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Summary 

Decision making involves dynamic interplay between internal judgements and 
external perception, which has been investigated in delayed match-to-category 
(DMC) experiments. Our analysis of neural recordings shows that, during DMC tasks, 
LIP and PFC neurons demonstrate mixed, time-varying, and heterogeneous 
selectivity, but previous theoretical work has not established the link between these 
neural characteristics and population-level computations. We trained a recurrent 
network model to perform DMC tasks and found that the model can remarkably 
reproduce key features of neuronal selectivity at the single-neuron and population 
levels. Analysis of the trained networks elucidates that robust transient trajectories 
of the neural population are the key driver of sequential categorical decisions. The 
directions of trajectories are governed by network self-organized connectivity, 
defining a ‘neural landscape’, consisting of a task-tailored arrangement of slow 
states and dynamical tunnels. With this model, we can identify functionally-relevant 
circuit motifs and generalize the framework to solve other categorization tasks. 

Introduction 

Many human behaviors can be viewed as a series of category-based computations 
(Roelfsema et al., 2003; Rabinovich and Varona, 2011). For example, shopping 
requires determining categories of desired items then using that category 
information to guide our navigation of the store. Neurophysiological studies have 
investigated the neural basis of such behavior using delayed match to category 
(DMC) tasks in which monkeys indicate whether a test stimulus is a categorical 
match to a previously presented sample stimulus. Previous work revealed that, in 
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animals trained to perform DMC tasks, neural responses in the lateral intraparietal 
area (LIP) and prefrontal cortex (PFC) can exhibit robust selectivity for the category 
of the sample stimulus which persists across the memory delay period (Freedman et 
al., 2001; Freedman and Assad, 2006; Swaminathan and Freedman, 2012). 

Few computational models have addressed the neural mechanisms underlying 
sequential category computations as in the DMC task. One class of models suggests 
that serial categorical decisions rely on an interplay between multiple 
subpopulations, each encoding specific task parameters, such as stimulus features, 
categories, rules, and choices (Amit et al., 1994; Ardid and Wang, 2013; Engel and 
Wang, 2011). These subpopulations are endowed with strong mutual excitations 
among neurons that prefer the same stimulus feature, driving a stable memory of 
that feature (Wong and Wang, 2006; Wang, 2001). These models elucidated 
candidate mechanisms of delay-period persistent selectivity, but they are not 
designed to address the diversity or temporal variability in neural responses, which 
are apparent in neural data. In particular, the majority of neurons are responsive to 
multiple task variables (Raposo et al., 2014; Rigotti et al., 2013; Ibos and Freedman, 
2014; Mante et al., 2013; Ibos and Freedman, 2016; Freedman and Assad, 2016) and 
neural encoding often shows baffling temporal variability (Brody et al., 2003a; 
Crowe et al., 2010; Jun et al., 2010; Shafi et al., 2007). To address these phenomena, 
recent studies considered an alternative hypothesis that information is distributed 
randomly within the neural network (Rigotti, et al. 2010; Raposo et al., 2014). The 
idea can be implemented with a network with random connectivity and, to generate 
different behaviors, downstream circuits can read out relevant information through 
optimized synaptic weights (Jaeger, 2001; Maass et al., 2002; Rigotti et al., 2010). 
However, random networks generally do not capture task-specific representations, 
which can only be acquired through learning. In this realm, we lack a unified 
framework that can recapitulate all these diverse experimental findings. 

To address this problem, we trained a recurrent network model to solve DMC tasks 
and compared the dynamics of the model network to LIP and PFC data from 
monkeys performing the DMC task (Freedman and Assad, 2006; Swaminathan and 
Freedman, 2012). We found that appropriately trained networks reproduce key 
features of category-dependent responses in the neural data not accounted for by 
previous models.  

Results 

Delayed-match-to-category task and model architecture 

We analyzed neural recordings from the studies of Freedman and Assad (2006) and 
Swaminathan and Freedman (2012), where Macaque monkeys were trained on 
delayed-match-to-category (DMC) tasks. In each DMC trial, the stimulus sequence 
consists of a fixation spot, a sample stimulus, a delay period, and a test stimulus 
(Figure 1A). Both sample and test stimuli were randomly drawn from a set of 
random-dot motion directions evenly spaced from 0∘ to 360∘ and divided arbitrarily 
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into two categories (marked by red and blue color in Figure 1B). Subjects learned to 
report whether the sample and test stimuli belong to the same category (match) or 
different categories (non-match). The first and second study used 12 and 6 evenly 
spaced motion directions (30∘ and 60∘ apart), respectively. For the first study, we 
have 156 lateral intraparietal (LIP) from two monkeys. For the second study, we 
have 74 LIP and 380 prefrontal neurons (PFC) in two other monkeys. We refer to 
the LIP populations from the first and second experiments as the LIP1 and LIP2, 
respectively. 

Previous studies showed that firing rates of LIP and PFC neurons are markedly 
tuned to the learned stimulus categories, although the strengths and latencies of 
categorical signals may differ across areas (Freedman and Assad, 2006; 
Swaminathan and Freedman, 2012; Swaminathan et al., 2013). The broad similarity 
in category-related responses suggest that they play overlapping roles in solving the 
DMC task (Goodwin et al., 2012; Merchant et al., 2011). Instead of stressing the 
difference between the two regions, this work focuses on understanding the 
common response patterns observed in both areas. 

We trained a recurrent neural network to solve the DMC task. The recurrent 
network represents a cortical microcircuit in either prefrontal or parietal region, 
which receives sensory information from visual areas and sends signals to trigger 
movements in motor areas (Andersen et al., 1990; Cromer et al., 2011; Lewis and 
Van Essen, 2000; Miller et al., 2002). The network is sparsely connected to noisy 
input neurons that encode the direction of the sample and test stimuli, mimicking 
direction-tuned activity in area MT (Figure 2B, top panel, Freedman and Assad, 
2006; Born and Bradley, 2005). A subset of the recurrent population is connected to 
two action neuron pools, whose activities reflect match or non-match decisions. All 
connections (input, output, and recurrent) are trained with a supervised method (a 
Hessian-free algorithm, Martens and Sutskever, 2011; Mante et al., 2013), which 
adjusts synaptic weights to minimize the difference between the network outputs 
and specified target responses (i.e. to minimize errors). We instructed the match 
neuron to hold activity at zero from the beginning of the trial through the delay 
period, then reach a value of 5 (in arbitrary units) at 200 ms after test stimulus 
onset on match trials or remain at zero throughout non-match trials. The analogous 
pattern holds for the non-match neurons. To determine the model’s choice, the 
action neurons’ activity is passed through a nonlinear threshold function (Figure 2B, 
bottom panels; see also STAR Methods). The match (or non-match) choice is 
selected when the function value of match (or non-match) neuron is higher than a 
threshold of 0.85. We added other output neurons to help stabilize the networks 
during resting and post-choice period (see Figure S1A-B). 

There are many network configurations that can produce the appropriate output 
given the specified sensory input (Mante et al., 2013; Barak et al., 2013; Sussillo, 
2014). We guide the algorithm to find a subset of solutions that comply with 
biological constraints by employing additional training strategies (see Figure S1 and 
STAR Methods). First, the activity of recurrent neurons is restricted to positive 
values, as is true for neuronal firing rates. Second, the network is trained to not only 
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minimize errors but also to attain sparse synaptic connections. This is achieved by 
constraining the norm of synaptic weights and eliminating weak synapses 
iteratively. The target probability of connection is approximately 12%, comparable 
to measurements from mammalian cortical circuits (Song et al., 2005). Third, single 
neurons should exhibit low spontaneous firing rates when the network is not 
performing the task. To satisfy this requirement, we instructed the network to hold 
the sum of all neurons’ activity to a small value for 1 s before the trial onset (mean 
activity = 0.01). Fourth, we employed a progressive training protocol similar to that 
used to train monkeys on the DMC task (Freedman and Assad, 2006; Swaminathan 
and Freedman, 2012), whereby the network first started by learning the easiest 
version of DMC task with only two stimuli, then intrinsic noise and more stimuli are 
gradually introduced. Lastly, the delay durations varied slightly from trial to trial 
during training (0.9 − 1.1 ms), resulting in a model that can perform the task with a 
larger range of delays (Barak et al., 2013) (Figure S1C). These constraints and 
modifications greatly enhanced success rate and the quality of training outcomes. 

Training was terminated when the accuracy of the model matched the average 
performance of animal subjects (88.76%). Both the model and monkeys are less 
accurate when categorizing near-boundary stimuli (e.g. 15∘ degrees away from the 
boundary, Figure 2C). 

The resulting trained networks provide a candidate dynamical mechanism for 
solving DMC tasks. To test whether the trained network uses a similar mechanisms 
as real neuronal networks, the model activity must be compared to the recorded 
experimental neural data. 

Heterogeneity in temporal profiles of category selectivity 

We compared the temporal profiles of category selectivity of LIP and PFC neural 
recordings to those of trained model networks. To quantify the temporal properties 
of category selectivity, we tested whether the firing rates at each time window are 
significantly modulated by stimulus categories (t-tests, 𝑝 < 0.05, Bonferroni 
corrected). A ‘category selectivity phase’ is defined as a series of consecutive time 
windows where neural activity shows significant modulation by stimulus categories. 
The neuron’s category selectivity duration is the duration of its longest selectivity 
phase. The strength of category encoding for each time bin within selectivity phases 
was quantified by the sensitivity index or 𝑑′ (see STAR Methods). 

Figure 3A illustrates variability in the temporal profiles of category-dependent 
firing rates for LIP and PFC neurons. Many neurons showed persistent category-
dependent responses during the delay period (Figure 3A, first panel). In the 
majority of neurons, the category-selective firing rates undergo marked changes 
through the delay period. For instance, the category-dependent firing pattern may 
decay before the end of the delay (Figure 3A, second panel) or may commence in the 
middle of delay (Figure 3A, third panel). Furthermore, some neurons switch their 
category preference in the middle of a trial (Figure 3A, last panel). In congruence to 
the neural data, the trained model exhibits heterogeneity in category selectivity 
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profiles, in which persistent, transient, and switching selectivity patterns are 
observed (Figure 3B). We also quantified fractions of neurons with persistent, 
transient and switching selectivity and found that neural data and model show 
similar trends (Figure S2A).  

To visualize the heterogeneity at the population level, we plotted 𝑑′ of all neurons 
sorted by the onset of category selectivity from earliest to latest (Figure 3C-D). All 
heat maps of neural data confirmed two important observations (LIP2 dataset, 
Figure 3C; LIP1 and PFC datasets, Figure S2B-C). First, neurons can become selective 
to categories at any time point during the trial. The category selectivity phase does 
not necessarily align with or overlap the sample stimulus, which originates the 
category memory. Second, we observed heterogeneity in the duration of category 
selectivity across the population. The distribution of category selectivity durations 
shows a long tail, whereby most neurons exhibit selectivity over short durations but 
a small fraction of persistent neurons are consistently detected in all datasets 
(Figure S2D-G). The pattern of category selectivity in model populations reproduces 
all main features of the neural data. 

Furthermore, our trained networks reproduce mixed category and match 
selectivity, which is evident in our neural data (Figure S2H-I) and other studies 
(Ibos and Freedman, 2014; Ibos and Freedman, 2016; Park et al., 2014; Rishel, 2013; 
Mante et al., 2013; Rigotti et al., 2013). This suggests that a large portion cortical 
neurons and model neurons participate in more than one computation. 

Population response trajectories 

We investigated whether neural data and the model exhibit similar patterns of 
population response trajectories. To this end, we first analyzed the dynamics of 
neural population responses in LIP and PFC. A neural state is a point in high-
dimensional state space, where each dimension corresponds to the average firing 
rate of a neuron at a given time. As neural activity changes over time, a sequence of 
neural states at consecutive time points forms a population trajectory through state 
space. For each population, we visualized neural trajectories in a low-dimensional 
subspace that is most responsive to task conditions using demixing principal 
component analysis (Machens, 2010; Brendel et al., 2011; Machens et al., 2010) 
(DPCA), which finds a small set of orthogonal axes that not only capture the most 
variance in data (like standard PCA), but also segregates response variability due to 
different task variables onto separate axes. In our case, DPCA yields population 
response components ranging from one that captures the most variance due to task 
conditions to one that captures the most variance due to changes in time. We 
applied DPCA to the mean population response during the sample (−100 − 650 ms 
relative to sample onset), delay (800 − 1550 ms) and test (1600 − 2150 ms) epochs 
separately (see STAR Methods). Note that task conditions were defined by sample 
motion directions during the sample and delay periods, and by sample categories 
and test directions during the test period. 
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For the sample period, we applied DPCA, removed the most time-sensitive 
component and represented the remaining components on a 2D axis by a 
multidimensional scaling analysis (Figure 4A-C; see STAR Methods). At the 
beginning of the sample epoch, population trajectories originated at the same 
baseline for all stimuli (black dots), then they fan out radially, discriminating 
different sample directions. At the end of stimulus presentation (colored dots), 
neural states for all stimulus directions appear in an elliptical configuration, where 
the stimuli at the middle of both categories (dark blue and red dots) elicit more 
distinct population responses than stimuli close to category boundaries (light blue 
and red dots). Overall, LIP and PFC populations show a mixed encoding of sample 
directions and categories, consistent with our earlier report in Engel et al. (2015).  

For the delay epoch, we applied DPCA to delay responses (800 − 1550 ms) and 
projected responses of the whole trial (−250 − 1900 ms) onto DPCA axes (see STAR 
Methods). Here we show two components that participate in the maintenance of 
categorical working memory (Figure 4E-G; see also Figure S3). Components in the 
first column capture the most variance in the delay response due to changes in 
stimuli (35.5%, 66.3%, and 53.2% for LIP1, LIP2, and PFC, respectively), which 
constitute a much larger proportion than the second largest component (4.9%, 
4.0%, and 10.2%). The components in the first column depict strong and stable 
encoding of sample categories, representing the main mode of working memory 
(Figure 4E-G, left panels). The second column shows components with the largest 
mixture of variance due to changes in time and stimuli, and the neural traces show 
time-varying category working memory that switches categorical preference mid-
delay (Figure 4E-G, right panels). Notably, neural trajectories during the sample and 
delay epochs show that LIP and PFC populations encode categories by several 
independent components with different temporal profiles. 

For the test epoch, the procedure was similar to the sample epoch, except that the 
neural response was averaged across trials that share the same sample category and 
test direction. The neural trajectories are grouped into 4 conditions (Figure 4I-K); 
BB (dark blue color) corresponds to trials with blue sample category and blue test 
category; RR (dark red) to red sample and red test; BR (purple) to blue sample and 
red test; RB (orange) to red sample and blue test. At the beginning of the test period, 
neural trajectories are clustered according to the sample categories (black dots). As 
the test period evolves, the neural traces diverge into four separate clusters 
encoding sample and test category combinations (BB, RR, BR, and RB conditions). 
Finally, the trajectories corresponding to match conditions (BB and RR) travel 
toward the same location and analogously so for non-match conditions (BR and RB). 
Overall, the test-related trajectories encode sample-test category combinations and 
form states corresponding to match and non-match decisions. 

The population trajectories of the trained model networks remarkably reproduce 
the main features of those from LIP and PFC for all task epochs, when the same 
analyses are applied (Figure 4D,H,L). Mixed direction and categorical encoding is 
apparent during the sample period (Figure 4D). The population dynamics during the 
delay encode categories in both stable and time-varying manners (Figure 4H). Lastly 
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population responses encode sample-test category conditions and converge toward 
match or non-match states during the test period (Figure 4L). Note that although the 
model incorporates a large amount of noise and heterogeneity, the neural data tend 
to show more variability, especially variance due to changes in time within the trial, 
which may reflect a timing signal not incorporated in our model (Figure S3). 
Furthermore, the model tends to be more category-selective than the data, perhaps 
because the model is a smaller network exclusively trained on DMC tasks. 

Robust transient dynamics underlie delayed-match-to-category computations 

We characterized the dynamical mechanisms of the model focusing on two 
objectives. First, the existence and abundance of mixed selectivity neurons (Ibos and 
Freedman, 2014; Ibos and Freedman, 2016; Mante et al., 2013; Park et al., 2014; 
Raposo et al., 2014; Rigotti et al., 2013; Rishel, 2013) and the time-varying 
selectivity for task-relevant variables at both single-neuron (Brody et al., 2003a; Jun 
et al., 2010; Shafi et al., 2007) and population levels (Machens, 2010; Crowe et al., 
2010; Meyers et al., 2008; Wohrer et al., 2013) have sparked a debate on the 
dynamical nature of working memory (Druckmann and Chklovskii, 2012; Goldman, 
2009; Sarma et al., 2016; Savin and Triesch, 2014; Singh and Eliasmith, 2006). Since 
the model captures all these features, it is possible now to pinpoint the working 
memory dynamics that give rise to these patterns of selectivity. Second, we sought 
to understand how the sequential categorical computations are carried out, i.e. how 
the sample category information is encoded, maintained, and combined with the 
test category to generate appropriate behavioral choices. 

Figure 5A-B illustrates the overall trajectories of the model network during DMC 
tasks, visualized by plotting the largest three principal components of the neural 
activity. The state space contains key attracting fixed points or unstable saddle 
points (at which neural activity has near-zero velocity). While performing the task, 
the network undertakes slow and reliable transitions through these key regions. 
The directions of movement are determined by the current state location and input. 
Neural states evolve from the resting state (gray cross, Figure 5A-B) to states 
associated with sample categories (red and blue dots mark the end of sample 
period, Figure 5A-B), then category working memory (red and blue stars mark the 
end of delay period), sample-test category combinations (dark blue, dark red, 
orange, and purple lines), and finally match or non-match decision states (green and 
brown crosses). The whole series of state transitions solves the DMC task. 

We characterized the network dynamics at each time epoch in more detail. During 
rest and fixation periods, the network trajectories are confined within the resting 
state’s basin of attraction despite the noisy sensory signals the network receives 
(gray traces, Figure 6A inset). When the system receives a stimulus-selective input, 
stimuli in different categories propel neural states to separate directions (Figure 
S4A) and, over time, out of the resting state basin (Figure 6A and Figure S4B). If the 
network inputs stay on for a long period, the network would converge to stimulus-
dependent steady states (red and blue crosses, Figure 6A), which are clustered 
based on stimulus categories. The arrangement of input-dependent stable states 
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(Rabinovich et al., 2001, 2008) results in directional neural trajectories that 
distinguish between stimulus categories. 

At the end of the sample period, the network’s slow and transient states are 
distributed within two regions in state space (red and blue dots, Figure 6B; 
variability in locations is a result of noise and network’s low velocity is shown in 
Figure S4C). Using these states as initial conditions, we simulated network activity 
without input and noise. We observed that network states relax along two 
narrowing tunnels, one for each sample category, maintaining category memories in 
a dynamic manner (Figure 6B). The velocity vector field near one of the tunnel 
centers is plotted in Figure 6C, whereby arrow lengths indicate relative velocity 
magnitude. The plot shows that the neural state moves more slowly as it approaches 
the end of the tunnel (see also Figure S4D) and arrow directions point toward the 
middle of the tunnel funneling the system’s state to a specific region near the end of 
the delay. This dynamical analysis revealed that categorical working memory is 
maintained by robust trajectories, which explains why we observed time-varying 
selectivity at both single-neuron (Figure 3) and population (Figure 4) levels. 

Note that states associated with stimuli near the category boundary are closer to 
each other at the beginning of the delay, compared to states of stimuli further away 
from the boundary (pale red and blue lines in Figure 6A and Figure 6B). 
Misclassification occurs when the end-of-sample states stray outside of the tunnel 
under the influence of noise and end up in the wrong categorical tunnel or in the 
basins associated to rest state or choices (Figure S4E). This takes place more often 
for near-boundary stimuli, leading to poorer performance as shown in Figure 2C. 

The end-of-delay regions are in the proximity of saddle or stable points (stability of 
this state varies across networks trained by an identical protocol), leading to low 
network velocity and keeping the memory of categories for an extended period. This 
allows the networks to perform well even when delay durations vary (accuracy >
70% in the range of 0.7 − 1.3 s delay) (Figure S1C). Note that if the delay is 
prolonged much longer than 1 s, our simulation shows two possible outcomes. First, 
if stable states associated to categorical working memory emerged during training, 
neural states simply rest in stable states. We observe that category-related fixed 
points are likely to emerge if the network is trained with variable delay duration 
randomly drawn from a larger range (0.8 −2 s, Figure S5). Second, prolonged delays 
may lead to a gradual decay of working memory, whereby the network collapses to 
fixed points associated to resting state or random choices. The neural datasets we 
investigate cannot distinguish between these two scenarios. 

At the onset of the test period, neural states are distributed between two regions of 
state space associated to red and blue categories of working memory (red and blue 
dots in Figure 6D); variability in state locations is due to noise. When the test 
stimulus is introduced, the direction-selective input shifts the landscape, in the same 
fashion as in the sample period (Figure 6A), directing the network towards 
stimulus-dependent stable states. However, since trajectories are launched from 
two possible initial locations depending on the sample category, the neural paths 
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split into four separate streams encoding sample-test category combinations (dark 
blue, dark red, purple, and orange lines in Figure 6D), bringing neural states to four 
separate clusters of transient states. This dynamical picture provides a concrete 
example of state-dependent computations, where the same stimulus can be 
interpreted differently or lead to different behavioral outcomes depending on the 
prior experience of the network (Buonomano and Maass, 2009). 

Soon after the test stimulus appears, the match (or non-match) output neuron can 
read out from the recurrent neural states and ramp up to response threshold during 
the match (or non-match) trial. The response time is usually within a few hundred 
milliseconds after the test stimulus onset. Finally, after the response is committed 
and test stimulus is removed, the network relaxes along its natural landscape. The 
four regions in state space (dots in Figure 6E) are mapped onto two steady states 
(crosses in Figure 6E); RR and BB traces go to one point (match attractor), while RB 
and BR traces go to a separate point (non-match attractor). These stable states 
complete the sequence of DMC computations. 

The dynamics of the model reveal that a single cortical network can carry out a 
series of computations by utilizing different regions of state space to perform 
different computations. This idea is well-supported by recent work investigating 
sensory encoding (Rabinovich et al., 2001, 2008), decision processes (Raposo et al., 
2014; Mante et al., 2013; Murakami and Mainen, 2015), and movement execution 
(Churchland et al., 2012; Hennequin et al., 2014). To understand computational 
mechanisms, one must consider the population dynamics as a whole. Observing this 
network-level phenomenon through the activity of a single neuron amounts to 
watching a moving object in three-dimensional space through its one-dimensional 
projection. The projected image may miss salient information (such as categorical 
discrimination) at some moments, or it may contain information from more than 
one process. Therefore, mixed and time-varying selectivity are expected and 
observed at the single neuron level.  

Structural and functional connectivity of trained networks 

We performed a series of analyses to understand the connectivity structure that 
governs robust transient dynamics. We compared our trained recurrent networks 
and randomly connected networks (RCNs), which were previously investigated as a 
source of mixed time-varying selectivity (Rigotti et al., 2010; Barak et al., 2013).  We 
found that although RCNs encode a mixture of stimulus- and time-dependent 
variability, they do not exhibit the self-generated categorical neuronal coding during 
the sample and/or delay periods. In particular, in both neural data and networks 
with trained recurrent connections, the majority of neurons with persistent 
selectivity are strong categorical discriminators, whereas in RCNs persistent 
representation is not category-specific (Figure S6A-E). However, units in our 
recurrent neural network do display mixed selectivity, therefore this work extend 
the work of Rigotti et al. to networks with wiring structures that emerge from 
training to perform a cognitive task. 
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In trained networks, the distribution of synaptic connections is sparse and unimodal 
with mean weight equals to zero (Figure S6G), but exhibits clear hierarchical 
structure not present in RCNs. To reveal the hierarchy, we computed degree 
centrality, defined as the total number of connections each neuron sends (out-
degree) and receives (in-degree). All trained connectivity exhibits heavy-tailed 
degree distributions, i.e. few neurons are connected to large numbers of neighbors 
acting as network hubs (Figure 7A, mean kurtosis for all ten networks = 18.341, 𝑝 =
0.005). Furthermore, trained networks also exhibit a high correlation between in-
degree and out-degree (Figure 7B; Spearman rank correlation, 𝑁 = 150, 𝜌 = 0.546, 
𝑃 < 10−7), suggesting that hub neurons aggregate information from and broadcast 
it to large numbers of neighbors. Neurons with high degree also tend to have larger 
positive incoming connections (large in-strength, Figure S6H) and larger average 
activity (Figure S6I) than low-degree counterparts, which means these neurons 
have greater influence on neural state trajectories. 

The robust dynamics underlying sequential decisions result from ongoing 
competition and cooperation among neurons within the circuit. We measured 
neural response similarity (𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒), defined as the covariance between synaptic 

currents of neural pairs across task conditions (see STAR Methods), and structural 
coupling, defined as the sum of synaptic connections from neuron 𝑖 to 𝑗 and from 𝑗 
to 𝑖. 𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is correlated with structural coupling in all task epochs (Pearson 

correlation, average 𝑟 = 0.176, 𝑃 < 10−4; see statistical test against null models in 
Figure S6J), suggesting that neurons with similar category or match selectivity tend 
to have strong positive synaptic couplings, while neurons with opposite encoding 
have strong negative couplings. This gives rise to competitive dynamics between 
subpopulations that encode different concepts (Wong and Wang, 2006; Wang, 
2002). To further investigate neural couplings, we divided the neural population 
into four groups based on their noiseless activity at the end of the delay period: (1) 
neurons that are active when a stimulus belongs to the red category, but silent for 
the blue category (denoted as R group, average 10.2% of population); (2) neurons 
that are active exclusively for the blue category (B, 14.7%); (3) neurons that are 
responsive for both red and blue (BOTH, 14.5%); (4) neurons that are not 
responsive at all (NR, 60.6%). Then we assessed average connections within and 
between these subclasses. We found strong within-group excitation and between-
group mutual inhibition for R and B groups (Figure 7C), mediating competition 
between the two categories. Furthermore, we found that neurons in BOTH group 
have high degrees and activity, but are less sensitive to categories, compared to R 
and B groups (Figure S7A-C). The BOTH group receives net excitatory connections 
from itself as well as from R and B groups (Figure 7C). The activity of BOTH neurons 
tends to increase over the delay, while that of R and B neurons tends to decrease 
(Figure S7D). BOTH neurons’ activity drives correlations between neural states 
associated to red and blue categories, which is apparent in both the neural data and 
model (Figure S7E-F). Overall, these findings show the cooperation between two 
categories of neural pools through BOTH neurons. This co-activation is likely 
responsible for the temporal dynamics which brings neural states to the end-of-
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delay regions, where match / non-match decisions can be made separately from the 
categorical decision. 

Lastly, the model yields a testable prediction that functional and structural coupling 
among neurons with persistent selectivity and prefer the same category tend to be 
larger relative to all connections in the network. For a given pair of neurons with the 
same category preference, we measured their average category selectivity duration 
(CSD, defined in Figure 3) and noise correlation (𝑟𝑛𝑜𝑖𝑠𝑒), i.e. the correlation 
coefficient between a neuron pair’s rate fluctuations averaged across all task 
conditions. Neural pairs that contain non-selective neurons are removed from the 
analysis. We found that persistent neurons in the model tend to have far larger 
functional couplings than non-persistent neurons (Figure 7D), whereby neural pairs 
with average CSD larger than 90th percentile have larger average noise correlation 
(𝑚1 = 0.237) compared to other pairs (𝑚2 = 0.031, t-test, 𝑝 < 10−7). This result 
holds for any time window at which 𝑟𝑛𝑜𝑖𝑠𝑒 is measured. The effect remains 
significant when the same analysis is performed on synaptic coupling instead of 
𝑟𝑛𝑜𝑖𝑠𝑒 (𝑚1 = 0.234, 𝑚2 = −0.031 𝑝 < 10−7) and when controlled for average neural 
activity (ANCOVA, 𝐹 = 326.69, 𝑝 < 10−7, see STAR Methods). 

Neuronal representation during flexible categorization with multiple rules 

Recent studies have shown that single neurons in LIP (Fitzgerald et al., 2011) and 
PFC (Cromer et al., 2010) are multitaskers, as they encode categorical information 
for different sets of stimuli (e.g. differentiating between Dogs versus Cats for animal 
classification task and Sports versus Sedans in car classification). These studies 
found that: (1) multitasking neurons were the strongest category discriminators 
(Cromer et al., 2010); (2) neurons’ tuning strengths for different stimulus sets were 
correlated (Fitzgerald et al., 2011). We refer to these tasks as ‘independent-input’ 
paradigms, as the two categorical schemes involve independent stimulus sets with 
likely non-overlapping sensory representations. In contrast, another set of studies 
employed a different paradigm where subjects were instructed to categorize the 
same set of stimuli under two different schemes (e.g. categorizing the same images 
of animals into dogs versus cats, or big versus small depending on the active rule) 
(Roy et al., 2010; Goodwin et al., 2012). We refer to these tasks as ‘shared-input’ 
paradigms, because both categorical schemes share the same sensory 
representation. These experiments show that: (1) rule-dependent responses 
emerged as soon as the rule cue was presented (Goodwin et al., 2012); (2) 
multitasking neurons were more commonly observed, whereas specialized neurons 
(i.e. neurons that encoded categories exclusively for one scheme) were less common 
in the independent-input paradigm compared to the shared-input paradigm (Roy et 
al., 2010; Cromer et al., 2010). 

We asked if different task paradigms elicit different dynamical landscapes and can 
the discrepancy in dynamical structures alone account for these experimental 
observations? 
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To investigate this question, we trained recurrent neural networks, using the same 
protocol we used for the standard DMC task, to solve either independent-input or 
shared-input categorization tasks (see STAR Methods). For the independent-input 
paradigm, one input neuron group encodes motion directions (scheme A, red and 
blue categories), while another group encodes spatial locations of a circle stimulus 
(scheme B, pink and green categories, Figure 8A). The network’s task is to 
categorize stimuli according to the boundary associated with each stimulus set 
(dashed black lines in Figure 8A). For the shared-input paradigm, the model learned 
to categorize motion directions by two different boundaries (Figure 8D). Prior to the 
fixation epoch, the model receives a 500 ms input pulse from two separate input 
neurons (colored squares in Figure 8D) signifying whether the horizontal (scheme 
A) or vertical boundary (scheme B) is in effect. 

The two task paradigms result in markedly different landscapes. In the 
independent-input case, the trained networks form two working memory tunnels 
during the delay, similarly to those in Figure 6B, but these tunnels are shared 
between the two categorical schemes (Figure 8B). In particular, one tunnel 
corresponds to the red category of scheme A and the green category of scheme B 
while another tunnel corresponds to the blue and pink categories. Note that the 
opposite configuration (red/pink and blue/green) is also possible. Only two tunnels 
are required to solve the independent-input task, since the entrances of the tunnels 
can be mapped onto appropriate stimuli by modifying separate sets of input weights 
from different sensory neuron groups (Figure S8A) and the ends of the tunnels are 
mapped onto appropriate choices by a similar mechanism (Figure S8B). Hence, the 
two categorical schemes can share the same categorical discrimination machinery 
via appropriate mapping. Neurons that participate in driving trajectories along the 
tunnels must be active in both schemes, leading to strong correlation between the 
CTI of the two schemes (Figure 8C; Pearson correlation, 𝑁 = 150, 𝑟 = 0.85, 𝑃 <
10−7). Furthermore, neurons with persistent contribution to tunnel trajectories 
tend to be those with the strongest categorical selectivity (Figure S6C-D); therefore, 
multitasking neurons are the most robust category discriminators (Figure 8C, see 
statistical test in Figure S8C). 

Tunnel sharing is only possible when sensory inputs contain rule information, i.e. 
motion direction stimuli entail a horizontal boundary and dot location stimuli entail 
a vertical boundary. In such case, the recurrent network does not need to memorize 
the categorization rule through the delay to map the content of working memory to 
the appropriate choices during the test period. This strategy would fail in the 
shared-input paradigm, where the same set of stimuli must be mapped to different 
choices during the test period depending on the active rule. Instead, we observed 
that neural trajectories diverge to encode categorization rules after the rule cue is 
displayed through the fixation period (Figure 8E), resembling rule representations 
observed in PFC (Wallis et al., 2001; Goodwin et al., 2012). When the sample 
stimulus is presented, the dynamic representations encode both rules and 
categories, which persist through the delay (Figure 8F). Since the two category 
schemes no longer share the same tunnels, the correlation between category tuning 
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strengths reduces or vanishes (Figure S8D). The overall effects from ten instances of 
networks trained with either paradigm show that the shared-input paradigm leads 
to lower correlation in category tuning strengths between the two schemes (Figure 
8G; Pearson correlation, 𝑁 = 5 realizations of network. Independent-input, average 
𝑟 = 0.76, 𝑃 < 10−6 in all networks. Shared-input, average 𝑟 = 0.08, only one out of 5 
realizations has significant correlation, 𝑃 < 0.01). Consequently, we observed a 
significantly smaller number of multitasking neurons and a larger number of 
specialized neurons compared to the independent-input paradigm, in accordance 
with experimental findings (Figure 8H; t-test, 𝑁 = 5, 𝑃 = 0.001). Collectively, this 
comparison between independent-input and shared-input paradigms illustrates 
how dynamical landscapes can adapt to various categorical structures, and 
difference in landscapes alone can explain a lot of experimental findings. 

Discussion 

Our results contribute four important insights. First, our model suggests that robust 
transient dynamics, equipped with stimulus-dependent attracting states and robust 
trajectory tunnels, underlie delayed associative computations in cortical circuits. 
Second, we show that networks endowed with reproducible trajectories capture 
statistics of the heterogeneous and time-varying category selectivity at both the 
single-neuron and population levels, thus bridging the robust transience framework 
to neurophysiology of the primate parieto-frontal network. Third, we reveal the 
features of structural and functional connectivity that support robust transience, 
and suggest a testable prediction about the relationship between the temporal 
profiles of selectivity and interneuronal correlations. Fourth, our model explains 
observations from experiments that incorporate multiple categorization rules 
through the idea of shared state space landscape. 

Much emphasis has been put on the reward-dependent learning mechanism that 
explains the emergence of categorical representation (Roelfsema and Ooyen, 2005; 
Engel et al., 2015; Rombouts et al., 2012; Savin and Triesch, 2014). Though 
providing valuable insights on synaptic plasticity, many of these studies have not 
focused on the temporal profiles of category selectivity and none have evaluated 
whether the end results of training resemble the neural dynamics in the brain. Our 
study focuses on the dynamical properties of networks that successfully solve the 
task and exhibit similar response features compared to neurophysiological data. The 
accrued insights provide essential foundations for future generative models. Note 
that this study assumed that although neurons were recorded at different times and 
in different animals, their activities represents sampled firing rates from a single 
working population. 

To the extent possible, our model parameters were calibrated by experimental 
measurements such as the sparse connectivity of the trained networks (Song et al., 
2005), the neural time constant (Murray et al., 2014), the width of sensory tuning 
(Albright, 1984). Other parameters where set in the same range as those in previous 
modeling studies such as the initial recurrent network connections and noise in the 
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networks (Mante et al., 2013). The changes in these parameters do not affect our 
overall findings, but can impact training. For example, longer neural time constant 
will make it easier to train networks on longer delay epochs and higher noise in the 
network will reduce the chance of training success. 

Importantly, our results suggest that time-varying patterns of category working 
memory result from a slow dynamic transition from one location in state space to 
another mediated by a dynamical tunnel that constrains the course of trajectories. 
This is distinct from purely feedforward models (Goldman, 2009; Savin and Triesch, 
2014) or models that utilize rapid transitions to stable states (Wong and Wang, 
2006; Wang, 2002). One accompanying feature of such a mechanism is the reliable 
emergence of persistently selective neurons among other neurons with 
heterogeneous temporal dependence. This gives rise to the category-selective 
population code whose dominant mode is stable, yet also exhibits a time-varying 
secondary mode. Similar population dynamics have been observed in other tasks 
(Machens, 2010; Raposo et al., 2014), but have not been accounted for by other 
models. 

Despite their time-varying dynamics, networks utilizing robust transience support 
and advance the central idea of strong reverberatory dynamics underlying working 
memory and decision making (Goldman-Rakic, 1990; Wang, 2001; Wang, 2002; 
Wong and Wang, 2006; Murray et al. 2017). The persistent neurons in our model, 
albeit few in quantity, are the main drivers of delay dynamics as they are among the 
strongest category discriminators and form large connections among each other. 
The circuit motifs proposed in classical models, such as strong local excitation and 
mutual inhibition among dominant neuron groups, are apparent in the current 
framework, although they are embedded in more heterogeneous circuits, which 
allows them to flexibly partake in sequential computations and generate mixed 
representations in accordance with experimental evidence. The presence of 
multiple stable states is also the key constituent of robust dynamics in our model. 
Furthermore, structural organization in local circuits may vary in a continuum from 
random networks, to robust dynamics, to stable attractors, depending on the extent 
of training (Barak et al., 2013). In particular, our model predicts that networks 
trained on protocols in which delay durations vary across trials tend to develop 
more temporally stable persistent activity (see Figure S5). Future animal 
experiments can test this hypothesis. 

Our work contributes to a growing line of research on robust transient dynamics 
and its role in complex neural computations. The principle has been proposed for 
the spatiotemporal sensory encoding (Rabinovich et al., 2001), movement 
generation (Hennequin et al., 2014), and other cognitive processes (Rabinovich and 
Varona, 2011; Rabinovich et al., 2008, 2014), which speaks to its prevalence in 
neural circuit processing across brain regions and species. Most importantly, 
through detailed comparison between neurophysiological data and model, our 
contribution provides compelling evidence that robust transience governs 
sequential categorical decisions in primate cortical circuitry. 
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Figure Legends 

Figure 1 | Delayed-match-to-category (DMC) task and neurophysiological 
recordings. (A) Time course of a DMC experiment. A sample stimulus is followed by 
a short delay and a test stimulus. To receive reward, subjects must respond whether 
the sample and test stimuli belong to the same (match) or different (non-match) 
categories. (B) Sample and test stimuli are randomly drawn from a set of dot motion 
stimuli, divided into two categories (red and blue arrows). We analyzed neural 
recordings from two experiments. The first experiment used 12 motion directions, 
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and LIP neurons were recorded (denoted LIP1). The second experiment used 6 
motions directions, and neurons from LIP (denoted LIP2) and PFC were recorded. 

Figure 2 | Model structure and training protocol. (A) A set of recurrently 
connected neurons were trained to solve the DMC paradigm. The recurrent 
population is connected to direction-selective input units, and approximately 1/5 of 
recurrent neurons (blue hatched circles) are connected to two output units 
representing match and non-match choices. All synapses are updated with a 
supervised learning algorithm. (B) Activity of the input neurons encode directions 
of sample and test stimuli (top panel). 𝑥-axis, time; 𝑦-axis, input neurons labeled by 
preferred directions; neural activity is color-coded. After training, the model 
generates appropriate decision output. The match output unit (middle panel) shows 
ramping activation during match trials (green trace) and remains silent during non-
match trials (brown trace). The opposite pattern holds in the non-match output unit 
(bottom panel). 𝑥-axis, time; 𝑦-axis, neural activity; shaded areas, s.d. across trials. 
Red lines mark the activity threshold where behavioral choice is registered. (C) The 
psychometric functions of animal subjects (left panel) compared to that of model 
networks (right panel). Error bars indicate s.d. across all recording sessions for and 
across 10 network realizations for model.  

Figure 3 | Both neural recordings and model networks demonstrate 
heterogeneity in the temporal profiles of category selectivity. (A) Examples of 
different classes of category selectivity profiles from LIP and PFC populations. 
Average firing response as a function of time, color-coded by stimulus directions 
from red to blue category. 𝑥-axis, time from sample onset; 𝑦-axis, average firing rate. 
The colored bar on top shows category-selective period. Color (red or blue) 
indicates neuron’s category preference, while color intensity indicates category 
tuning strength. (B) Average neural response of model units with same plotting 
convention as in (A). Overall, both neural data and model demonstrate 
heterogeneity in selectivity time course such as persistent, transient, and switching 
selectivity. (C-D) Colored heat maps showing category selectivity profiles of all 
neurons in the LIP2 dataset (𝑁 = 61, C) and of a trained model (𝑁 = 122, D) with 
same color-coding convention as colored bars in (A-B). Neurons with no selectivity 
phase are excluded. Across both neural data and model, neurons’ category 
selectivity latencies and durations are highly variable. 𝑥-axis, time; 𝑦-axis, neurons 
sorted by category selectivity latency. 

Figure 4 | The model captures essential features in population response 
patterns of LIP and PFC neurons. Neural response trajectories during sample (left 
column, A-C), delay (two middle columns, E-G), and test periods (right column, I-K) 
for three neural data sets: LIP1 (top row), LIP2 (second row), and PFC (third row). 
Colors of traces encode stimulus identities by the same convention as in Figure 3. 
During the sample period (left column), trajectories begin at roughly the same 
location for all stimulus directions (black dots correspond to the onset of sample 
epoch), then fan out into elliptical shapes encoding the directions of stimuli and 
some category information. During the delay (middle columns), population 
trajectories have two main components encoding stimulus categories in stable and 
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time-varying manners, respectively. 𝑥-axis, relative rate (principal component 
score); 𝑦-axis, time relative to sample onset. At the beginning of test period (right 
column), trajectories encode sample categories (black dots), then neural traces 
diverge into four separate clusters encoding the four possible sample-test category 
combinations. BB (dark blue lines) corresponds to blue sample category / blue test 
category condition and similarly RR (dark red) to red sample / red test; BR (purple) 
to blue sample / red test; RB (orange) to red sample / blue test. Finally, the traces 
for match conditions (BB and RR) unfold along the same direction and analogously 
so for non-match conditions (BR and RB). (D, H, L) Population trajectories of the a 
representative model instance analyzed by the same procedures. The model 
reproduces population response patterns of neural data in all task epochs.  

Figure 5 | Overall dynamical landscape of the trained network. (A) A conceptual 
schematic portraying the series of transitions between behavioral epochs to solve 
DMC task. (B) Neural trajectories of the model implementing the computational 
process in (A). Neural states evolve serially from the resting state (gray cross) to 
states associated with sample categories (red and blue dots), then category working 
memory (red and blue stars), sample-test category combinations (dark blue, dark 
red, orange, and purple lines), and finally match/non-match choices (green and 
brown crosses, respectively). Task epoch labels (sample, delay, test) indicate neural 
states at the beginning of the epoch. All crosses denote stable states; stars denote 
slow or fixed points associated to working memory; dots denote transient states. 

Figure 6 | The trained network forms a dynamical landscape that gives rise to 
ro- bust trajectories and executes category-based computations. (A) Neural 
trajectories during sample categorization. At the beginning of a trial, neural states 
stay within the basin of attraction of the resting state fixed point (gray cross), even 
upon receiving prolonged (1 s) noisy input (inset, three noisy trajectories plotted in 
gray). Under the influence of direction-tuned inputs (due to sample stimulus 
presentation), a set of stable fixed points appear in state space (red and blue 
crosses, colors denote stimulus directions), propelling the states towards areas 
associated to red or blue categories. (B-C) Neural landscape associated to category 
working memory. (B) Red and blue dots mark possible locations of the neural states 
at the end of the sample period (with noise). Red and blue lines show noiseless 
trajectories during the delay originating from these positions. Black arrows mark 
flow directions. (C) The line shows an example neural state path selected from the 
trajectories in (B). Black dots mark the neural states at different time points during 
the delay in 150 ms increments. Arrows show a velocity vector field at states nearby 
the trajectory (with norms scaled down for clarity). The working memory landscape 
resembles tunnels that force neural states to flow along two possible routes (arrows 
in C show the movement flow within the tunnel), generating robust time-varying 
memory of sample categories. The neural state movements slow down or stop at the 
end of delay (marked by shorter distance between dots near the end of delay in (C)). 
(D-E) Neural trajectories during match decisions. (D) Red and blue dots mark 
locations that neural states occupy at the end of the delay (with noise). When the 
test stimuli appear, neural states move towards the same input-dependent fixed 
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points as shown in (A). Since there are two possible starting regions (associated to 
red or blue sample categories), trajectories diverge along four separate streams, 
encoding sample-test category conditions. (E) Continuing from (D), when test 
stimuli are removed, neural states fall into the basins of attraction corresponding to 
match or non-match stable states. Data plotted in (B-E) come from a representative 
model instance.  

Figure 7 | Structural and functional connectivity that supports robust 
transient dynamics. (A) Degree distribution (total number of connections) in a 
representative sample of trained network. All trained networks exhibit long-tail 
degree distribution, showing existence of hub neurons. (B) Scatter plot shows the 
number of incoming connections (in-degree, x-axis) versus outgoing connections 
(out-degree, y-axis) for all neural units in a trained network. Strong correlations 
between in-degree and out-degree are observed in trained networks, which is 
unexpected if their connectivities are random (Pearson correlation, 𝑁 = 150, 𝑟 =
0.482, 𝑃 < 10−7). (C) Average synaptic weights between neuron groups that are 
active only for red stimuli (R group), only for blue (B group), for both red and blue 
(BOTH group), and not responsive (NR group). Colors indicate average synaptic 
connection (purple, inhibitory connections; green, excitatory connections) from a 
presynaptic group (x-axis) to a postsynaptic group (y-axis). R and B groups exhibit 
within-group excitation and across-group inhibition, while BOTH group receives 
excitatory connections from itself and from R and B groups. NR group receives 
inhibitory connections from all groups. (D) Average noise correlation (𝑟𝑛𝑜𝑖𝑠𝑒, y-axis) 
of neuron pairs grouped by percentile ranks of their average category selectivity 
durations. x-axis, the center of each rank bin (bin width = 10 percent). Neurons 
with persistent category-selective activity tend to form large functional connections 
(high 𝑟𝑛𝑜𝑖𝑠𝑒). All 10 network realizations demonstrate similar features; data plotted 
come from a representative sample.  

Figure 8 | Robust transience framework explains neural selectivity during 
flexible categorization involving multiple rules. (A) An independent-input 
categorization paradigm. Networks learn to categorize two separate sets of stimuli 
(motion directions, scheme A; stationary dots at different spatial locations, scheme 
B). The two stimulus sets are represented by two separate groups of sensory 
neurons and subject to different categorization rules. (B) Noiseless trajectories 
during the delay from networks trained with independent-input paradigm (black 
dots mark the beginning of the delay epoch). Networks form two working memory 
tunnels, which are utilized by both stimulus sets to maintain category working 
memory. (C) We measured neurons’ category tuning index (CTI), which measures 
the strength of categorical sensitivity to any preferred category. Tunnel sharing 
results in a large correlation between CTIs for scheme A (x-axis) versus scheme B 
(y-axis) during the delay period (Pearson correlation, 𝑛 = 150, 𝑟 = 0.85, 𝑃 < 10−7). 
Data plotted in B-C come from a representative model instance. (D) A shared-input 
categorization paradigm. Networks must categorize a single stimulus set by two 
different boundaries, signaled by colors of the rule cue. (E) Noiseless trajectories 
during the rule cue and fixation periods for a network trained with shared-input 
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paradigm. Black and gray dots mark the beginning of the rule cue and fixation 
period, respectively. Trajectories split into two streams corresponding to different 
rules. (F) Network forms four separate tunnels to maintain category-rule 
combination. Categorization rules coded by dot colors. Data plotted in E-F come 
from a representative model instance. (G) Correlations between category tuning 
indices for scheme A and scheme B across 5 realizations of networks trained with 
independent- or shared-input paradigm. Error bars indicate minimum and 
maximum correlations within each group. Independent-input paradigm results in 
large positive correlations between CTIs of the two schemes, while shared-input 
paradigm does not. (H) The independent-input paradigm produces a significantly 
smaller number of specialized neurons but a larger number of multitasking neurons 
compared to the shared-input paradigm (t-test, 𝑛 = 5, stars indicate 𝑃 < 0.05).  

 

STAR METHODS 

CONTACT FOR REAGENT AND RESOURCE SHARING   

Further information and requests for resources should be directed to and will be 
fulfilled by the Lead Contact, Xiao-Jing Wang (xjwang@nyu.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All neural data were from Freedman and Assad (2006) and Swaminathan and 
Freedman (2012), where experimental protocol and recording procedures were 
described in detail. In summary, four male monkeys (Macaca mulatta, weighing 
from 8.0 - 14 kg) were trained to indicate whether a test stimulus was in the same 
category as a previously presented sample stimulus by releasing a lever. Stimuli 
were high-contrast, 9.0∘ diameter random dot movies, which moved at 12∘ per s 
with 100% coherence. In the first experiment (Freedman and Assad, 2006), the 
stimulus set comprised 12 motion directions (30∘ apart) and neural responses were 
recorded from 156 lateral intraparietal (LIP) neurons in two monkeys (Figure 1B, 
left panel). In the second study (Swaminathan and Freedman, 2012), 6 motion 
directions were used (60∘ apart), and neural data were collected from 76 LIP and 
447 prefrontal neurons (PFC) in two other monkeys (Figure 1B, right panel). To 
avoid confusion, we refer to the LIP populations from the first and second 
experiments as the LIP1 and LIP2 datasets respectively. In the first experiment, four 
test stimuli closest (15∘) to the category boundary were removed before recording 
from monkey H. The second experiment incorporated stimuli at category boundary, 
which were removed from this analysis. To combine data from four monkeys, all 
stimulus directions were rotated so that the category boundary corresponds to 0∘ −
180∘ axis. 

mailto:xjwang@nyu.edu
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The monkeys were implanted with a head post and recording chamber(s), at 
coordinates determined by magnetic resonance imaging. In the first experiment, the 
chamber was centered approximately at P3, L10 to allow access to both the 
intraparietal sulcus (IPS) and superior temporal sulcus by means of a dorsal 
approach. The recording chamber was centered approximately 3.0 mm posterior to 
the intraural line, and 10.0 mm lateral from the midline. For the second experiment, 
PFC chambers were centered on the principal sulcus and anterior to the arcuate 
sulcus at ∼ 27.0 mm anterior to the intra-aural line, while LIP chambers were 
positioned over the intraparietal sulcus (IPS) centered ∼ 3.0 mm posterior to the 
intra-aural line. The first study was conducted at Harvard University and all 
experimental procedures followed Harvard Medical School and National Institutes 
of Health guidelines. The second study was conducted at University of Chicago, 
where all procedures were in accordance with the University of Chicago’s Animal 
Care and Use Committee and US National Institutes of Health guidelines. 

 

METHOD DETAILS 

Model architecture and training 

We trained a recurrent network model to perform delayed-match-to-category task. 
The single-unit dynamics is governed by the following equation: 

𝜏𝐱̇(𝑡) = −𝐱(𝑡) +𝐖𝐫𝐫𝐫(𝑡) +𝐖𝐮𝐫𝐮(𝑡) + 𝛈(𝑡), 

where 𝑥𝑖(𝑡) is a synaptic current variable of neuron 𝑖 at time 𝑡 and neural activity 
(firing rate, 𝑟𝑖) is a rectified nonlinear function of 𝑥: 𝑟𝑖 = 𝑡𝑎𝑛ℎ+(𝑥𝑖). This constrained 
firing rates to be positive. The recurrent network has 150 units, and the connectivity 
matrix (𝐖𝐫𝐫) is initialized to have 10% probability of connections, where non-zero 
weights are drawn from a normal distribution of zero mean and s.d. = 0.28. The 
neural time constant (𝜏) is 100 ms. Each recurrent neuron receives an independent 
white noise input (𝛈(𝑡)) with zero mean and the final 𝜎𝑟 = 0.6 (see progressive 
protocol below for 𝜎𝑟 value during training). The input to the network at a given 
time (𝐮(𝑡)) is fed into the recurrent network through synaptic weight 𝐖𝐮𝐫, which is 
initialized similarly to 𝐖𝐫𝐫. The model parameters were set to be in the same range 
as those in Mante et al. (2013). The changes in these parameters do not affect our 
qualitative findings. 

There are 33 input units. The first 32 units have direction-tuned activity with 
equally spaced preferred directions from 0∘ to 360∘. When a motion stimulus of 
direction 𝜙 appears, the mean activity of input units depends of the unit’s preferred 
direction, 𝜃: 

𝑢(𝜃, 𝜙) = 𝑎exp(−(𝜙 − 𝜃)2/2𝜎2), 

with 𝜎 = 43.2∘ and 𝑎 = 0.8. The last input unit signals the appearance of fixation dot 
with a mean activity = 0.05 during the fixation period. At each time step, input units’ 
activity contain contribution from white noise with 𝜎𝑢 = 0.6. A standard trial 
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consists of 1 s resting period, followed by 500 ms fixation, 650 ms sample stimulus, 
1 s delay, 250 ms test stimulus, and 1 s choice period. The total trial duration 𝑇 =
4.4 s. In the model, the duration of test stimulus was clipped to the approximate 
reaction time of the monkeys at 250 ms (instead of 650 ms in task protocol) to 
mimic the fact that visual stimulus was removed after monkeys make movement 
response. Model dynamics are simulated using Euler update with 𝛥𝑡 = 10 ms. 

Five output units linearly read out the synaptic currents of the recurrent circuit: 

𝐲 = 𝐖𝐫𝐨𝐱. 

To train the network, we specified the desired target activity for each output unit 
and iteratively adjusted all plastic synapses to minimize the discrepancy between 
the readout activity and the target output. Figure S1 illustrates and explains the 
target outputs of all five units. To assess the performance of the model, we passed 
activity of action units to a saturating nonlinear function: 

𝑦̃𝑖 = 0.5 𝑡𝑎𝑛ℎ(𝑦𝑖 − 3.0). 

Reaction time is defined as the time window at which 𝑦̃ passes a threshold of 0.85 
(in arbitrary units). The network responds match (or non-match) if 𝑦̃1 (or 𝑦̃2) passes 
the threshold within 1.2 s after the test stimulus onset and the activity of the 
opposite choice does not pass the threshold. 

All plastic synapses (input, recurrent, and output) as well as the initial conditions of 
the network activity, 𝐱(𝑡 = 0), are updated with a supervised training technique 
called Hessian-free (HF) algorithm Martens and Sutskever (2011; Mante et al. 
2013), which is designed to minimize the error defined as: 

𝑒 = ∑∑∑(

𝑁𝑜

𝑖=1

𝑇

𝑡=0

𝐾

𝑘=1

𝑦𝑖 − 𝑦𝑖)
2. 

The error is effectively the square of the difference between target output, 𝑦𝑖, and 
network output, 𝑦𝑖, summed over all 𝑁 recurrent neurons from first time step 𝑡 = 0 
to the end of the trial 𝑡 = 𝑇 = 4.4 s and across all 𝐾 trials in each training batch. HF 
belongs to the family of truncated Newton methods, which identifies update 
directions using second-order curvature and combines geometric insight and 
optimization heuristics to find solution with relatively low computational resource. 
In addition to standard regularizations in HF method, we imposed 𝐿1 regularization, 
which simultaneously minimize the 𝐿1 norm of parameters, 𝛼∑ |𝑛

𝑗=1 𝑤𝑗|. This 

constrains the algorithm to find sparse synaptic matrix solutions. 𝛼 = 0.001 
controls the contribution of the 𝐿1 regularization term on the objective function. 

We employed a progressive training protocol, which started with the simplest 
version of DMC task and gradually increased task difficulty as model’s performance 
passed criteria (𝐶). This yielded an overall higher success rate and faster training. In 
the first step, the task involved only two stimuli at the middle of categories 
(effectively a delayed-match-to-sample task) and individual neurons receive no 
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independent noise (the number of trials per batch, 𝐾, is 200; 𝐶 = 99%). Second, 
noise is gradually added to the system. We increased units’ noise, 𝜎𝑟 , by 0.05 at 
training batches where the network performance passed the criterion, 𝐶 = 87%, 
until desired level of noise is reached (𝜎𝑟 = 0.6). Third, synapses with near-zero 
weight are gradually removed, whereby 5% of smallest synapses are set to zeros 
and their future updates are set to zeros on training batches with performance 
larger than the criteria (𝐶 = 87%). Synaptic clipping is repeated until the 
probability of connections in the recurrent weight matrix equals 12%. Finally, the 
number of stimuli (as well as the number of training trials per iteration) was 
progressively increased, until the network can perform DMC with 12 motion 
directions (𝐾 = 2160, 𝐶 = 87%). 

 
Model for multi-scheme categorization tasks 

The training method for multi-scheme categorization tasks is identical to the 
standard DMC task except for the structure of inputs. In the independent-input 
paradigm, the input population consists of 65 units. One unit encodes the fixation 
dot and 32 units encode motion directions as described for standard DMC. Another 
set of 32 units encode the angular locations of a dot stimulus, modeled with periodic 
Gaussian current profiles as described in Model architecture and training. The 
outputs for match and non-match trials are identical to the standard task, but 
provide appropriate match or non-match answers corresponding to the new task 
rule. In the shared-input paradigm, another 500 ms task epoch was added before 
the fixation period to provide categorization rule signal. The input population 
consists of 35 units. The first 33 units are identical to standard DMC. The two 
additional units represent the task rules (horizontal or vertical categorization 
boundaries) by a pulse current with a magnitude = 0.3 when the corresponding rule 
is active and a magnitude of zero otherwise. 
 

Analysis of model dynamics and connectivity 

We trained 10 instances of the model and performed the same analyses on them. 
The results shown reflect behaviors observed across all network realizations. 

Noiseless trajectories are simulated by setting 𝜎𝑟 (noise in the firing rate) and 𝜎𝑢 
(noise in the input current) to zeros (see Model architecture and training section for 
definition of 𝜎𝑟 and 𝜎𝑢). Neural states in Figure 5-6 are defined by the synaptic 
currents, 𝐱, at each time point to allow both excitatory and inhibitory (subthreshold) 
dynamics to be observed; neural states defined by firing rates yield a similar picture. 
The stable resting state is defined as the terminal steady state when network is 
simulated with the initial condition obtained from training, 𝐱(𝑡 = 0), without noise 
and input. Stable states associated to choices are determined by running dynamics 
to terminal states for match or non-match trials without noise or input. All stable 
states are confirmed to have zero velocity and the eigendecomposition of linearized 
dynamics around these locations yields only negative eigenvalues, indicating 
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attracting states. Velocity vector fields were computed from the dynamic equation in 
Model architecture and training. The magnitude of velocity is defined as the norm of 
velocity vectors, ∥ 𝐱̇ ∥2. All network trajectories and vector field plots reflect the first 
2-3 largest principle components of all the data in the graph, except in Figure 4 
where the procedures mirror the analysis of neural data. The locations of saddle 
points are determined by the optimization methods in ref. Sussillo and Barak (2013; 
Mante et al. 2013). 

To compare the trained networks with random networks, we trained six randomly 
connected networks (RCNs) of 𝑁 units, whose 𝑁 × 𝑁 synaptic matrix has 𝑛 non-zero 
elements per row on average. The non-zero synaptic weights are randomly drawn 
from a Gaussian distribution of zero mean with variance 1/𝑛 (𝑁 = 1,500, 𝑛 = 100) 
Barak et al. (2013). The input population (33 units) is structured as in the standard 
network. Approximately 30% of RCN units receive currents from one of the input 
units. On each trial, the initial synaptic variable, 𝑥𝑖 , was drawn independently from a 
Guassian distribution to generate variability in neural response. Firing rate is 
defined as 𝑟𝑖 = 𝑡𝑎𝑛ℎ(𝑥𝑖). We simulated approximately 17,000 trials of DMC task and 
collected average neural activity during the time window of 250 − 500 ms after the 
test stimulus onset. A support vector machine (SVM) is trained with least squares 
method to decode match decision from the RCN’s activity using half of the data. The 
model performance is defined as the accuracy of the trained SVM on decoding 
another half of the data. 

We utilized two measures of functional connectivity, neural response similarity and 
noise correlation. Neural response similarity (𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) quantifies the similarity or 

difference in neural encoding during task performance. For example, neurons that 
strongly prefer red category are very similar to each other (𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 >> 0), but not 

similar to neurons that are weakly selective to categories (𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ∼ 0) and 

markedly different from neurons that prefer blue category (𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 << 0). 𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

is defined by the covariance (unnormalized measure of correlation) between 
synaptic currents of a neural pair under noiseless condition. Note that this is 
different from 𝑟𝑠𝑖𝑔𝑛𝑎𝑙 in other literature, which is defined as a Pearson correlation 

between averaged firing rates of a neural pair across stimuli Cohen and Kohn 
(2011). Noise correlation, 𝑟𝑛𝑜𝑖𝑠𝑒, is the Pearson correlation between the rate 
fluctuations of a neuron pair, averaged across all stimulus directions. Both 𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

and 𝑟𝑛𝑜𝑖𝑠𝑒 are functions of time. We calculated them at every 250 ms time window, 
from the beginning of the sample epoch to the end of test period. Results shown 
generally hold for all time windows. The range of 𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 reported are averaged 

across all time windows and across all model realizations. 

For Figure 7D, we also calculated the mean category selectivity duration (CSD) of 
each neural pair. Neurons with no category tuning (CSD = 0) were removed from 
the analysis. To investigate the dependence of 𝑟𝑛𝑜𝑖𝑠𝑒 on CSD, neural pairs were 
segregated into two groups: one group with mean CSD above 90th percentile and 
another group with CSD below 90th percentile. Then we compared 𝑟𝑛𝑜𝑖𝑠𝑒 between 
the two groups with t-test. The same procedure was performed using the synaptic 



 29 

coupling, 𝑐𝑖𝑗 = 𝑤𝑖𝑗 + 𝑤𝑗𝑖, between two neurons instead of 𝑟𝑛𝑜𝑖𝑠𝑒 and the same results 

were obtained. Also, since 𝑟𝑛𝑜𝑖𝑠𝑒 and average neural activity are correlated and this 
correlation can drive the result, we controlled for average neural activity using 
ANCOVA. The mean 𝑟𝑛𝑜𝑖𝑠𝑒 of the two groups is adjusted based on the fitted 
correlation between 𝑟𝑛𝑜𝑖𝑠𝑒 and average neural activity across all task conditions 
before the difference between groups is assessed. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Analyzing temporal properties of selectivity 

Neurons with average firing rates less than 1 Hz in each and every epoch were 
removed from all analyses (leaving 𝑁 = 156, 74, 380 for LIP1, LIP2, and PFC, 
respectively). 

Spike trains of individual trials were filtered with a sliding Gaussian kernel of 90 ms 
width and 30 ms time step. We focused our analysis on the time period from the 
onset of the fixation epoch to 250 ms after the test stimulus onset. Only correct trials 
are included in the analysis. 

To analyze selectivity time course, we combined different measures. First, for each 
time window, we tested whether neurons’ firing rates are significantly modulated 
by stimulus categories (t-tests, 𝑃 < 0.05, Bonferroni corrected) and defined ‘a 
category selectivity phase’ as a series of consecutive time windows where neurons 
are significantly selective to categories. Any selectivity phases shorter than 150 ms 
were removed from the analysis. The category selectivity duration (CSD) is defined 
as the duration of its longest category selectivity phase. Categories selectivity 
phases are plotted in Figure 3A-D and Figure S2B-C. CSD appears in Figure 7D and 
Figure S2D-G. 

In addition, we used ‘stimulus selectivity’ measure which is very similar to ‘category 
selectivity’ measure described above. The only difference is for each time window 
we tested whether firing rates depend significantly on stimulus directions (one-way 
ANOVA, 𝑃 < 0.05, Bonferroni corrected) rather than stimulus categories. Then we 
defined ‘stimulus selectivity phase’ as a series of consecutive time windows where 
neurons are significantly selective to directions. Stimulus selectivity duration is 
plotted in Figure S6C-E. 

For category selectivity, we also calculated category selectivity preferences and 
magnitude at each time window. To achieve this, we assessed the strength of 
category tuning with a 𝑑′ measure for each time window in category selectivity 
phase, defined as: 

𝑑′ =
𝜇1 − 𝜇2

√1
2
(𝜎1

2 − 𝜎2
2)

, 
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where 𝜇𝑖 and 𝜎𝑖 is the mean and standard deviation of firing rates in response to 
stimuli in category 𝑖. 𝑑′ is unbounded and varies from positive values (neuron 
preferring category blue) to negative values (preferring category red). 𝑑′ measure is 
color-coded in Figure 3A-D. 

Neurons are classified into three classes based on the properties of their category 
selectivity phases. (1) Persistent selectivity describes neurons that have only one 
selectivity phase, which overlaps sample, delay, and test epochs for at least 150 ms. 
(2) Partial selectivity refers to neurons that are selective to only one category, but 
not included in the persistent selectivity group. (3) Switching selectivity covers 
neurons that switch their category preference at least once during the trial. We 
calculated the proportion of neurons in each group relative to the total number of 
category-selective neurons. This classification method is used in Figure S2A. 

Another measure of category tuning strength we used is category tuning index 
(CTI). We identified groups of stimulus pairs with the same distance (direction pairs 
of 30∘, 60∘, 90∘, 120∘ apart) and within each group split the pairs into two subgroups 
(same category v.s. different categories). The CTI measured the difference in firing 
rate (averaged across all trials for each direction) for each neuron between pairs of 
directions in different categories (a between category difference) and the difference 
in activity between pairs of directions in the same category (a within category 
difference). The CTI was defined as the difference between the within category and 
between category differences divided by their sum. Values of the index could vary 
from 1 (strong differences in activity to directions in the two categories) to −1 
(large activity differences between directions in the same category, no difference 
between categories). A CTI value of 0 indicates the same difference in firing rate 
between and within categories. 

 
Population response analysis 

To extract population response patterns, we applied demixing principal component 
analysis (DPCA) to the firing rate traces averaged by task conditions. The 
algorithmic details and mathematical justification are outlined in ref. Brendel, Romo, 
and Machens (2011; C. K. Machens, Romo, and Brody 2005; C. K. Machens 2010; C. 
Machens, Romo, and Brody 2010). In brief, DPCA computed marginalized covariance 
matrices, denoted 𝐶𝜙, that account for neural response variance due to a subset of 

task variables, 𝜙 ∈ {𝑡, 𝜃, {𝑡, 𝜃}}. Matrices 𝐶𝜙 can be computed by first calculating the 

marginalized average: 

𝑦
𝑡

= ⟨𝐫(𝑡, 𝜃)⟩𝜃,

𝑦
𝜃

= ⟨𝐫(𝑡, 𝜃)⟩𝑡,

𝑦
𝑡,𝜃

= 𝐫(𝑡, 𝜃) − 𝑦
𝑡
− 𝑦

𝜃
,

 

and finding marginalized covariance through equation: 

𝐶𝜙 = ⟨𝑦
𝜙
𝑦
𝜙

𝑇
⟩ 
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The variance captured by any subset of weight vectors, 𝐖 = [𝐰1, . . . , 𝐰𝑗, . . ], due to a 

variable subspace 𝜙 is denoted by 𝑣𝜙
2(𝐖) = ∑ 𝐰𝑗

𝑇
𝑗 𝐶𝜙𝐰𝑗 . DPCA algorithm searches 

for a set of orthogonal weight vectors, 𝐖∗, that maximizes the cost function, 

L=
∑ 𝑣𝜙

2
𝜙

∑ 𝑣𝜙𝜙
. Maximizing L will optimize the trade-off between two objectives: enlarging 

the numerator that represents the overall variance captured by 𝐖∗ and downsizing 
the denominator to ensure that each component only captures variance in a single 
variable subspace Brendel, Romo, and Machens (2011). 

Average neural activity was divided into three portions based on the task epochs: 
sample (−100 − 650 ms relative to sample onset), delay (800 − 1550 ms), and test 
(1600 − 2150 ms). For the model, the activity during test epoch came from a slightly 
wider time window (1600 − 2650 ms) to capture the convergence to match and 
non-match states, which occurs slightly slower in the model. DPCA analysis was 
performed on simulated activity of the model in presence of noise, using comparable 
number of trials as in the data (∼ 400 trials). We first de-noised the neural 
responses by applying regular principal component analysis and focusing on the 
subspace of 𝑀 largest components that explain 95% of variance in the data (𝑀 may 
vary from dataset to dataset). Then the activity was passed through the DPCA 
algorithm, which yields 𝑀 components ranging from the most stimulus-dependent 
component (𝐰𝜃), to the component that captures most combined variance of 
stimulus and time (𝐰𝜃,𝑡), to the most time-varying component (𝐰𝑡). For the sample 

and test period, we removed 𝐰𝑡 from the 𝐖∗ matrix and derived two-dimensional 
representation of activity within the remaining subspace using classical 
multidimensional scaling Borg and Groenen (1997) (MDS). Stimuli are represented 
as vectors in an 𝑀− 1 dimensional space; each dimension corresponds to a 
principal component. The MDS algorithm searches for 2D coordinates of stimuli that 
preserve their pairwise Euclidean distances. For the delay period, we projected 
activity during −250 − 2000 ms onto 𝐖∗, 𝐳(𝑡) = 𝐖∗𝐘(𝑡) to visualize the overall 
neural activity within a subspace spanned by delay-related components. Figure E-H 
plotted projected activity on 𝐰𝜃 and 𝐰𝜃,𝑡. 

Note that since we do not have neurophysiological recordings from one monkey for 
trials where test stimuli are 15∘ away from the boundary (see EXPERIMENTAL 
MODEL AND SUBJECT DETAILS), we need to remove all trials with test stimuli 15∘ 
away from the boundary to construct population trajectories shown in Figure 4I. 
This step was not applied to other analyses in this paper. 
 

DATA AND SOFTWARE AVAILABILITY 

Software for modeling and data analysis is written in MATLAB. Requests for source 
code and data should be directed to our Lead Contact. 

 



KEY RESOURCES TABLE 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Software and Algorithms 

Hessian-Free 
algorithm 

Martens and 
Sutskever, 2011 

http://www.cs.toronto.edu/~ilya/pubs/ 

DPCA algorithm Machens et al., 2010; 
Brendel et al., 2011 

https://github.com/machenslab/dPCA 
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Figure S1 Related to Figure 2. Recurrent network training strategies. (A) A schematic
showing additional output units of the model. Input units are excluded for clarity. In total,
there are five output units; two units were drawn in Figure 2a and three other units are
illustrated here. These additional units help stabilize the network during the resting and post-
response period; without them the trained networks may end up in oscillating states before
and after the task is performed. (B) Target activity, ŷ, of all output units during match trial
(top panel) and non-match trial (bottom panel). Black color indicates ŷ

i

(t) = 0; gray, ŷ
i

(t)
has the value written on the graph. White color indicates that ŷ

i

(t) is not specified; therefore
the corresponding network output y

i

(t) is not taken into account during optimization. The
five output units can be broken down into three types. (1) Action units (drawn in Figure 2a;
match and non-match neurons correspond to unit 1 and 2 in (B), respectively). The target
activity of action units is zero from resting period to the end of delay. During the choice
period, the match unit has value of 5 for match trials and value of 0 for non-match trials. The
opposite pattern holds for the non-match unit. The action units were instructed to keep their
activity at zero prior to the test period to prevent premature response before the test stimulus
is revealed. Action units receive plastic connections from 30 recurrent neurons, where all
connections are initialized to have zero value. (2) A rest control unit (gray circle in (A); unit
3 in (B)) receives non-plastic synapses of weight = 1 from all recurrent neurons, e↵ectively
computing the sum all recurrent activity and holds a target activity of 1.5 during the rest
period. (3) Choice control units (match or non-match units correspond to green or brown
circles in (A) and unit 4 or 5 in (B), respectively). The match unit computes the sum of
activity from the 15 neurons that are connected to action units. During the choice period, it
has target activity of 2.0 for match trials and zero for non-match trials. The opposite pattern
holds for the non-match choice control unit. Note that if the output units were not constrained
to hold stable activity for a long time window after test stimulus disappears, some networks
may develop oscillating end states, which might be hard to interpret. In the cortical circuit,
there might be an additional mechanism to shut down or reset the dynamics after the trial is
complete. (C) Percent correct responses as a function of delay durations. Four lines corre-
spond to four di↵erent networks that were successfully trained starting from di↵erent initial
conditions. To get a percent correct measure, we collected the network choice on each trial.
For example, if the match output neuron has activity over a certain threshold (0.85) while the
non-match neuron activity stays under the threshold, we considered that a match choice. We
varied the delay duration from 0.2 to 4 seconds with 100 ms interval. For each delay duration,
we simulated 500 trials of DMC tasks and measured percent correct trials. After training, the
model can perform DMC task for a good range of delays (0.7� 1.3 s).
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Figure S2 Related to Figure 3. Model replicates the temporal profiles of category selectivity
and the mixture of category and match/non-match selectivity observed in the data. (A) We
classified neurons into three categories. (1) “persistent selectivity” group are neurons that
have only one selectivity phase that lasts through the delay period and overlaps sample and
test epochs for at least 150 ms. (2) “transient selectivity” group are neurons whose selectivity
phases overlap with one or two task epochs. (3) “switching selectivity” are neurons that switch
their category preference in the middle of a trial. Both recorded neural populations and model
populations contain comparable fractions of neurons in each class. The majority of neurons
have transient selectivity (68.6% for data, 50.7% for model), followed by switching group
(22.0% for data, 30.0% for model) and persistently selective group (9.4% for data, 19.2% for
model). Note that there is a quantitative variation in percentages across di↵erent instances of
the model trained by the same protocol (s.d. shown), but the overall trend is similar to that
observed in the LIP and PFC neural populations. (B-C) Colored heat maps showing category
selectivity phases of all neurons in LIP1 (B) and PFC (C) datasets. Same plotting convention
as in Figure 3C-D is used. (D-G) The distribution of category selectivity durations for all
three neural datasets and model. Small portion of neurons with persistent category selectivity
is consistently detected in all populations, leading to heavy-tail distributions. (H) Average
firing rate traces of neuron samples from LIP (top), PFC (middle), and model (bottom).
Colors code task conditions during test period: dark red corresponds to RR condition (sample
in red category, test in red category); dark blue to BB; orange, RB; purple, BR. These neurons
show both category-selective response during sample and/or delay periods and match-selective
response during the test period. The bars above the traces indicate the time windows where
firing rates are significantly selective to categories (top bar) and match decisions (bottom bar,
t-tests, P < 0.05, Bonferroni corrected). (I) Category (x-axis) and match (y-axis) sensitivity
measured by d

0 are independent and, for both neural data (top, LIP2) and model (bottom),
we observed neurons that exhibit both category and match selectivity (black dots), in addition
to those showing only category (red), match (purple), or no (gray) selectivity (paired t-tests,
P < 0.05, Bonferroni corrected).
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Figure S3 Related to Figure 4. Demixed principal components during the delay period.(A)
Demixed principal components from the delay activity of LIP1, LIP2 and PFC datasets,
arranged from the most stimulus-dependent component (number 1) to the most time-varying
component (number 8). Only the largest 8 components (based on overall variance captured)
are plotted here. Components marked with black circles around the label numbers capture
the largest covariance in responses due to time and stimuli. (B) Variability in the neural
responses captured by the 8 largest components in each population (plotted in log scale). Gray
bars indicate overall variance; red lines, time-dependent variance; blue, stimulus-dependent
variance; orange, stimulus-time covariance. (C) Demixed principal components from the
delay activity of a representative model, which displays three components with either a stable
category code, a time-varying category code, or a time-varying component with little stimulus
encoding. (D) Percent variance captured by three components in (C). Plotting convention
is the same as in B. In the model, the time-varying component accounts for relatively small
overall variance in the delay response (15%), compared to the neural data (25%-38%). This is
expected because our model is a small network extensively trained to perform only DMC tasks
where timing information is not relevant. The model network, therefore, has larger category
selectivity and little time selectivity. On the contrary, category-related activity is only one of
many functions of the real neural networks and timing information might be important for
other tasks they perform.
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Figure S4 Related to Figure 6. Model dynamics during categorization and category working
memory. (A) We probed the dynamical landscape around the resting fixed point (black cross,
x

0

), by perturbing the state with random vectors �, �
i

⇠ U(0, 0.09), and plotting directions
of local velocity. Note that we used excitatory perturbations to provoke the network to
leave stable states. Black dots mark the perturbed locations (x

0

+ �). With zero input,
velocity vectors always point back to the resting state (gray arrows). When inputs represent
motion directions in category red (red arrows) or blue (blue arrows), velocity vectors point
to separate paths depending on stimulus categories. This demonstrates that local velocity is
largely influenced by direction-selective inputs. (B) If the network is exposed to consistently
strong input for an extended period of time, the neural states eventually escape the basin
of resting attractor. We simulated neural trajectories starting at the resting state (black
cross) while providing direction-selective input of various durations. The stimulus direction
is 255�, which is near the middle of category blue, and stimulus durations range from 10-
150 ms. The dark blue line shows the trajectory during stimulus presentation. If the stimulus
duration is too short, neural trajectories are attracted back to the resting state upon stimulus
removal (black dot marks the neural state at the end of 100 ms stimulus; black line shows
the trajectory). Continuous input of consistent direction brings neural state further from
the resting state. If the input duration is su�ciently long, relaxed trajectories converge to a
di↵erent region in state space (light blue dot marks the o↵set of 150 ms stimulus; light blue
line shows the trajectory). (C) The norm of network velocity (kẋk2) when the network is
exposed to direction-selective input over a period of 2.5 s. Shaded area indicates s.d. of norm
across 12 stimuli. Dashed line marks the end of sample period in our standard DMC protocol.
Network velocity drops rapidly during stimulus presentation. (D) Same plot as in (C) over
the delay period when the network relaxes in the absence of input. Dashed line marks the
end of delay period, where state velocity is relatively low. (E) Noiseless neural trajectories
under perturbation. We simulated neural dynamics under large perturbation while network
categorizes near-boundary stimulus (187�, which is in the red category; �

r

= 2.5). Here we
plot noiseless trajectories as the network relaxes during the delay. Gray dots mark the end-of-
sample states. For reference, dark blue and dark red lines show noiseless trajectories during
the delay for stimulus directions at the middle of categories. Network can correctly classify the
motion direction in some trials, settling at the end-of-delay state associated with red category
(pale red lines). Errors occur in cases where neural states land close to and flow along the
blue category tunnel (pale blue lines) or fall into basins of attraction associated to resting,
match, or non-match states (gray lines; as an example, here we plot trajectories that converge
to the non-match state, brown cross).
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Figure S5 Related to Figure 6. Networks trained with variable delay durations develop
more stable representation. When the delay durations vary from trial to trial and sample
categories must be recalled at arbitrary time point, networks are more likely to develop stable
fixed points associated to stimulus categories (Barak et al., 2013). To study how the training
protocol impacts the dynamics of representation, here we experiment with variants of DMC
task in which delay durations spread across larger range of values. (A) Four networks were
trained to perform the DMC task with delay durations ranging from 0.8 � 1.2 s. The plot
shows percent correct response as a function of delay duration. Black dashed line marks 70%
performance for reference. Some networks learn to perform the task at delays much longer
than those used during training, while others fail at longer delays. (B) Networks that can
perform DMC at long delays have stable category representation. The heat map of categorical
selectivity strength (d0) over 5 s delay (same plotting convention as in Figure 3c-d; the network
shown is the most stable sample from (A)). (C) Neural activity of a sample neuron within the
stable network, color coded by sample directions. (D) The magnitude of network velocity as
a function of time for networks that have stable performance (gray) versus networks that do
not (red). The graph focuses on the velocity during the end of delay period. Networks with
stable performance reach fixed points before the end of delay period. Note that even networks
that reach fixed points at the end of delays may demonstrate a slow decay in performance
as the mnemonic epoch extends, because prolonged exposure to random perturbations drive
networks to escape working memory steady states. (E) Training protocols utilizing larger
delay range tend to generate more stable recurrent models. Percent correct response as a
function of delay duration for two training protocols using variable delay lengths drawn from
ranges of 0.5 � 1.5 s (left panel) and 0.8 � 2.0 s (right panel). Networks’ performances are
more stable as the delay ranges are wider.

Our main findings suggest that the time-varying categorical selectivity results from robust
transient dynamics. This framework does not require the network to reach stable states dur-
ing the delay period, as the decrease in state velocity allows the model to endure a su�cient
variation in delay durations as shown in Figure S1. The model’s behavior is reasonable com-
pared to monkeys’. In animals trained with fixed delay duration of 1 s, the response accuracy
diminishes if the delay period is unexpectedly extended to 1.5 s (unpublished behavioral data
in Freedman laboratory). This entails that, when delay period is extended, working memory
is disrupted by other signals such as premature behavioral plan. For su�ciently short delay
durations, working memory can in principle be sustained by purely transient dynamics.

One question that arises is: What happens if neural networks or animals must perform DMC
task at longer or variable delays? Although our datasets do not allow us to study this question
directly, this modeling experiment suggests that one candidate mechanism for coping with
longer delays is the formation of steady states associated to category working memory. Here
we show that such steady states are more likely to occur if training protocols incorporate
larger delay range. Consistent with this notion, a previous study that employs variable delay
protocol showed that prefrontal networks occupy low-velocity working memory across the
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delay (Stokes et al., 2013), in contrast to the current study and others (Meyers et al., 2008;
Crowe et al., 2010) with fixed delay that show time-varying representation. To directly test this
hypothesis, future studies could compare the temporal variability in the neural representations
when animals are trained with fixed versus variable delay protocols.

However, one should be cautious when interpreting this result in the context of neurophysi-
ological experiments. First, animals’ performance and neural circuits are impacted by other
signals associated with timing, anticipation, impatience, etc. Even if a subset of population
in higher cortical areas maintains stable representation, others can contain temporal varia-
tions due to other signals. Thus, it is di�cult to distinguish memory-related activity from
other activity. Second, the current model does not incorporate other mechanisms to mediate
timing, therefore the formation of fixed points may arise simply due to lack of alternatives.
Another study shows that, in monkeys, the ability to generalize to di↵erent delays may rely
on changes in speed of neural dynamics (Brody et al., 2003a), which could be mediated by
synaptic mechanisms (Barak et al., 2010) not integrated in our model. Future experiments
should compare stable versus variable delay protocols to establish this issue.
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Figure S6 Related to Figure 7. Comparison between trained networks and random networks.
Randomly connected networks (RCNs) represent an easy way to generate mixed selectivity by
virtue of random connections. They can be constructed with sparse connectivity, whereby non-
zero weights are randomly drawn from a Guassian distribution of zero mean, and the output
weights are trained by a linear classifier to perform DMC tasks. We trained six RCNs until they
can perform DMC task a at comparable performance as trained networks and animals. (A)
Percent correct response is plotted as a function of distance from stimuli to category boundary.
Error bars indicate s.d. across six instances of RCNs. (B) We measured the average strength
of category tuning during the selective time windows using a category tuning index (CTI).
Neurons with more positive CTI values have stronger category selectivity regardless of which
category they prefer (see Experimental Procedures). Bar graphs show average CTIs during the
delay from all three datasets (first bar), ten instances of trained networks (second bar), and six
instances of RCNs (third bar). Both data and model demonstrate robust category tuning (stars
indicate that average CTI are significantly di↵erent from zero for all datasets or networks),
while the neural representation of RCNs contains no categorical coding. (C) We assessed
the stimulus selectivity duration of each neuron – the duration of the longest time window
where firing rates are significantly modulated by stimuli (ANOVA, P¡0.005). The correlations
between CTI and stimulus selectivity duration are significant in LIP1 (Pearson correlation,
N = 124, r = 0.297, P < 10�3), LIP2 (N = 68, r = 0.497, P = 10�5) and PFC (N = 182,
r = 0.153, P = 0.039). (D) We found strong correlations between CTI and stimulus selectivity
durations in the trained model as well (N = 131, r = 0.558, P = 10�7). In both neural data
and trained model, it is rare to observe persistent activity without category selectivity. (E-
F) RCNs do not capture such regularity. Correlations can be zero, positive, or negative in
random networks (E; N = 1500, r = 0.022, P = 0.39). The average correlation is close to
zero (mean r = �0.035; F). Stars indicate that correlations in all datasets or networks are
positive and significant. RCNs do have neurons with persistent stimulus selectivity, but these
neurons do not necessarily show categorical coding. (G-J) Nonrandom features in structural
and functional connectivity in trained networks. (G) Synaptic strength of the trained network
has unimodal distribution with zero mean (average strength across 10 instances of the model
= �0.008). (H) High-degree neurons tend to have more positive in-strength (Spearman rank
correlation, N = 150, ⇢ = 0.318, P < 10�4). (I) High-degree neurons tend to have larger
neural activity (Spearman rank correlation, N = 150, ⇢ = 0.402, P < 10�7). x-axis, average
synaptic current (x̄) across task conditions and time. (J) The relationship between neural
response similarity (x-axis) and synaptic coupling (y-axis).

Following practice in graph theory (Bullmore and Sporns, 2009), we compare interneuronal
interactions in trained model to null models, generated by randomly re-wiring the connec-
tivity matrix while preserving degree statistics. These null models are generated by function
randmio dir from Brain Connectivity Toolbox (Rubinov and Sporns, 2010), which randomly
pick pairs of connections and swap them (Maslov and Sneppen, 2002). This method preserves
distribution of in-degree, out-degree and out-strength, but not in-strength. Significant devi-
ations from null models reflect the meaningful structure of trained networks beyond degree
hierarchy. We found that the responses of trained models have higher variance across stimuli
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than its random counterparts. As a result, trained networks demonstrate a larger degree of
functional segregation compared to null models throughout DMC epochs. This means some
neural pairs are highly similar in their encoding while some pairs are highly distinct, and this
is so to a larger extent than would be expected by chance. Average range of r

response

= 0.43
in trained models (left panel) versus 0.04 in null models (right panel). r

response

is correlated
to synaptic coupling (regression, � = 0.015, P < 10�5) and the e↵ect is significantly larger in
trained networks compared to random networks (t-test, N = 100 shu✏es, P < 10�4, average
� ⇠ 10�3). The relationship between two variables during the last 250 ms time window of
delay epoch is shown here, but the same conclusion holds for all time windows from the onset
of sample to the end of trial.
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Figure S7 Related to Figure 7. Competition and cooperation between decision-related neuron
pools. (A-D) Average degree, neural activity, category tuning strength and the average
changes in the activity through the delay of three neuron groups; activated at the end of delay
for red sample stimuli only (denoted R group), for blue sample stimuli only (B group), and for
both red and blue (BOTH). Error bars indicate s.d. across 10 instances of trained networks.
Neurons in BOTH group have similar degrees (A), larger activity (B), and weaker category
sensitivity (C) compared to R and B groups. Note that BOTH neurons have non-zero firing
rates to red and blue categories, but the magnitude of firing rates can di↵er across categories.
In (D), we plotted the average changes in neural response (responses at the end of the delay
subtracted by those at the beginning). The activity of BOTH neurons tends to increase during
the delay, while the activity of R and B neurons tends to decrease. To simplify the analysis
at (B) and (D), we simulated the network activity with no noise, responding to stimulus
directions at the middle of categories. (E) Average firing rates in response to category red (x-
axis) and blue (y-axis) in PFC population are highly correlated (Pearson correlation, N = 380,
r = 0.910, P < 10�7). (F) Average neural responses to category red (x-axis) and blue (y-
axis) are highly correlated in trained networks (Pearson correlation, N = 150, r = 0.724,
P < 10�7). Activity is defined as synaptic variable, x, but same conclusion holds when the
same analysis is performed on rate, r, (r = 0.679, P < 10�7). In a categorical decision network
that relies solely on competition, firing responses to category red and blue stimuli should be
anti-correlated. However, we found large positive correlations in both neural data and model,
which are mainly driven by BOTH neurons, suggesting cooperative mechanism. (G) Average
synaptic weights between neuron groups that are active only for match trials (M group), only
for nonmatch (NM group), for both match and nonmatch (BOTH group), and not responsive
(NR group). Activation is determined by firing rates at the match or non-match stable states
(simulated without noise). Same plotting convention as in Figure 7e. M and NM groups
exhibit strong within-group excitation and between-group inhibition. BOTH group receives
net positive connections from itself as well as from M and NM groups. NR group receives net
negative connections from all other groups.
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Figure S8 Related to Figure 8. Neural representations during task switching experiments.
(A) Neural trajectories during the sample period of a network trained with independent-
input flexible categorization paradigm. Same network as plotted in Figure 8c. Stimuli in the
category red of scheme A and the category green of scheme B drive neural states to the same
direction where the entrance of the shared working memory tunnel is located, and analogously
so for blue and yellow categories. Black dots mark the beginning of sample period. (B)
Neural trajectories during test period for the independent-input paradigm show that the exits
of working memory tunnels in Figure 8c are mapped onto appropriate choice-related stable
states by test stimulus inputs. Stars indicate the trajectories at the beginning of test period,
which are locations of end-of-delay states color coded by categories. The colors of trajectories
traces (dark blue, dark red, purple, and orange) follow the convention in standard DMC in
Figure 5f-g (dark blue, BB and YY; dark red, RR and GG; purple, BR and YG; orange, RB
and GY). Green and brown crosses indicate locations of fixed points associated to match and
non-match choice, respectively, which is the final states of the network. Trajectories marked
by dots are from trials when category scheme A was active, whereas trajectories marked
by squares correspond to scheme B. (C) Comparison between category tuning strengths of
multitasking (selective to categories in both schemes) and specialized (selective to categories
in one scheme) neurons. Individual neurons’ category strengths are accumulated from all
5 realizations of networks trained on independent-input protocol (multitasking, N = 554;
specialized, N = 78). Error bars indicate s.d. across all neurons. Multitasking neurons are
significantly more category selective than specialized neurons (t-test, P < 10�7). (D) CTI
of category scheme A (x-axis) versus that of scheme B (y-axis) for networks trained with
shared-input paradigm. There is no correlation between the two indices (N = 150, r = 0.053,
P = 0.52).
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