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Abstract

The use of gene panel sequence for diagnostic and prognostic testing is now widespread, but there
are so far few objective tests of methods to interpret these data. We describe the design and
implementation of a gene panel sequencing data analysis pipeline (VarP) and its assessment in a
CAGI4 community experiment. The method was applied to clinical gene panel sequencing data of
106 patients, with the goal of determining which of 14 disease classes each patient has and the cor-
responding causative variant(s). The disease class was correctly identified for 36 cases, including
10 where the original clinical pipeline did not find causative variants. For a further seven cases, we
found strong evidence of an alternative disease to that tested. Many of the potentially causative
variants are missense, with no previous association with disease, and these proved the hardest to
correctly assign pathogenicity or otherwise. Post analysis showed that three-dimensional struc-
ture data could have helped for up to half of these cases. Over-reliance on HGMD annotation
led to a number of incorrect disease assignments. We used a largely ad hoc method to assign

probabilities of pathogenicity for each variant, and there is much work still to be done in this area.

RO1GM120364,U41 HG007446,
R13HG006650).
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1 | INTRODUCTION

Genetic testing in clinical laboratories is becoming increasingly com-
mon: As of March 2017, GeneTests.org contains entries for about 706
laboratories and 1,083 clinics worldwide performing a total of 67,187
tests on 5,926 genes for 4,963 genetic conditions. So far though, there
has been only limited testing of method efficacy (Cornish & Guda,
2015; Hwangetal.,2015; McCarthy et al., 2014; Pirooznia et al., 2014).
Many of the genetic tests use targeted gene sequencing panels for
identifying variants in a set of genes or gene regions that are known to
be associated with a disease (Kammermeier et al., 2014; Okazaki et al.,
2016). Inclinical laboratories specializing in specific diseases or classes
of disease, panels provide high coverage data for genes of interest at
relatively low cost, and also reduce the issues in reporting incidental
findings to patients. A key and challenging step in all these tests is the
ability to accurately interpret the genetic variants and assign a likeli-
hood of pathogenicity (Richards et al., 2015).

CAGI, gene panel sequencing, monogenic disease, missense mutations, VarP analysis pipeline

Potentially pathogenic sequence variants fall into three classes:
(a) those almost certain to cause major loss of protein function (LoF),
arising from the introduction of premature stop codons, frameshifts
caused by small insertions or deletions, and direct hits on splice sites;
(b) those that may or may not significantly affect gene regulation (such
as regulatory variants at transcription factor binding sites) or protein
function, particularly missense variants; and (c) those that are more
likely benign, particularly synonymous, UTR, and deep intronic vari-
ants. The main challenge lies in understanding the phenotypic conse-
quences of the large fraction of variants falling into the last two classes.
Most clinical laboratories follow a semi-automated approach for vari-
ant interpretation, first making use of available variant annotation and
prioritization tools and then checking the potential causative variants’
association with the disease of interest in databases and the literature.
For the first step, there are dozens of annotation and prioritization
tools (open-source or commercial) available (for example, Cingolani
et al., 2012; McLaren et al., 2016; Robinson et al., 2014; Sifrim et al.,
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2013; Wang, Li, & Hakonarson, 2010), typically providing potentially
causative variants based on inheritance pattern, allele frequency (AF),
genomic region of interest, mutation type, and in silico analysis of the
likely impact of missense mutations. It has been demonstrated that
there are substantial discrepancies between existing annotation tools
(McCarthy et al., 2014; Pabinger et al., 2014) so that there is a clear
need to encourage and monitor advances in this field. In most clinical
laboratories, standard guidelines such as those from the American
College of Medical Genetics and Genomics (ACMG) (Richards et al.,
2015) are followed for variant interpretation and reporting. Although
the guidelines accept computational predictions of pathogenicity for
variants, these are only considered a “supportive” evidence. Other
evidence is required to classify a variant as causative. As a conse-
quence, the overall contribution of computational methods for variant
classification is low and this motivates the development and testing of
more accurate methods for variant interpretation.

Critical Assessment of Genome Interpretation (CAGI) is an orga-
nization that conducts community experiments to objectively assess
computational methods for predicting phenotypic impacts of genomic
variation (https://genomeinterpretation.org/). The most recent round
of experiments (CAGI4) included a challenge to determine which of 14
disease classes each of 106 patients has and the corresponding causal
variants, given each patient’s gene panel sequencing data (https://
genomeinterpretation.org/content/4-Hopkins_clinical_panel). The ge-
ne panel dataset consists of exons with flanking regions and some com-
plete intron sequencing data for 83 genes from each patient. Data
were provided by the Johns Hopkins DNA Diagnostic Laboratory. The
Laboratory is a CLIA and CAP certified, Maryland, New York, and
Pennsylvania licensed clinical genetic testing laboratory specializing
in rare, inherited disorder testing (http://www.hopkinsmedicine.org/
dnadiagnostic/tests/).

The data were made available to registered CAGI participants,
and all were required to deposit disease and variant assignments by
a specified deadline. The anonymized submissions were assessed by
John-Marc Chandonia (http://enigma.lbl.gov/chandonia-john-marc/)
and Shamil R. Sunyaev (http://genetics.bwh.harvard.edu/wiki/sunyae
vlab/), and results were later discussed at the CAGI4 conference. A
paper on the assessment is part of this CAGI special issue of Human
Mutation (refer to Chandonia et al. CAGl issue paper when available).

The identification of causal variants requires a number of care-
fully controlled procedures for assessing the quality of the data,
accurate variant annotation, handling of unphased genotypes, and
an appropriate probability model that can prioritize primary and
secondary disease findings. With these considerations in mind, we
developed a new variant prioritization pipeline (implemented in
Python) called VarP (https://github.com/kunduk/VarP) using a com-
bination of open-source and in-house software tools for analyzing
gene panel sequencing data. This pipeline was the most successful
of those used in CAGI, in the sense that it resulted in the correct
matching of the highest number of panel exomes to disease class.
[https://genomeinterpretation.org/sites/default/files/protected_files/
4-Hopkins_clinical_panel_assessor1_AAdhikari_remixable.pptx]. Nev-

ertheless, the results are far from perfect. In this paper, we describe

the design and implementation of the variant prioritization pipeline

and the results obtained.

2 | MATERIALS AND METHODS

2.1 | Capture bed files, gene panel sequencing data,
and disease class

The Johns Hopkins DNA Diagnostic Laboratory panel sequencing
procedure generates sequence for all exons plus a boundary of 50
bases up and down stream and some introns for 83 genes (1,350
exonicand 39 intronic regions), covering 14 monogenic disease classes.
Seventy-three of these genes are known to harbor mutations for one of
the 14 monogenic disease classes. The remaining ten genes are known
to harbor mutations for two or more disease classes. Sequences had
been captured using one of the two custom probe sets (Agilent Sure-
SelectXT Target Enrichment Kit) and sequenced using Illlumina MiSeq
to generate paired-end reads (2 x 100 nt reads). Two capture bed files
(v01, vO2) describing the two probe sets were provided as part of the
challenge. The Hopkins group called sequence variants and produced
two VCF files for each patient, one a gVCF for SNVs (using GATK Uni-
fiedGenotyper, v2.7-4) and the other a VCF for insertion-deletion vari-
ants (Indels, GATK HaplotypeCaller, v2.7-4). For the challenge, all VCF
files from 106 patients had been combined into two files, one each for
SNVs and Indels.

2.2 | Building the gene list for disease classes

All the genes annotated in the two capture bed files (vO1 and v02)
were extracted to compile a list of genes to examine. The descrip-
tion of 14 disease classes was provided on the challenge Webpage
(https://genomeinterpretation.org/sites/default/files/protected_files/
4-Hopkins_clinical_panel_disorders.pdf). We made extensive use of
the Hopkin’s DNA Diagnostic Laboratory Website to map genes to
disease class (http://www.hopkinsmedicine.org/dnadiagnostic/). The
website lists a number of gene panel tests and also gives a detailed
description of the genes associated with each disease as well as their
inheritance pattern. Using this resource we were able to group 53
of the 83 genes to 12 disease classes and obtain the inheritance pat-
tern. We used literature and the Genetic Home Reference Database
(http://ghr.nlm.nih.gov/) to group another 24 genes to some of the
disease classes and obtain the inheritance pattern. In total 77 out of 83
genes were grouped among the 14 disease classes as shown in Table 1.
The remaining six genes (DHODH, TRIM37, EFTUD2, AMACR, AGXT,
and CAT) are associated with diseases that are not related to any of the
14 disease classes and therefore were excluded from any downstream

analysis.

2.3 | Gene panel sequencing data analysis pipeline

The method developed for this challenge (VarP—Variant Prioritization)
uses open-source and in-house software tools to analyze gene panel

sequencing datawith respect to rare genetic disorders in an automated
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TABLE 1 The 14 disease classes and genes identified as relevant to each class

Disease Class
Cystic Fibrosis and CF-related disorders

Diffuse Lung Disease

Primary Ciliary Dyskinesia

Peroxisomal Beta-Oxidation Defects
Rhizomelic Chondrodysplasia Punctata

Zellweger Spectrum Disorders

Loeys-Dietz Syndrome

Marfan Syndrome

Thoracic Aortic Aneurysm and Dissection (TAAD)
Ataxia Telangiectasia

Liddle Syndrome

Pseudohypoaldosteronium Type 1

Telomere Shortening Disorders

Treacher Collins and Related Syndrome

Gene List
CA12,CFTR, *SCNN1A, *SCNN1B, *SCNN1G

ABCAB3, AP3B1, CSF2RA, CSF2RB, *DKC1, FOXF1, HPS1, HPS4, NKX2-1,
SFTPA2, SFTPB, SFTPC, SLC7A7, *TERC, *TERT, *TINF2

CCDC103,CCDC39,CCDC40, DNAAF1, DNAAF2, DNAAF3, HEATR2,
DNAH11, DNAH5, DNAI1, DNAI2, DNAL1, HYDIN, LRRC6, NMES,
RSPH4A, RSPH9

ACOX1,HSD17B4, SCP2
AGPS, GNPAT, PEX7, PHYH

DNM1L, PEX1, PEX2, PEX3, PEX5, PEX6, PEX10, PEX12, PEX13, PEX14,
PEX16, PEX19, PEX26

*TGFBR1, *TGFBR2, TGFB2

*FBN1, “TGFBR2

*FBN1, ACTA2, MYH11, MYLK, SMAD3, *TGFBR1, *“TGFBR2, COL3A1
ATM

*SCNN1B, *SCNN1G

NR3C2, *SCNN1A, *SCNN1B, *SCNN1G

CTC1,NHP2,NOP10, *TERC, *TERT, *TINF2, WRAP53, *“DKC1
POLR1D, TCOF1, POLR1C, SF3B4

Note: Genes associated with more than one disease class are indicated by an asterisk.

o Ts/Tv

* Het/Hom
Variant

* Common,
Rare, Novel
Variant

* Gene & Exon
Coverage

* Varant tool

* Disease
Databases —
Clinvar and
HGMD

Variant
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Scoring scheme
tuned
individually for
AD, AR, CH, XD,
XR, PAD and PAR
inheritance
models

Use of 3 search
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manner

Variant
Prioritization

Probability
Scoring

FIGURE 1 The Variant Prioritization (VarP) Method. Circles represent the four modules. Modules are executed sequentially starting from Vari-
ant Annotation and ending with Probability Scoring. The “Varant” tool in step 1 annotates variants with genomic region of occurrence, mutation
type, minor allele frequency, and prediction of pathogenicity for variants. Ts/Tv, Transition/Transversion; Het/Hom, Heterozygous/Homozygous;
AD, Autosomal Dominant; AR, Autosomal Recessive; CH, Compound Heterozygous; XD, X-linked dominant; XR, X-linked recessive; PAD, Pseudo

Autosomal Dominant; and PAR, Pseudo Autosomal Recessive

manner. The method has four modules—Variant annotation, QC (qual-
ity control) analysis, Variant Prioritization, and estimation of the prob-
ability of each variant being causative for the disease. The four modules
were executed in a sequential manner (Fig. 1). The inputs were the two
VCF files and a gene configuration file that contained the genes associ-
ated with each disease class and their inheritance pattern (autosomal
dominant/recessive, compound heterozygous, pseudoautosomal dom-

inant/recessive, X-linked dominant/recessive).

2.3.1 | Variant annotation

The two VCF files (one for SNVs and another for Indels) were anno-
tated using Varant (http://compbio.berkeley.edu/proj/varant, https:/
doi.org/10.5060/D2F47M2C). Details on Varant are provided in the
supplementary material. Varant annotated each variant in the VCF
files with region of occurrence (intron, exon, splice site, or inter-
genic), observed minor allele frequencies (MAF) from ExAC (Lek et al.,
2016) and 1000 Genomes Phase-3 (Auton et al., 2015), mutation type

(missense, nonsense, silent, frameshift, and non-frameshift indels),

predicted impact on protein function, and previously associated phe-
notypes reported in ClinVar (Landrum et al., 2016). Varant used
dbNSFP (v2.9) (Jian, Boerwinkle, & Liu, 2014) database to fetch
the mutation impact predictions from PolyPhen-2 (v2.2.2) (Adzhubei,
Jordan, & Sunyaev, 2013), SIFT (release January, 2015) (Kumar,
Henikoff, & Ng, 2009) and CADD (v1.2) (Kircher et al., 2014). The
RefGene (Pruitt et al., 2014) gene definition file was used for gene
and transcript annotations. The principal isoforms of each gene
were taken from the APPRIS database (Rodriguez et al., 2013). In
addition, the VCF files were annotated with SNPs3D (May, 2015)
(Yue, Melamud, & Moult, 2006) mutation impact predictions, HGMD
(version June 2014) (Stenson et al., 2003) disease-related variants
and with dbscSNV (Jian et al., 2014) variants that potentially alter

splicing.

2.3.2 | QCanalysis

Three types of QC analysis were run on the Hopkin’s dataset. The

first QC analysis is a comparison of Transition versus Transversion
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ratio (Ts/Tv), Heterozygous versus Homozygous variants (Het/Hom),
no call sites versus low quality sites, and common versus rare versus
novel variant counts across all 106 samples and with those in a control
variant set from 2,504 samples in 1000 Genomes Phase-3 (Auton et al.,
2015). No call sites (sites where neither reference nor alternate allele
was called) and low-quality sites (sites not marked PASS and/or geno-
type quality [GQ)] less than or equal to 30) per sample were computed
from the challenge gVCF file. A variant is considered novel if it was
not present in the 1000 Genomes and EXAC (Lek et al., 2016) dataset
and considered rare if present with an MAF of less than 5% in both of
these datasets. Other 1000 Genomes or EXAC variants were consid-
ered common. Only SNVs flagged as PASS in the VCF file and with a GQ
greater than 30 were included in the analysis. Scatter plots were gen-
erated to represent the results. The QC module also estimated which
samples are of African ethnicity, to aid in interpretation of variant
count differences. The ethnicity analysis used the population-specific
AF from the 1000 Genomes Phases-3 dataset to identify population
enriched variants (i.e., variants that are common (AF > 0.05) in a pop-
ulation but rare (AF <= 0.05) in other populations). Samples whose
African population enriched variant count was highest in number com-
pared to other populations in 1000 Genomes (Admix American, South
Asian, East Asian, and European) were assigned African ethnicity. The
second QC analysis is a comparison of the average read depth for 83
genes across 106 samples, using the read depth provided in the gVCF
file. The module produced a heat-map of these data, allowing conve-
nient visual inspection for anomalies. The third QC analysis identi-
fies capture regions (exon or intron) with anomalous read depth with
respect to other captured regions in the same gene, where the anomaly
is found in at least 85% of the samples. Anomalous coverage was iden-
tified by first computing the average read depth across the gene (u)
and its standard deviation (c), and then checking each region for sig-
nificantly low (<u — 26) or high (>u + 2¢) coverage. The anomalous
coverage regions were then visually inspected using gene coverage
plots.

2.3.3 | Identification of potentially causative variants

Only rare or novel variants rated high quality (marked PASS and with a
GQ > 30in the VCF files) were considered in the search for causal vari-
ants. At this stage, a rare variant was defined as one reported in ExXAC
(Lek et al., 2016) with a MAF less than or equal to 0.01 and a novel
variant was defined as one not found in EXAC. Indels in low complex-
ity regions (LCR) were excluded from the analysis, based on the LCR
dataset computed for the human genome by Li (2014). For each sam-
ple, each QC qualified variant in each of the 83 genes was assigned
to one of four categories, ranked by the likelihood that the variant is

causative.

Category 1: Variants reported in HGMD with either DM (disease-
causing mutation) or DP (disease-associated polymorphism) status,
and/or reported in ClinVar with pathogenic or likely pathogenic
clinical significance.

Category 2: Variants annotated as nonsense mutations, direct splicing
mutations disrupting either a splice donor or acceptor site, frameshift

or non-frameshift causing Indels, splice altering variants predicted in

the dbscSNV database, and missense mutations predicted as damag-
ing by one or more of SNPs3D, SIFT, PolyPhen-2, and CADD.
Category 3: Variants annotated as missense but not predicted to
be damaging by any of the above methods, and UTR and intronic
variants.
Category 4: All other variants (including synonymous and all with

MAF > 0.1). These were not considered as potentially causative.
Each variant was also grouped by frequency based on its EXAC

MAF: group 1, novel; 2, very rare (MAF <= 0.005); or 3, rare
(0.005 < MAF <=0.01).

For each sample, the variant assigned to the lowest category was
taken as the potentially causative variant. If there were two or more
variants with the same category, the one in the lowest frequency group
was selected. When there were two or more variants with the same
category and frequency group, all were selected. Once a selection had
been made, no other variants in that sample were considered. Cate-
gory 1 variants were assumed to be of highest confidence, followed by
category 2 and 3 variants and so selection was made in that order: If
a suitable variant or variants were found in category 1, no category
2 ones were considered, and similarly, if suitable variants were found
in category 2, no category 3 ones were considered. No phase infor-
mation was available for these data, so for non-homozygous variants
where the inheritance model of the gene containing the selected vari-
ant required a second allele as part of a compound heterozygous pair,
the next ranked variant in that gene was selected.

Thus, for each of the 106 samples, the output from the module
was usually one (for dominant or homozygous recessive situations)
or two (for compound heterozygous situations) potentially causative
variants in a particular gene. Since each gene is associated with one
or more of the 14 disease classes (shown in Table 1), identification
of a gene implied one or in some cases two possible disease classes.
For some samples, no potentially causative variants were found, or for
compound heterozygous situations, only a single variant met selection
criteria, and so no disease was identified.

2.3.4 | Estimating probability for the disease

Table 2 lists the probability of pathogenicity assigned for each category
of potentially causative variant. Category 1 variants (based on HGMD
or ClinVar entries) were assigned a probability of 1.0, except for some
missense variants where prediction methods suggested low impact.
Category 2 missense variants were assigned a probability based on the
extent of consensus among the four missense impact analysis meth-
ods used (SNPs3D, SIFT, PolyPhen-2, and CADD), utilizing a calibra-
tion from HGMD data and a control set of inter-species variants. That
calibration shows a strong and approximately linear dependence of
pathogenic probability on agreement between methods (Supp. Fig. S1).
Other variant types were subjectively assigned probabilities as shown
in Table 2. For autosomal recessive situations, the combined proba-
bility of pathogenicity was taken as the product of probabilities for
the two contributing variants. Those values were incremented by 0.2
for homozygous cases, as an ad hoc correction for increased confi-
dence, and by 0.1 in compound heterozygous situations. Based on this
scoring scheme, a probability of pathogenicity for a disease class

was generated for all the samples in which one or more potentially
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Variant Type Probability Score
Reported in HGMD or ClinVar as pathogenic 1
Missense - Reported in HGMD or ClinVar as pathogenic and predicted damaging by only 2, 1, or O out of 4 methods 0.9
Missense - Predicted damaging by 4/4 methods 1
Missense - Predicted damaging by 3/4 methods 0.8
Missense - Predicted damaging by 2/4 methods 0.5
Missense - Predicted damaging by 1/4 methods 0.25
Missense - Not predicted damaging by any methods 0.15
Nonsense 1
Frameshift/Non-Frameshift Indel 1
Variant predicted to affect splicing 0.8
Variant close to Splice Donor site 0.2
Variant close to Splice Acceptor site 0.2
UTR Variant 0.05
Intronic Variant 0.05
All other variants 0

causative variants were identified. For the cases in which a gene was
associated with more than one disease class, equal probability was

assigned for all the disease classes.

2.4 | Post-challenge analysis

We performed many post challenge analyses on the results in order
to gain insight into the performance, strengths, and weaknesses of the
method, and in doing so, made a number of observations. We assessed
performance based on the official answer key provided by the Johns
Hopkins DNA Diagnostic Laboratory group. For each patient, the key
specified the disease class, the possibly causative variants (if any) found
in the subset of the 83 genes examined, and a classification of each of
these variants (pathogenic, likely pathogenic, VUS (variant of uncer-
tain significance), likely benign, and benign). The Hopkins classifica-
tions were based on the ACMG evidence rules (Richards et al. 2015).

3 | RESULTS

3.1 | QC analysis summary

Supp. Figures S2 and S3 and Supp. Table S1 together with accom-
panying text provide details of the QC analysis. Overall, transi-
tion/transversion ratios and heterozygosity/homozygosity ratios are
consistent with those found in 1000genome data, with the exception
of one sample (P8) with excess homozygosity. There are a maximum of
2,000 low quality and 940 no-call calls per sample in the vO1 capture
data and lower numbers in vO2. We expect that any causative variants
at these positions would be missed. Common, rare, and novel variant
(SNV and Indel) counts for all the samples are consistent with 1000
genome data, except for two outlier samples identified as of African

ethnicity which have larger rare Indel counts. The average read depth

per gene per sample is high (greater than 100x) with the exception
of two capture regions (Exon-53 and Exon-60 of HYDIN gene in Supp.
Fig. S4) where anomalous coverage could potentially result in causative

variants being missed or in false positives.

3.2 | Missense mutations are amplified in the
potentially causative variant set

The VCF files provided for the challenge have a total 2,311 unique vari-
ants across the 106 patients. This variant set consists of 40% intronic
variants, 26% missense variants, 20% synonymous variants, and 14%
of variants that are assigned as LoF (frameshift Indels, non-frameshift
Indels, and nonsense), UTR, or splicing (Fig. 2A). After applying the
PASS (PASS in VCF file), genotype (GQ > 30) and frequency filters
(MAF <= 1% in ExAC), the total number of variants was reduced
by almost 50% to 1,291, with 233 variants filtered because of low
quality and 787 further variants filtered because of high MAF. Fig-
ure 2B shows that the frameshift and non-frameshift indels decreased
the most (by 40% and 27%) on applying the PASS filter and NonSyn,
Syn, UTR, Codinglntronic, and “Close to splice site” variants decreased
the most (by 37%-42%) on applying the frequency filter. After all fil-
tering, 138 out of the 1,291 variants were assigned as potentially
causative by the prioritization procedure. In this set, the fraction of
LoF variant is 16% and the fraction of missense variants is doubled to
more than half (56%), while intronic variants drop to 8% and synony-
mous to 1%. The high fraction of potentially causative missense vari-
ants emphasizes the importance of correctly interpreting this class of

mutation.

3.3 | Matchingindividuals to disease class

Application of the categorization procedure described in Materials

and Methods resulted in a non-zero probability for a specific disease
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StartLoss 2 2 2 0
StopGain 14 14 13 6
NonCodingExonic 4 4 3 1
SpliceDonor 4 4 3 1
StartGain 2 2 1 0
Close_to_SpliceDonor 64 62 40 4
NonSyn 607 571 385 77
Syn 462 428 255 2
Close_to_SpliceAcceptor 86 76 48 14
CodinglIntronic 916 799 461 11
UTR 98 82 48 3
SpliceAcceptor 6 5 5 3
NonFrameShift Indel 11 8 6 5
FrameShift Indel 30 18 18 11
NonCodinglntronic 5 3 3 0
Total 2311 2078 12901 138

FIGURE 2 Distribution of variant types for the gene panel sequencing data for 83 genes from 106 patients. (A) Distribution of variant types. The
outer circle shows the distribution for all variants present in the VCF files provided as part of the challenge. The middle circle shows the distribu-
tion of high-quality rare variants after applying PASS, GQ, and frequency filters using data in the VCF file. The inner circle shows the distribution of
potentially causative high quality rare and novel variants in 104 patients after applying the variant selection algorithm. Missense and loss of func-
tion variants are substantially enhanced in the latter set. (B) Changes in the variant type distribution during the filtering process, from total VCF
variants, to those annotated as PASS, to those with low frequency, and finally those selected as potentially causative. The heat map indicates the
percent decrease in variants on applying each filter (in the direction indicated by the arrows): The larger the decrease, the more orange; the smaller
the decrease, the more green. The frameshift and non-frameshift Indel count decreased the most (by 40% and 27%) on applying the PASS filter and
NonSyn, Syn, UTR, Codinglntronic, Close to splice site variants decreased the most (by 37%-42%) on applying the frequency filter

class being assigned to 87 of the 106 patients. A further 17 patients
were assigned a non-zero probability for two disease classes, as a
consequence of a single gene being associated with two of the 14
disease classes. Two patients (P59 and P86) were not assigned to
any disease class. P59 had the lowest average read depth for 50
genes out of 83 and next to lowest for the other 33 genes compared
with other samples, suggesting that causative variants may have been
missed.

3.4 | Correct disease assignments also made by
Hopkins

Overall, the assessors determined that we made correct disease
assignments for 36 of 106 cases (Fig. 3A), in the sense that the highest
probability was assigned to the disease class specified in the Hop-

» o«

kins answer key. The Hopkins group reported “pathogenic,” “likely
pathogenic,” or “VUS”, based on ACMG variant classification, for 43
cases (Fig. 3B). The VarP pipeline assigned the maximum probability
to the same disease class for 26 of these 43 cases, with the same
variants assigned as causative. There are two primary reasons for
our non-identification of the other 17 cases (row 4 and row 8 in Fig.
3A). First, for 10 of these patients, the Hopkins group found only one
heterozygous variant in genes known to be associated with disease in a
recessive inheritance pattern. Our method considered this insufficient
evidence. Second, for the remaining seven patients, we found an alter-
native disease that ranked higher in the variant categorization scheme.
As noted in Materials and Methods, the selection scheme only consid-

ered the disease identified by the highest-ranked variants, and rejected

all others. Had we considered diseases identified by lower confidence
categorizations, five of these seven cases the Hopkins reported dis-
ease would have received 2nd ranking; one 3rd ranking; and one 4th

ranking.

3.5 | Additional correct disease assignments

Out of the 63 patients for which the Hopkins analysis found no
causative variants in the genes ordered as part of the clinical test, our
method made 10 correct assignments of disease class and assigned
potentially causative variants (row 5 in Fig. 3A). Seven of these patients
were found to carry autosomal dominant or homozygous recessive
variants and remaining three patients carried compound heterozygous
variants. For nine of these 10 cases, the gene hosting the potentially
causative variant was not analyzed by the Hopkins group, presumably
because coverage was not selected by the requesting physician. For
the remaining case, the Hopkins group did not report the potentially
causative variant even though they analyzed the relevant gene. For the
other 53 patients (row 6 and row 9 in Fig. 3A), neither our method
nor the Hopkins group found any causative variants for the expected
disease class. However, we found potentially causative variants for
a different disease in four of these patients, suggesting alternative

diagnoses (see the Alternative Diagnosis section).

3.6 | Assignment of probability

In order to estimate the accuracy of our probability model, we checked

how well the probability of pathogenicity scores correlated with
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A
Row Prediction #of
# Performance Patients
1 » Patients where VarP predicted potentially causative variants 104 B
2 o Patients where VarP variant(s) and disease class matched 26
Hopkins
3 o Patients where VarP variant(s) did not match Hopkins 78 ?
4 = Patients with different variants identified by VarP and
Hopkins and the VarP disease did not match Hopkins 16
diagnosis
5 = Patients where VarP found variant(s) but Hopkins did 10
not and the VarP disease matched Hopkins diagnosis
6 = Patients where VarP found variant(s) but Hopkins did
not and the VarP disease did not match Hopkins 52
. diagnosis . . . - - Positive Cases © VUS Cases ® Negative Cases
7 » Patients where VarP did not predict potentially causative variants 2
8 o Patients where Hopkins found potentially causative variant 1
9 o Patients where Hopkins not found pathogenic variant 1

FIGURE 3 Disease assignment statistics for the 36 patients with correctly identified disease class. (A) Distribution of the number of patients
across prediction performance. The highlighted numbers represent the patients with correct disease class assignment. The reasons for incorrect
disease assignment are described in the text. (B) Distribution of Positive cases (orange) are those found by Hopkins to be carrying pathogenic or
likely pathogenic variants, the VUS cases based on ACMG guidelines (yellow) are those carrying variants of uncertain significance and Negative
cases (gray) are those in which no causative variant was found by Hopkins. * indicates the number of cases with correct disease class assignment.
The VarP pipeline assigned the correct disease class for 26 of the Positive and VUS cases and also correctly assigned disease class (with potentially

causative variants) in 10 of the Hopkins Negative cases
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FIGURE 4 Distribution of patients with incorrectly assigned disease
class versus estimated probability of pathogenicity. The dotted line
shows the expected value in each bin (e.g., in the 0.8 to 1.0 bin, 10% of
disease assignments are expected to be incorrect). Bars show the % of
patients in each bin that actually have incorrect assignments. Bar col-
ors show the number of patients with assignments made in each cat-
egory (Category 1, most confidence). The error bar for each bin is the
standard deviation of the number of patients in that bin. As should be
the case for a good probability algorithm, patients with a high proba-
bility of a correct disease assignment do have a lower rate of incorrect
disease classes. However, the plot also shows that there are 25 patients
with high probability scores (> 0.8) but incorrect disease class. 15 of
these patients carry variant(s) reported as pathogenic (tagged as DM)
in the HGMD database. Reasons for this are discussed in the text

incorrect disease class assignment. The dependence of incorrect dis-
ease assignment on assigned probability follows the correct trend,
with a high fraction at low probability and a lower fraction at high
probability (Fig. 4). However, there are 25 patients with incorrect
disease class assignments and a probability greater than 0.8. We

found following reasons for this: (1) High confidence given to DM
status HGMD variants—11 out of the 25 anomalies are of this type.
These are discussed below in the Selection section and listed in Table
4. (2) In five cases, there were pairs of Indels (frameshift or non-
frameshift) close together (less than 10 bp apart; Supp. Table S2) in
the CCDC40 gene and classified by us as causative compound het-
erozygous variants. Very likely, these are false Indels arising from align-
ment errors or errors near perfect repeat regions (Fang et al., 2014).
(3) In two cases, there are two heterozygous variants predicted dam-
aging by three methods in genes associated with recessive disease.
It is possible that these are on the same copy of the gene (no phas-
ing information was available). (4) In the remaining seven cases, we
found possible alternative diagnoses. These are discussed in detail

below.

3.7 | Variant assignment accuracy for each selection
category

As described in Materials and Methods, we used a work flow to assign
variants to one of three categories, ranked by likelihood of pathogenic-
ity. Table 3 shows the percent of correct disease assignments for
variants in each category. The highest fraction of cases (42%, 11 out of
26) agreeing with the Hopkins disease class were based on category
1 variants. The corresponding fractions for category 2 and category
3 variants are 38% and 23%, respectively. This trend is expected,
since assignment confidence decreases with increasing category
number.

As noted earlier, category 1 variants are those annotated in HGMD
and/or ClinVar as disease-causing. Further inspection showed that 11
out of the 15 discordant assignments cases had conflicting database
annotations and sometimes weak or no supporting evidence (Table
4). In seven cases, the corresponding variant is annotated “DM” (dis-

ease mutation) in HGMD but is annotated “benign” or “likely benign” in
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TABLE 3 Percentage of correct disease assignments in each of the three variant selection categories
Minor Allele Frequency
% Correct
Category Variant Considered Novel <=0.005 <=0.01 Assignment
Category 1 In HGMD with DM, DP status and/or in 4/4 7/19 0/3 11/26:42%
ClinVar with Pathogenic or Likely
pathogenic tag
Category 2 Missense (Predicted damaging either by 9/14 7/28 2/5 18/47:38%
SNPs3D, SIFT, PolyPhen2 or CADD)
Frameshift / Non-Frameshift Indel
NonSense
Direct Splicing
Any variant predicted damaging by
dbscSNVs
Category 3 All other missense, UTR, and Intronic 4/17 2/12 1/2 7/31:23%
17/35:49% 16/59:27% 3/10: 30%

Note: As expected, accuracy is highest in category 1, then category 2, then category 3. Novel variant assignments are more accurate than for rare variants.

ClinVar. Consistent with the ClinVar annotation, a check of the sup-
porting literature for these showed either no experimental support
or no evidence favoring pathogenicity. For the other four cases,
ClinVar had no relevant entry and there was no literature sup-
port. Seven out of these 11 cases involved missense variants, and
none of those were rated high confidence pathogenic by our con-
sensus method. With the wisdom of hindsight, we should have fac-
tored these considerations into the categorization and probability
procedures, and placed less faith in HGMD. The remaining four dis-
cordant assignments have either functional validation of the vari-
ant as damaging or are annotated as pathogenic in ClinVar as well.
As discussed later, these four patients may really have a different
disease.

Category 2 variants are those selected because of being a LoF
variant, the computational method assigning pathogenicity for mis-
sense variants, a direct hit on a splice site, or a prediction of an
impact on splicing (Jian et al., 2014). The 18 correct assignment cases
include seven compound heterozygous and 11 autosomal dominant or
recessive cases. Seven out of these 11 cases carry a LoF (nonsense,
frameshift or non-frameshift Indel) or direct splicing variant, and the
remaining four carry missense variants (two predicted damaging by
two methods and two predicted damaging by one method). The 29
cases with discordant disease class with respect to the Hopkins infor-
mation in this category include 11 compound heterozygous cases and
18 autosomal dominant or recessive cases. For the 11 discordant com-
pound heterozygous cases, the assumption that the two variants are
appropriately phased is a likely cause of misassignment. The 18 other
cases include one frameshift Indel and 17 missense variants. Of the
17 missense, only one was high confidence, predicted damaging by
all four methods. Four were damaging by three methods (expected
accuracy 0.8), 10 were damaging by two methods (expected accuracy
0.5), and two were damaging by only one method (expected accuracy
0.25).

Category 3 variants are missense mutations predicted benign by all
four computational methods and those which are intronic or ina UTR.
All were assigned low causative probability, ranging from 0.05 to 0.29.

There are only seven out of 30 with correct disease class assignments

that were assigned based on category 3 potentially causative variants.
Six of these seven cases carried intronic insertions or deletions close
to a splice site (within 5-30 bases), suggesting proper treatment of
this mechanism is important. The remaining case carries a missense
mutation predicted benign by the four mutation impact prediction
methods.

There is a marked dependence of level of agreement with the
Hopkins disease class and the frequency of the potentially causative
variants (Table 3): 49% of disease assignments made for novel variants
agree with the Hopkins answer key, compared with 27%-30% for the
other, non-novel variants with less than 1% MAF.

3.8 | Alternative diagnoses

There is an important difference between the Hopkins laboratory pro-
cedures and the CAGI challenge. In the laboratory, in accordance with
clinical guidelines, for each patient, variant analysis was performed
only on the subset of genes identified by the physician requesting the
test, usually those for a single disease, and sometimes only a sub-
set of genes for a single disease. On the other hand, the challenge
required analysis of all genes for each patient. That led to a num-
ber of findings suggesting that in some cases, causative variants are
overlooked in the clinic. Of the 70 cases where our disease assign-
ments and the disease tested by the Hopkins pipeline differ, seven have
strong evidence supporting assignment to a different disease (Table
5). In four of these cases, no variants supportive of the tested dis-
ease were found by ourselves or by Hopkins. In two further cases, the
Hopkins pipeline reported only one variant in a recessive gene and
for the remaining case (patient P8 in Table 5), there is evidence that
the patient may have two diseases. These seven cases fall into three

groups:

1. Three cases where the patient carried variants likely causative of a
disease phenotype that has overlapping symptoms with the disease
tested at Hopkins. One of these is a patient (P36) carrying a very
rare (AF = 0.0047 in ExAC) autosomal dominant missense muta-
tion (rs5738:G>A, NM_001039.3:c.589G>A, p.(E197K)) in exon-3
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of the SCNN1G gene. This mutation is reported in HGMD and Clin-

z " Var to be causative for Bronchiectasis with pathogenic clinical sig-
g § % nificance (Fajac et al., 2008). The patient was tested for Diffuse
T w § 3 Lung disease and no variants with the required inheritance pattern
E 'g“ ;QE e were found in the relevant genes. Bronchiectasis has been previ-

ously shown to be associated with Idiopathic Pulmonary Fibrosis,

E - - > qg) one of the diseases in the Diffuse Lung disease class (International
T 5 X
§ ﬁ a 2 g 0‘9 © Consensus Statement of the American Thoracic Society and the
2 8 = 2 . .
anQ0 o European Respiratory Society, 2000; Bourke, 2006).
Eg 2. One case where a patient (P8) carried a variant reported in
>
° HGMD and ClinVar to have pathogenic clinical significance for
- wv
% § [a] g a disease other than that tested for, and where the tested
08 . . .
Ih E _QE’ and apparent diseases cannot be easily confused. P8 carries a
g very rare (AF = 0.0051 in ExAC) homozygous recessive muta-
é tion (rs1800098:G>C, NM_000492.3:c.1727G>C, p.(G576A)) in
] 1
L8 ‘E ] E the CFTR gene, consistent with the disease class “Cystic Fibro-
£E b : : , i
S5 § - sis and CF-related disorders.” A functional study found the muta-
S tion causes an increased amount of skipping of exon-12 during
[a) b .. . . . .
i 2. s 2 splicing (Pagani et al., 2003). This patient was originally tested
o I [=
S & a] % 3 g % for Peroxisomal Beta-Oxidation Defects and a homozygous reces-
T .8 = © I 3 . . . . .
@ go-]g & S o 2 |'| g;o sive frameshift mutation was found in the relevant gene. We did
oz 8c ;
i 58 'g'vo % ‘ﬁ 2 g % 3 not report that variant because of finding the CFTR variant which
g@ gl 3¢ £ . . .
E‘ ldnsl L35<= 2 we categorize as higher confidence of pathogenicity. The data are
=mao00 oaoUn © . K . . K
2 consistent with the patient having both diseases.
< 3
2 g “ﬁ 8 2 § 3. Three cases where the patient carried variant(s) predicted dam-
< O U=~
< o g 9 8 8 8 O Er; § aging by all reporting computational methods or a LoF variant.
74 i IS S0gg0O0 2 . . .
e S < S 9 8 SO 2 » I For example, one of these is a patient (P46) to whom we assigned
= [GHY} s < .
% g 6 3 E g. g G 8 8 '% = “Treacher Collins and Related Syndromes” based on a very rare
(o) o 4]
<o § S § SRIILS & (MAF = 0.0002 in EXAC) missense mutation (rs538401137:C>T,
£ c <z NOO <O = :
E 8 ; e ; SRS RUNURE QU E(‘ NM_001135243.1:c.3029C>T, p.(T1010I)) in the TCOF1 gene and
U —
L assigned as damaging by all four computational methods. This
Q § patient was tested for the Diffuse Lung disease class in the Hop-
oo
o 8 E* kins pipeline, and no variants consistent with that phenotype were
8 3 % found by them or us.
T
Ee]
s B L s
®o O L= 2 . .
58 & &5 £ 3.9 | Protein structure coverage for potentially
SF = i 3 . .
e causative variants
8 Q
= 9 In principle, information from three-dimensional structure and on the
S_ =
E % - § detailed functional roles of residues, motifs, and domains should be
O
£> O & of considerable value in evaluating the impact of missense variants.
- % In practice, it is often ignored, and indeed we did not use it in this
s ® ~
|.<|. % S g § challenge. What difference might it have made? To investigate this,
o (@) =]
= o o < we considered only potentially causative missense variants that are
< g 8 § 8 < not included in HGMD or ClinVar. Current ACMG guidelines (Richards
E O < 8 6 5 S § et al., 2015) would place a low weight on computational analysis of
— = 0 < (B) =
2 E, Q S % 2 Q § Q 5 these, and thus they would likely be reported as VUSs. There are 47
X <
E 2 38 3 = } 8 5 8 8 % such missense variants distributed over 41 patients. ~50% (23/47)
g -2 2 % g 2 8 2 (<f 'L_') g of these are either included in an experimental structure or can be
S 36 S S 8
5 included in a homology model based on 22% or higher sequence iden-
<
: *é 9(" tity to an experimental structure (Fig. 5A). Three of these mutations
E‘ = a N are in proteins with experimental structure (X-ray structure). We use
< a= o S
- 2 these three cases to illustrate how protein structure could be used to:
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A Missense mutations
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FIGURE 5 Structural coverage of prioritized missense mutations. (A) Missense variant distribution: (1) Known (variant reported in HGMD or
ClinVar) versus VUS variants, (2) structural coverage for VUS variants, (3) number of mutations in different sequence identity ranges between the
protein hosting the mutation and the closest available homologous protein in the PDB. Panels B and C show two examples of structure assisting
mutation interpretation. (B) Part of a zinc finger domain of the Mineralocorticoid receptor protein (PDB: 4TNT) including the mutation C603S
found in a Hopkins patient, showing that C603 is one of the Zn ligands. Analogy to other zinc coordinating mutations in zinc fingers provides strong
evidence structure and hence function will be disrupted. 5(C) Mutation R1283S, found in one of the Hopkins patients, is predicted deleterious by
the three out of four computational methods. Inspection of the structure shows disruption of two charge-dipole interactions forming a helix cap,

expected to significantly destabilize the structure

(a) supplement the sequence analysis methods to increase confi-
dence in a pathogenic or benign assignment and (b) understand
the pathogenicity mechanism at the protein level. Two of these
mutations have correctly assigned disease classes and causative
variants in our submission. One of those is of a novel mutation
(NM_000901.4:¢c.1807T>A, p.(C603S)) at a highly conserved position
inthe Mineralocorticoid receptor. This protein is associated with Pseu-
dohypoaldosteronism Type 1. Although we correctly identified this
mutation from sequence information, only two of the four (SNPs3D,
SIFT, PolyPhen2, CADD) methods assigned it as pathogenic, and the
other two did not. Thus additional evidence would have improved
confidence in the assignment. Inspection of the structure (PDBID:
4TNT) showed that the wild-type amino acid (CYS-603) is a zinc lig-
and in a zinc finger domain (Fig. 5B). Many other zinc ligand muta-
tions in these domains cause loss of function of the corresponding pro-
teins (Kambouris et al., 2014; Vincent et al., 2014), providing addi-
tional evidence of pathogenicity. The second case with correct disease
assignment is of another novel mutation (NM_000492.3:¢.3849G>C,
p.(R1283S)) at a highly conserved position in the second nucleotide
binding domain of the CFTR protein. Mutations in CFTR cause Cys-
tic Fibrosis, one of the disease classes in the Hopkins dataset. This
mutation is predicted damaging by three out of four (SNPs3D, SIFT,
PolyPhen2, CADD) sequence methods. Inspection of the protein
structure (PDBID: 3GD7) hosting this mutation shows the wild type
side chain (R1283) makes two charge-dipole interactions with main
chain carbonyl groups of L1258 and R1259, providing a helix cap
(Hol, Halie, & Sander, 1981), consistent with significant destabiliza-
tion of the structure (Fig. 5C). Loss of protein stability has been

shown to be the most common cause of monogenic disease (Wang
& Moult, 2001; Yue, Li, & Moult, 2005). A different mutation at
this position (rs77902683, NM_000492.3:¢.3848G>T, p.(R1283M))
has previously been found in CF patients (Cheadle, Meredith, &
al-Jader, 1992) and has been reported as pathogenic in ClinVar
and HGMD.

The third mutation with experimental structure coverage is one
where we made an incorrect disease assignment on the basis of just
one of the four missense analysis methods predicting deleterious.
Although that was already a low confidence prediction, further evi-
dence would be useful. This is a very rare (MAF = 0.0005 in ExAC)
variant (rs147398624:G>A, NM_000901.4: c.2578G>A, p.(V860I)) in
the Mineralocorticoid receptor, with an autosomal dominant pattern
disease inheritance pattern. The mutationis located on the protein sur-
face (PDBID: 2AA5) and is not part of any known interface, providing

further evidence the mutation is benign.

4 | DISCUSSION

The CAGI4 challenge based on panel sequencing data provided by
the Johns Hopkins DNA diagnostic laboratory has allowed a blind
test of current methods for identifying causative variants in clini-
cal rare disease sequence data. Participants were asked to match
each of 106 patients to one of 14 classes of disease. To address this
challenge, we developed an analysis pipeline, VarP, designed to iden-
tify potentially causative variants. Using this pipeline, we were able

to correctly match 36 patients to the reported disease class. The
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analysis provided a number of insights into issues related to gene
panel testing, including the relationship between data quality and suc-
cess in finding causative variants, variant prioritization procedure lim-
itations, inconsistencies in databases, and cases of possible alternate
diagnosis.

4.1 | Undiagnosed cases

Even with full knowledge of the reported disease class, the
Hopkins pipeline could only find potential causative variants for
43 cases, leaving 63 with no causative variants. As discussed below,
we were able to find variants correctly matching a further 10, but
that still leaves half (53) of the cases where neither we nor Hopkins
could find variants. There are three major factors that may contribute
to the high fraction of undiagnosed cases. First, a limitation in all
studies of this type is data quality. Our QC analysis suggests the
Hopkins data are generally of high quality. Read depth per gene per
sample is high (between 107x to 983x) and each sample has only
about 2,000 positions with no call or a low-quality variant call. But
there are some particular sample level properties in the data that
may affect analysis. For example, sample P8 (tested for an autoso-
mal recessive disease, Peroxisomal Beta-Oxidation defect) has an
abnormally high fraction of homozygous variant calls compared with
heterozygous ones, increasing the chances of finding an apparently
causative homozygous variant. Our pipeline identified a potentially
causative homozygous missense variant in CFTR, consistent with
cystic fibrosis, and annotated as pathogenic in both HGMD and
ClinVar, whereas the Hopkins pipeline found a homozygous frameshift
variant in HSD17B4, consistent with the tested disease. There are
also some areas of low coverage, for instance 78 samples have zero
coverage of Exon-60 in HYDIN. Variants in this gene may cause
Primary ciliary dyskinesia. Overall though, sequencing data quality
does not appear to make a large contribution to missing diagnostic
variants.

A second factor contributing to non-identification of causative vari-
ants is that there may be other, unknown, genes where variants cause
the disease phenotype. Many new monogenic disease genes are still
being discovered (more than 67 genes in a two-year period; Beaulieu
et al., 2014). Thirdly, the causative variants may have been not covered
in the panel, which consists of mostly exon sequence. Missing variants
may include those affecting the expression of a relevant gene, CNVs,
and larger scale structural genomic changes. In some rare disease anal-
yses using whole genome sequence, such as in the SickKids Genome
Clinic  (http://www.sickkids.ca/CGM/genome-clinic/index.html), the
latter type of variant has been found to make a significant contribution
(Stavropoulos et al., 2016). However, those patients mostly exhibit
major developmental disease phenotypes, and may not be typical of

rare disease patients in general.

4.2 | Correct diagnosis for cases where the Hopkins
pipeline did not find causative variants

For 10 cases, we were able to identify the reported disease class even

though Hopkins reported no potentially causative variants. In nine out

WILEY S

of these 10 cases, the Hopkins pipeline did not include analysis of the
gene carrying the diagnostic variant(s). Apparently this is because the
requested test did not include the gene, a choice made by the refer-
ring physician. As noted earlier, Hopkins is only permitted to analyze
the requested gene set. For the 10th (a compound heterozygous case
where one of the variants is missense predicted damaging by four
methods and other is an intronic variant close to a splice acceptor),
Hopkins did not report the potentially causative variants even though
they analyzed the relevant gene.

4.3 | Missed diagnoses

There are 17 cases where we did not identify the correct disease class,
but the Hopkins analysis did find potentially causative variants. For 10
of these, the Hopkins variants are in genes expected to have arecessive
inheritance pattern, and only one heterozygous variant was present—
not sufficient for our evidence rule. Had we used such a weak crite-
rion for inheritance model filtering many more false positives would
have been generated. Thus these should not be regarded as failure of
the VarP approach but rather an appropriate filtering strategy used
in VarP. In the other seven cases where Hopkins found variants, VarP
found stronger evidence for a different disease class. For two of these,
as discussed below, we consider the evidence that the patients have
the VarP identified disease very strong, and if so, these also are not
errors. For the other five, we made two sorts of errors. One was placing
too much trust in HGMD that affected three cases—in each of these
cases the HGMD annotations were incorrect and contradicted or not
supported by ClinVar or experimental data. The other source of error
was for two compound heterozygous cases where one of the partner
variants was a low impact missense (predicted benign by 1/4 methods)
or an intronic variant and so provided very weak evidence. In retro-
spect, the procedure of taking just the most likely causative variant(s)
and ignoring all other variants in a patient was sub-optimal. A better
procedure would probably be to use all variants in each gene to assign
a probability of pathogenicity and to use those probabilities to infer

disease class.

4.4 | Incorrect diagnoses

For 25 patients VarP made high confidence (probability score > 0.8)
incorrect disease class assignments. A primary factor was again over-
reliance on HGMD annotation, accounting of 11 out of the 25 cases.
A further five cases involved pairs of Indels very close to each other
(less than 10 base pairs apart), and consistent with a compound het-
erozygous cause for a recessive disease. In fact, these Indel pairs
are probably coupled alignment errors. There are two cases where
the assumption that a pair of recessive variants are on different
copies of the gene may be incorrect (there was no phasing data
available). In seven of the remaining cases, we found high confi-
dence pathogenic variants in genes associated with a different dis-
ease from that in the Hopkins answer key. As discussed later, the evi-
dence for some of these is sufficiently strong that they may not be

errors.
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4.5 | Distinct potentially causative variants that led
to disease classification

VarP identified 105 potentially causative variants each of which occurs
once in a total of 78 patients. A further 14 potentially causative vari-
ants were seen in two or more of the other 28 patients (Supp. Table S3).
We also considered accuracy in terms of the fraction of these 119 dis-
tinct variants which led to correct and incorrect disease assignments.
By this measure, correct disease identification increases from 34% (36
out of 106) to 36% (33 out of 91). The improvement occurs because
the majority of repeat variants are present in cases where an incorrect
disease was assigned, and we speculate that some of these may reflect
sequencing artifacts.

4.6 | Reliability of probability for disease assignments

In the clinic, perhaps more important than having an accurate method
of determining pathogenicity is having an accurate method for assign-
ing a probability of correctness to a pathogenic assignment. The CAGI
challenge required participants to also provide these probabilities, and
so it was possible to evaluate how effective our approach was. We used
a largely ad hoc probability scale in this analysis. Although there is a
reasonable overall correlation between these quantities (Fig. 4), there
were a substantial number of variants assigned a high probability that
were not in fact pathogenic. There were two primary reasons for that—
first, as noted earlier, we misjudged the reliability of HGMD assign-
ments of disease mutations. Had we used a model that included dis-
agreements between HGMD and ClinVar, these cases would have had
more appropriate probabilities. Second, as discussed below, in a num-
ber of cases we consider the evidence strong that these patients had a

different disease.

4.7 | Reliability of missense probability estimates

As described in Results, overall, the estimated probabilities of
pathogenicity shows qualitative though not quantitatively correct
properties. The majority of potentially causative variants are missense,
so improved confidence in assigning a probability of pathogenicity to
these are of particular importance. As described earlier, we assigned
a probability based on the fraction of four different missense analysis
methods reporting deleterious. The method was calibrated (Yin et al.)
using a set of HGMD mutations (all assumed pathogenic) and a set
of interspecies variants (assumed benign). There are a number of
limitations to this dataset, and so we were interested to see to what
extent the estimated probabilities were useful. Interpretation of
the results is complicated by the alternative diagnosis cases and by
compound heterozygous cases, involving two different variants. Supp.
Figure S5 shows the relationship between estimated probabilities
and correct disease class assignment, omitting those cases. Counts
here are too small to draw firm conclusions. A high proportion of
mutations assigned with a probability of less than or equal to 0.5 are
incorrect, consistent with expectations. However, more than half of
the mutations with probabilities higher than 0.7 are also incorrect,

not as expected. Further analysis Yin et al. (ref to Yin et al. CAGI

issue paper when available) suggests that a probability method based
on more than four missense impact prediction methods would have
yielded better results. But clearly a more extensive blind test is needed

to evaluate this approach.

4.8 | Apparent cases of alternative diagnoses

Using quite stringent criteria we identified seven cases where the
data are consistent with patients having a different disease class than
that provided in the Hopkins answer key. Four of these patients carry
variants for the alternative disease class that are reported in HGMD
and ClinVar as pathogenic. The remaining cases carry missense vari-
ants predicted damaging by all reporting methods, frameshift or non-
frameshift indels, or variants directly affecting splicing. In three cases,
symptoms of the answer key disease and the alternative overlap, soitis
possible that there was a misdiagnosis in the referring clinic. The other
cases are more puzzling. Since we have no information as to why a par-
ticular test was ordered (and in many cases the Hopkins group may not
either), it is difficult to comment further. But it is concerning that in a
number of cases there could be confusion of some sort as to what dis-
ease patients have. In these seven cases, the Hopkins pipeline did not
report any variant for four cases, reported only one variant in a reces-
sive gene for two cases and reported a homozygous frameshift muta-
tion in the remaining case. The pipeline was prevented from discover-
ing the possible alternatives by the current guidelines, which require
that only requested genes for a specific disease test be examined. On
the basis of these limited data, it is not clear whether on balance this
practice is in the patients’ best interest.

4.9 | VarP performance improves when the patients’
clinical indications are known

Clinical laboratories typically have information on each patient’s dis-
ease phenotype, and variants are evaluated with that knowledge. In
that aspect, the CAGI Hopkins challenge creates an artificially harder
problem, since disease class is not known to participants. If the dis-
ease classes were known, would VarP identify the variant(s) reported
by Hopkins pipeline? We tested this scenario by searching for poten-
tially causative variant(s) only in genes associated with each patient’s
diagnosed disease class, using the VarP pipeline. On this basis, VarP
identifies potentially causative variants for 61 patients, 18 more cases
than the Hopkins pipeline. However, there are still nine cases where
Hopkins identified potentially causative variants and VarP does not.
As discussed earlier, these patients each carry only one heterozygous
variant in a recessive gene, which we considered insufficient evidence.

4,10 | Better results would have been obtained not
using HGMD

As noted earlier, 11 of the 25 incorrect disease class assignment cases
with a probability of pathogenicity higher than 0.8 are a result of
accepting HGMD annotations of pathogenicity. Such a high error rate
from a single cause suggests that it might be better to ignore HGMD

altogether and just use ClinVar for pathogenicity information. We
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tested this by running the VarP pipeline again, omitting HGMD. The
success rate (correct match to disease class) increases from 36 to 40
(Supp. Table S4).

4.11 | Lessons learned

Going forward, how would we now improve performance of the VarP
analysis pipeline? As noted earlier, a suboptimal feature of the pro-
cedure was terminating the variant search once a suitable candidate
had been found, rather than finding all possible causative variants and
assigning each a probability. As also noted earlier, over-reliance on
HGMD was a cause of errors and this can be corrected by consider-
ing ClinVar and HGMD annotations together, and, where appropriate,
include missense impact analysis in assigning a probability to these
category 1 variants. Structure also has the potential for contributing to
the discovery of causative variants and providing mechanistic insight.
However, full automation of that analysis will require the development
of new methods. In general, much more work must be done to provide
areliable probability of pathogenicity, not only for missense but for all
types of variants.
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