904

905

906

907

893

894

895

896

897

898

899

Fig. 2. VHSV-IVb M inhibits host promoter activation. A) EPC cells were co-transfected with 0.4 µg IFITM1/luc construct, EPC-derived MAVS (0.3 µg) and plasmids encoding each of the VHSV genes (0.05 or 0.1 µg), followed by luciferase assay 48 h later. Luciferase values were normalized to IFITM1/luc + MAVS. Plasmid concentrations in all samples were equalized with empty vector. B) EPC cells (1X10⁶) were transfected with 2 µg of expression plasmids for the indicated VHSV proteins expressed in frame with a C-terminal myc epitope tag. After 48 h, cell lysates were separated by SDS PAGE and immunoblotted for protein expression with a myc mAb.

Note that VHSV M is less highly expressed because of its ability to inhibit its own expression from the RNAP II-directed CMV promoter. C) EPC cells were co-transfected with IFITM1/luc (0.4 µg) and various concentrations of a VHSV-IVb M expression plasmid (0.5-50 ng) for 24 h and then treated with or without EPC IFN for 24 h followed by luciferase assay. Luciferase values were normalized to IFITM1/luc + IFN. D) EPC cells were co-transfected with human IFN (hIFN)/luc (0.4 μg), MAVS (0.3 μg) and various concentrations of a VHSV-IVb M expression plasmid (pCD-M; 0.5-50 ng) for 24 h followed by luciferase assay. Luciferase values were normalized to IFN/luc + MAVS. E) EPC cells were co-transfected with a SV40/luc construct (0.4 μg) and various concentrations of pCD-M (0.5-50 ng) for 24 h followed by luciferase assay. Luciferase values were normalized to SV40/luc alone.

918

919

920

921

922

923

924

925

908

909

910

911

912

913

914

915

916

917

Fig. 3. VHSV-IVb M inhibits host mRNA expression. A) EPC cells (1×10^6) were co-transfected with or without a SV40/luc construct (0.8 µg) and various concentrations of a VHSV-IVb M expression plasmid (0.1-0.5 µg) for 24 h, followed by RNA isolation. Luciferase mRNA levels were measured by RT-qPCR. Data were normalized to β-actin mRNA levels. B) Tet-mSEAP were co-transfected with or without IVb M (0.1 µg) into EPC cells for 24 h then treated with doxycycline for 24 h followed by RNA isolation and RT-qPCR using mSEAP primer. For the comparison indicated **** p<0.001.

926 927

928

929

930

931

932

933

Fig. 4. VHSV M blocks nascent cellular RNA synthesis. A) EPC cells were left untreated, treated with 2 μg/ml α-Amanitin, 1 μg/ml Act. D or infected with VHSV-IVb (MOI = 1) for 24 h, then cultured in 100 µM EU for 2 h. EU was visualized with Alexa594 via click chemistry reaction. VHSV transfected cells were visualized using a polyclonal anti-VHSV antibody, followed by goat anti-rabbit FITC secondary staining. B) EPC cells were co-transfected with 0.4 µg GFP and 0.1 µg IVb M for 24 h then labeled with 100 µM EU for 2 h. EU was visualized with Alexa594 via click chemistry reaction. C) EPC cells were transfected with SV40/luc, ITS1/luc or U6/Luc reporter construct with 0.25 µg pCD-M/1×10⁶ cells for 24 h followed by total RNA extraction and reverse transcription to cDNA. Luciferase mRNA levels were quantified by RT-qPCR and normalized to EPC β-actin mRNA levels. **D)** The data in C were expressed as a percentage of the control values for each construct, demonstrating that relative inhibition was similar for all.

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

934

935

936

937

Fig. 5. VHSV IVb M Localizes to the Nucleus and Cytoplasm and alters host mRNA dynamics. A) Cells transiently transfected with pCD-M were fractionated into nuclear membrane (NM), soluble nuclear (SN), mitochondrial (M) and cytoplasmic (C) fractions using differential centrifugation. Lysates were run on a 15 % SDS-Page gel and transferred to PVDF. IVb M was detected with 1:1000 Myc antibody (Cell signaling). B) EPC cells were transfected with pCD-M for 24 h. Fixed/permeabilized cells were incubated with anti-Myc primary antibody and then Goatanti-Rabbit secondary antibody conjugated with FITC. Cells were counterstained with propidium iodide (PI) and viewed using a confocal microscope (100X). C) EPC cells were left uninfected or were infected with VHSV-IVb virus (MOI 1) for 24 h or treated with Leptomycin B (LMB) for 3 h. After infection/treatment, the EPC cell pellets were spiked with 1X10⁵ HEK 293 cells before fractionation followed by RNA isolation and RT-qPCR. Total ß actin mRNA levels and nucleus to cytoplasm ratio of fish actin mRNA (D) were calculated. B actin values were normalized to human GAPDH values to control for differences in isolation efficiency under conditions in which nuclear/cytoplasmic levels of the human transcript were not altered by treatment. * p<0.05; ** p<0.01; *** p<0.005; **** p<0.001.

954

955

956

957

958

959

Fig. 6. VHSV-IVb M blocks RNAP II recruitment and activation. A) EPC cells were transfected with a tet regulated SEAP plasmid and pCD-M for 24 h and were then left untreated or were induced with 2 µg/ml doxycycline for 4 h. After crosslinking, chromatin was immunoprecipitated with antibodies to IgG and RNAP II and analyzed by RT-qPCR using primers specific for the minimal CMV promoter. RNAP II recruitment was normalized to IgG control. For

the comparisons indicated * p<0.05; ** p<0.01; *** p<0.005. B) EPC cells were infected with VHSV-IVb virus (MOI=5) for 0-72 h. Cell lysates were separated by PAGE and immunoblots probed with antibodies recognizing RNA polymerase II CTD repeat YSPTSPS (α-RNAPII-Ps2), total RNAP II, β-actin and VHSV structural proteins, followed by HRP secondary antibodies and chemiluminescent detection. The bottom panel shows just the M band from the VHSV immunoblot.

966

967

968

969

970

971

972

973

974

975

976

977

960

961

962

963

964

965

Fig. 7. Comparison of fish rhabdoviral M proteins. A) M proteins from various VHSV strains and substrains (-IVb: MI03GL; KRRV: isolate of -IVa strain from Japan; F1: Egtved isolate of -Ia strain from Denmark; Bog: NA-5 isolate from Bogachiel River; EB: EB#7 isolate from Elliot Bay;), and from IHNV, SVCV and SHRV were co-transfected with SV40/luc into EPC cells for 24 h, after which time luciferase assays were performed. B) Immunoblot analysis of transfected viral M proteins (1.0 µg per 1×10⁶ cells) in EPC lysates, detected using anti-myc monoclonal followed by HRP goat anti-mouse antibodies and visualization using chemiluminescence. *IHNV M protein was so effective at shutting down transcription (including its own) that subsequent studies with higher protein amounts were required to detect its expression (data not shown). C) EPC cells were left untreated or transfected 0.1 µg VHSV-IVb M or VHSV-Ia (F1) M expression plasmids for 24 h, then labeled with 100 µM EU for 2 h. EU was visualized with Alexa594 via Click-IT chemistry reaction.

979

980

981

982

983

984

985

978

A) EPC cells were co-transfected with wild type -IVb M or M mutants (D62A or D62A/E181A) along with SV40/Luc for 24 h followed by luciferase assay. ** p<0.01; *** p<0.005. B) Schematic of the M mutants tested in A. C) Immunofluorescent microscopy of cells transfected with WT or mutant M expression plasmids. Cells expressing M were identified by staining with a α-Myc mAb

(green), and the level of active RNAPII in M expressing cells (white arrow) was qualitatively

Fig. 8. Impact of amino acid changes to VHSV-IVb M on transcriptional inhibitory function.

assessed by counterstaining with an αRNAPII-Ps2 pAB (red). Phosphorylation of serine-2 of the RNAPII CTD is a hallmark of an active, elongating RNAPII. All samples were counterstained with DAPI. Images are representative of multiple myc-positive clones for each transfection.

989

990

991

992

993

986

987

988

Fig. 9. Replication of wild type versus M D62A and M D62A/E181A mutant viruses. Viral titer from media harvested from cells infected at the indicated time points at an MOI = 0.1 (A) or MOI = 1.0 (B). Error bars reflect SEM. * p < 0.05; ** p < 0.01; *** p < 0.001 mutant virus results compared to rWT at the same time point.

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

Fig. 10. Inhibition of host responses by wild type versus M D62A and M D62A/E181A mutant viruses. A) EPC cells were transfected with a SV40/luc for 6 h then infected with the indicated viruses MOI = 0.1 or 1.0. Luciferase activity was quantified 24 h after infection and data normalized by Bradford assay. Error bars reflect SEM. * p < 0.05; ** p < 0.01; *** p < 0.001 compared to rWT at the same MOI. B) Cells were left uninfected or were infected with the indicated virus then subjected immunostaining with either anti-VHSV antibody or anti-RNAP II phosphor-serine-2 antibody with DAPI counterstain. Note that column 1 (αVHSV) is from a parallel, identically treated culture as compared to the right two columns, and that the DAPI images correspond to the adjacent aRNAP II-Ps2 images. C) Quantification of the mean grey scale intensity found within the nucleus of virus-infected cells stained with the RNAP II phospho-serine-2 antibody. Error bars reflect SEM. *** p < 0.001 compared to uninfected controls. **D)** SRB assay was used to measure viability of EPC cells infected with rWT or mutant M viruses at 96 h postinfection at the indicated MOIs. Error bars reflect SEM. * p < 0.05; ** p < 0.01; *** p < 0.001mutant virus results compared to rWT results at the same MOI. E) EPC cells were infected with the indicated viruses at MOI = 0.1, and monolayers were overlayed with methylcellulose (0.75%). At 48 or 96 h.p.i., cells were fixed with 10% formalin, stained with crystal violet, and imaged using phase contrast microscopy (bar = $100 \mu m$).

Fig. 11. Mutant M viruses elicit reduced transcriptional inhibition. EPC cells were left untreated and unstained (A, D), untreated and stained (B, E) treated with Act.-D (C, F), or infected with the indicated viruses at a MOI = 1 for 24 h prior to EU labelling of nascent RNA (G-L). EU was conjugated to AlexaFluor-594 by Click-iT reaction and Flow data/IF images were collected. Images from coverslips placed in the cultures used for Flow were stained with αVHSV (green) post Click-iT reaction (red). Images correspond to the histogram directly above. The percentage of cells scored as AF-594 negative and AF594 positive are shown as an insert within each histogram.

1020

1012

1013

1014

1015

1016

1017

1018

1019

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

Fig. 12. Regulation of host IFN responses by wild type versus M D62A and M D62A/E181A mutant viruses. A) Media collected at the indicated times post infection was used in an antiviral assay to assess the antiviral activity released, and quantified as antiviral units/mL (uIFN/mL) as discussed in the methods section. Error bars reflect SEM. * p < 0.05; ** p < 0.01; *** p < 0.001 mutant virus results compared to rWT at same MOI. B) EPC cells were transfected with a Mx-1/luc reporter and then infected for 24 h with rWT or mutant viruses at MOI = 0.1 + /-, and then left untreated or treated with IFN for an additional 18 h. Luciferase activity was quantified and normalized to protein levels in cell lysates using a Bradford assay. C) EPC cells were transfected and treated as those in (B) but were infected with rWT or mutant viruses at an MOI = 1 before IFN treatment and luciferase activity quantification. Data are expressed as fold change of RLUs compared to the uninfected, untreated control. Error bars reflect SEM. * p < 0.05; ** p < 0.01; *** p < 0.001 mutant virus results are compared to rWT or in pairwise comparison indicated by solid horizontal bars above the samples of interest.

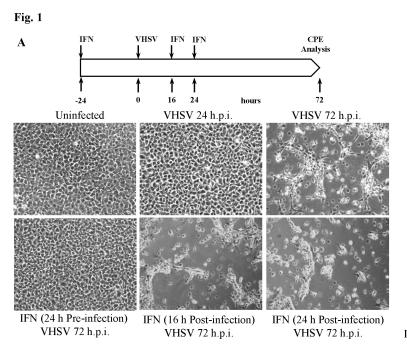
1034

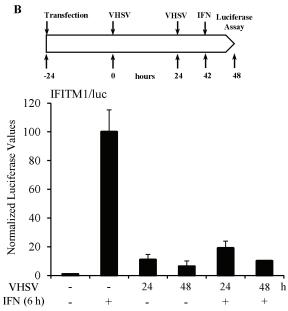
1035

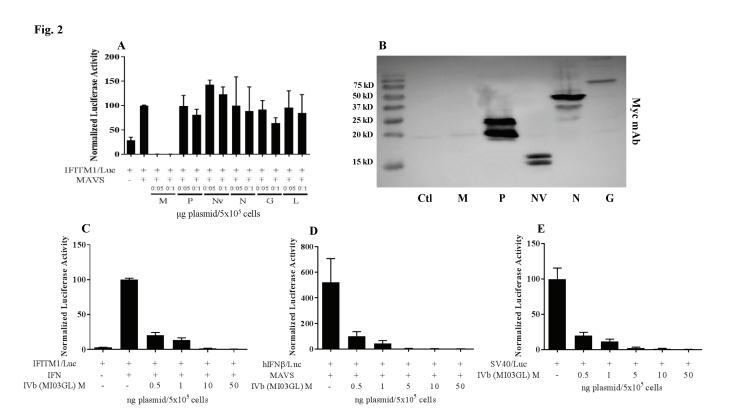
1036

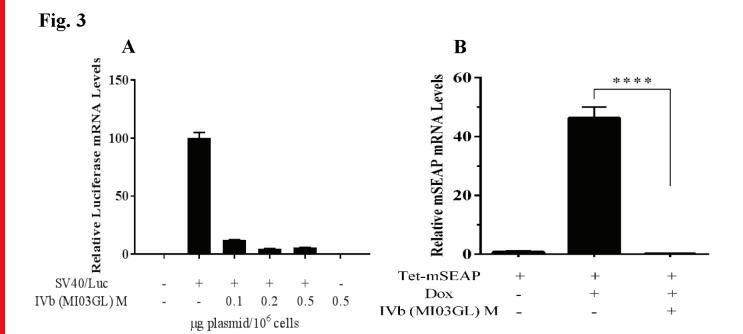
1037

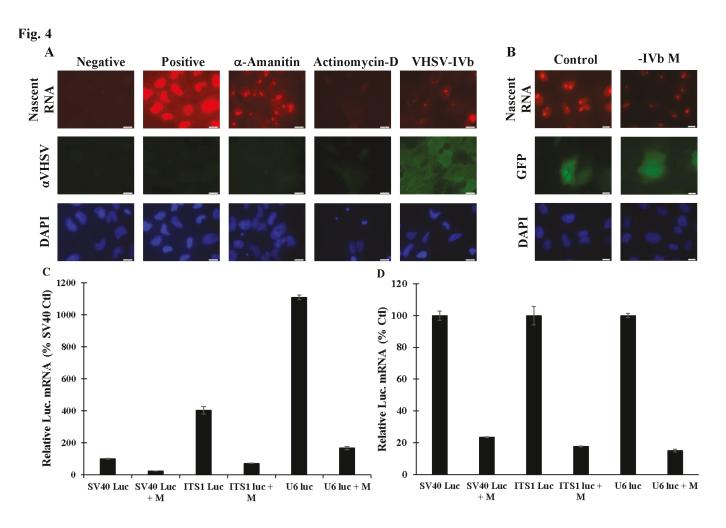
Fig. 13. Regulation of innate immune genes by wild type versus M D62A and M D62A/E181A mutant viruses. RT-qPCR results from RNA harvested at the indicated times post-infection (TPI) at an MOI = 0.1 (A-C) or MOI = 1 (D-F). Synthesized cDNAs were assessed for VHSV RNA (A,

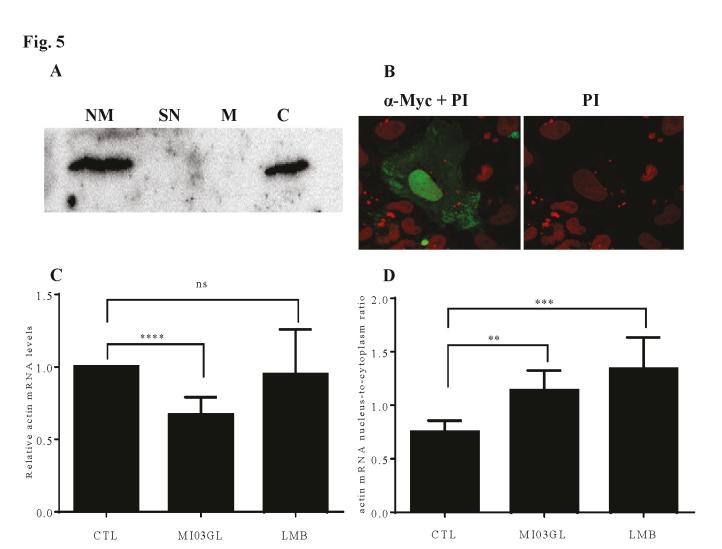

1038

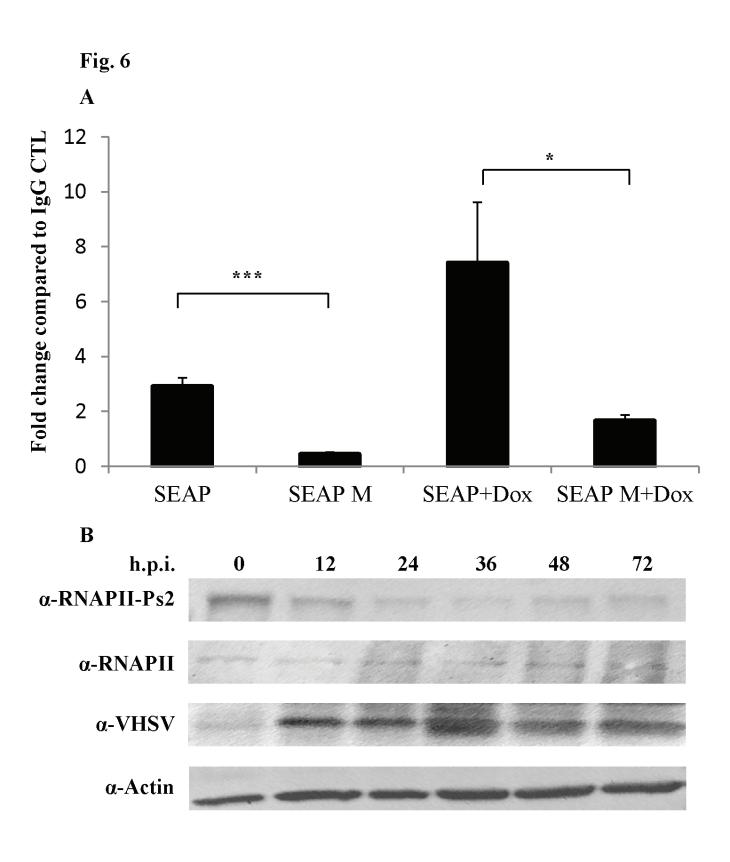

1039


1040

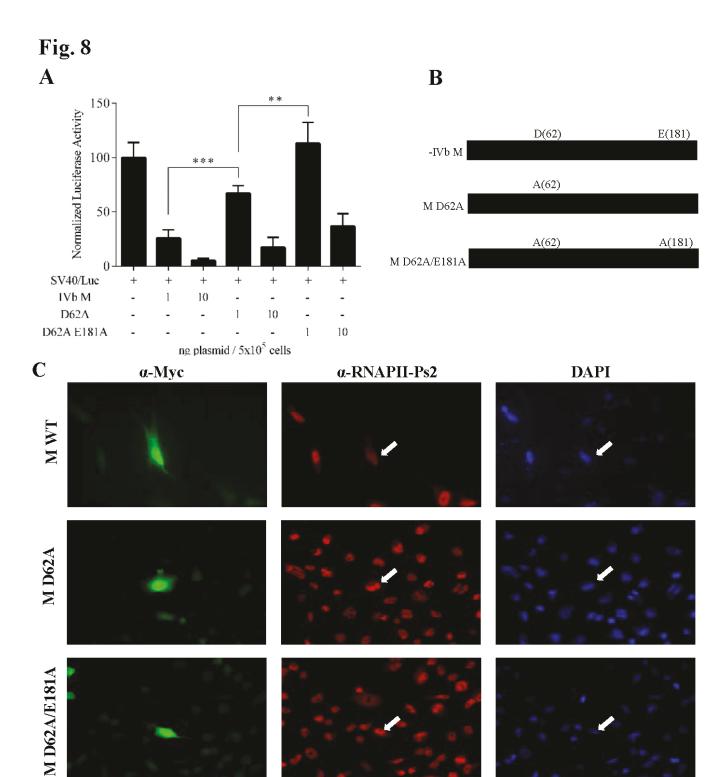

1041

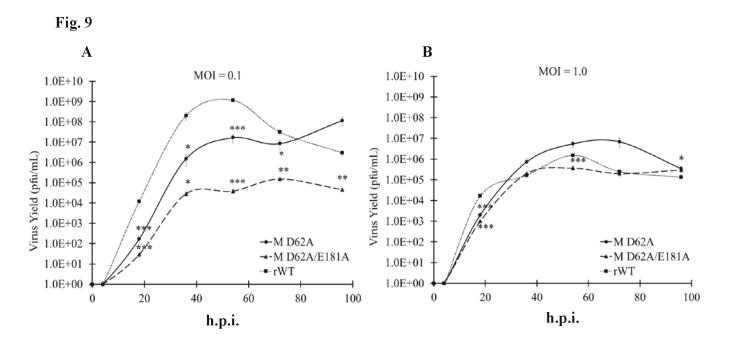

D), EPC type I IFN (B, E) and fish Mx-1 (C, F). Data were normalized to a spiked internal control as described in the methods section and presented as a fold change in expression relative to untreated controls. Error bars reflect SEM. * p < 0.05; *** p < 0.01; **** p < 0.001 mutant virus results compared to rWT at the same time point.



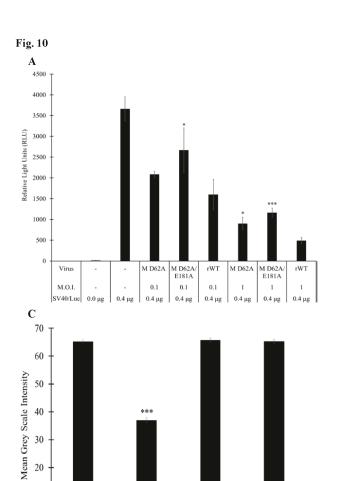


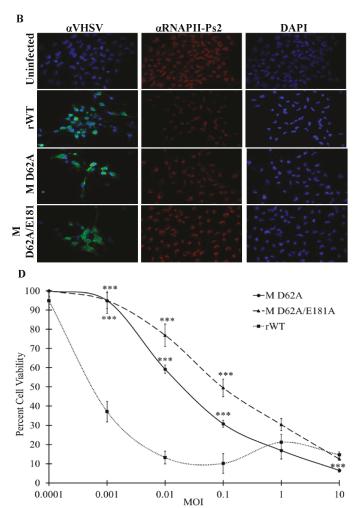






10


0


No Infection

rWT

M D62A

M D62A/E181A

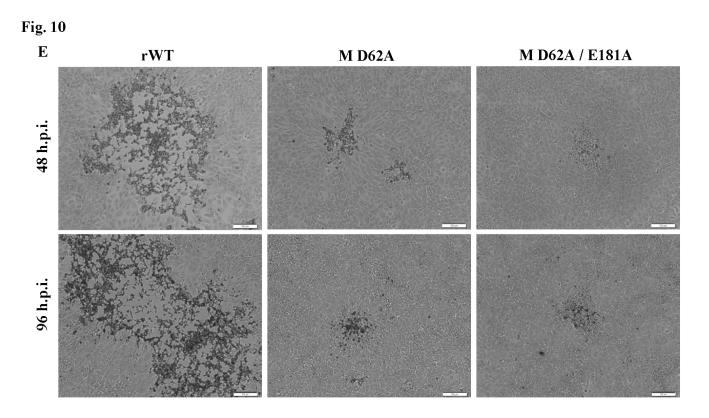
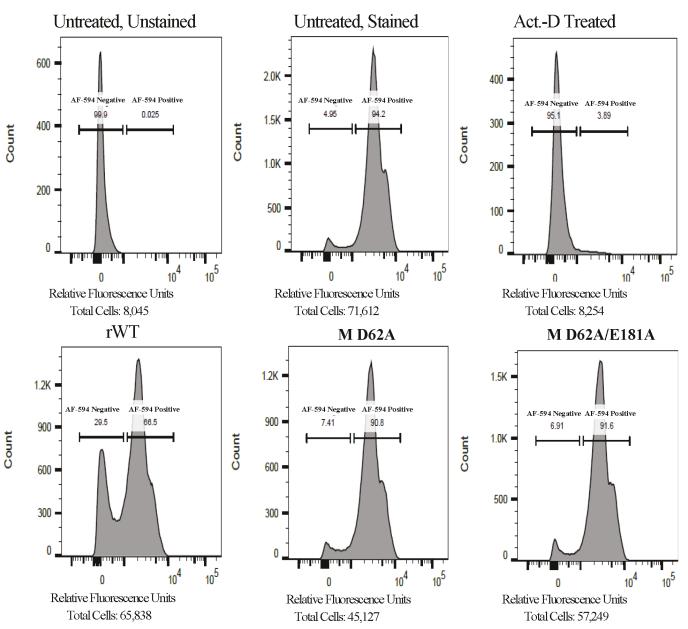
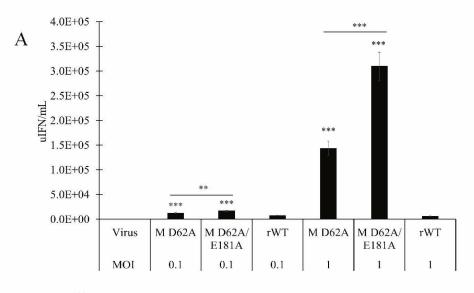
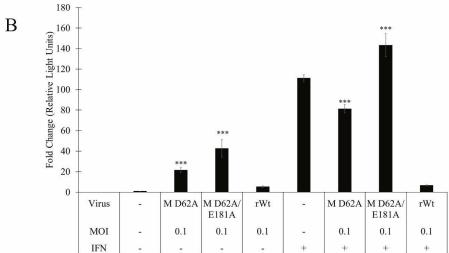





Fig. 11

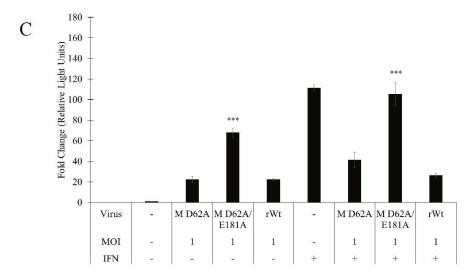
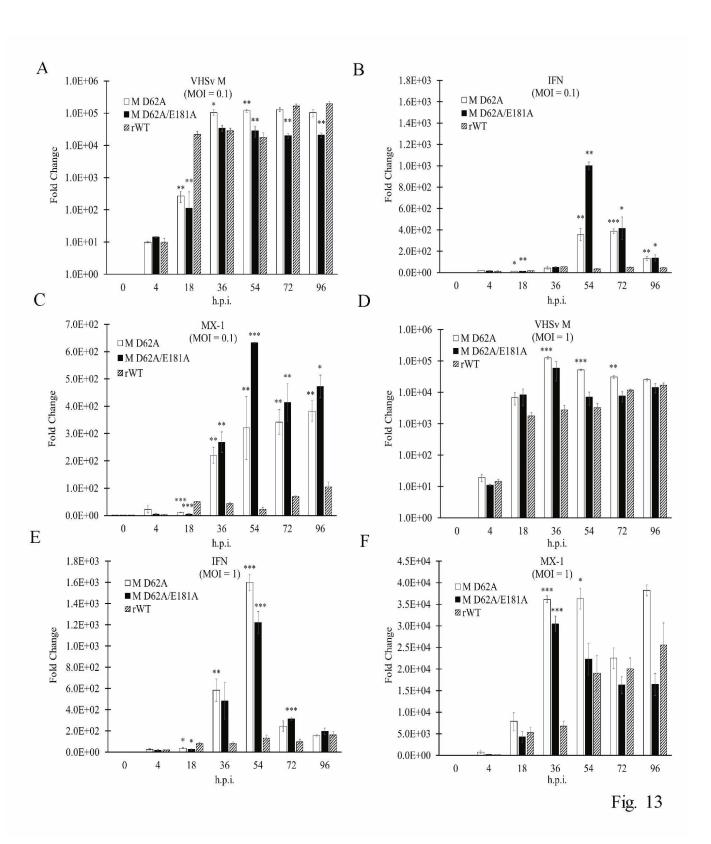



Fig. 12

