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Abstract
Theuse of gene panel sequence for diagnostic and prognostic testing is nowwidespread, but there

are so far few objective tests of methods to interpret these data. We describe the design and

implementation of a gene panel sequencing data analysis pipeline (VarP) and its assessment in a

CAGI4 community experiment. The method was applied to clinical gene panel sequencing data of

106patients,with thegoal of determiningwhichof14disease classes eachpatienthas and the cor-

responding causative variant(s). The disease class was correctly identified for 36 cases, including

10where the original clinical pipeline did not find causative variants. For a further seven cases, we

found strong evidence of an alternative disease to that tested. Many of the potentially causative

variants are missense, with no previous association with disease, and these proved the hardest to

correctly assign pathogenicity or otherwise. Post analysis showed that three-dimensional struc-

ture data could have helped for up to half of these cases. Over-reliance on HGMD annotation

led to a number of incorrect disease assignments. We used a largely ad hoc method to assign

probabilities of pathogenicity for each variant, and there is muchwork still to be done in this area.
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1 INTRODUCTION

Genetic testing in clinical laboratories is becoming increasingly com-

mon: As of March 2017, GeneTests.org contains entries for about 706

laboratories and 1,083 clinics worldwide performing a total of 67,187

tests on 5,926 genes for 4,963 genetic conditions. So far though, there

has been only limited testing of method efficacy (Cornish & Guda,

2015;Hwanget al., 2015;McCarthy et al., 2014; Pirooznia et al., 2014).

Many of the genetic tests use targeted gene sequencing panels for

identifying variants in a set of genes or gene regions that are known to

be associatedwith a disease (Kammermeier et al., 2014; Okazaki et al.,

2016). In clinical laboratories specializing in specific diseases or classes

of disease, panels provide high coverage data for genes of interest at

relatively low cost, and also reduce the issues in reporting incidental

findings to patients. A key and challenging step in all these tests is the

ability to accurately interpret the genetic variants and assign a likeli-

hood of pathogenicity (Richards et al., 2015).
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Potentially pathogenic sequence variants fall into three classes:

(a) those almost certain to cause major loss of protein function (LoF),

arising from the introduction of premature stop codons, frameshifts

caused by small insertions or deletions, and direct hits on splice sites;

(b) those that may or may not significantly affect gene regulation (such

as regulatory variants at transcription factor binding sites) or protein

function, particularly missense variants; and (c) those that are more

likely benign, particularly synonymous, UTR, and deep intronic vari-

ants. The main challenge lies in understanding the phenotypic conse-

quences of the large fraction of variants falling into the last two classes.

Most clinical laboratories follow a semi-automated approach for vari-

ant interpretation, first making use of available variant annotation and

prioritization tools and then checking the potential causative variants’

associationwith the disease of interest in databases and the literature.

For the first step, there are dozens of annotation and prioritization

tools (open-source or commercial) available (for example, Cingolani

et al., 2012; McLaren et al., 2016; Robinson et al., 2014; Sifrim et al.,
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2013; Wang, Li, & Hakonarson, 2010), typically providing potentially

causative variants based on inheritance pattern, allele frequency (AF),

genomic region of interest, mutation type, and in silico analysis of the

likely impact of missense mutations. It has been demonstrated that

there are substantial discrepancies between existing annotation tools

(McCarthy et al., 2014; Pabinger et al., 2014) so that there is a clear

need to encourage and monitor advances in this field. In most clinical

laboratories, standard guidelines such as those from the American

College of Medical Genetics and Genomics (ACMG) (Richards et al.,

2015) are followed for variant interpretation and reporting. Although

the guidelines accept computational predictions of pathogenicity for

variants, these are only considered a “supportive” evidence. Other

evidence is required to classify a variant as causative. As a conse-

quence, the overall contribution of computational methods for variant

classification is low and this motivates the development and testing of

more accuratemethods for variant interpretation.

Critical Assessment of Genome Interpretation (CAGI) is an orga-

nization that conducts community experiments to objectively assess

computational methods for predicting phenotypic impacts of genomic

variation (https://genomeinterpretation.org/). The most recent round

of experiments (CAGI4) included a challenge to determine which of 14

disease classes each of 106 patients has and the corresponding causal

variants, given each patient’s gene panel sequencing data (https://

genomeinterpretation.org/content/4-Hopkins_clinical_panel). The ge-

ne panel dataset consists of exonswith flanking regions and some com-

plete intron sequencing data for 83 genes from each patient. Data

were provided by the Johns Hopkins DNA Diagnostic Laboratory. The

Laboratory is a CLIA and CAP certified, Maryland, New York, and

Pennsylvania licensed clinical genetic testing laboratory specializing

in rare, inherited disorder testing (http://www.hopkinsmedicine.org/

dnadiagnostic/tests/).

The data were made available to registered CAGI participants,

and all were required to deposit disease and variant assignments by

a specified deadline. The anonymized submissions were assessed by

John-Marc Chandonia (http://enigma.lbl.gov/chandonia-john-marc/)

and Shamil R. Sunyaev (http://genetics.bwh.harvard.edu/wiki/sunyae

vlab/), and results were later discussed at the CAGI4 conference. A

paper on the assessment is part of this CAGI special issue of Human

Mutation (refer to Chandonia et al. CAGI issue paper when available).

The identification of causal variants requires a number of care-

fully controlled procedures for assessing the quality of the data,

accurate variant annotation, handling of unphased genotypes, and

an appropriate probability model that can prioritize primary and

secondary disease findings. With these considerations in mind, we

developed a new variant prioritization pipeline (implemented in

Python) called VarP (https://github.com/kunduk/VarP) using a com-

bination of open-source and in-house software tools for analyzing

gene panel sequencing data. This pipeline was the most successful

of those used in CAGI, in the sense that it resulted in the correct

matching of the highest number of panel exomes to disease class.

[https://genomeinterpretation.org/sites/default/files/protected_files/

4-Hopkins_clinical_panel_assessor1_AAdhikari_remixable.pptx]. Nev-

ertheless, the results are far from perfect. In this paper, we describe

the design and implementation of the variant prioritization pipeline

and the results obtained.

2 MATERIALS AND METHODS

2.1 Capture bed files, gene panel sequencing data,

and disease class

The Johns Hopkins DNA Diagnostic Laboratory panel sequencing

procedure generates sequence for all exons plus a boundary of 50

bases up and down stream and some introns for 83 genes (1,350

exonic and39 intronic regions), covering14monogenic disease classes.

Seventy-threeof these genes are known toharbormutations for oneof

the 14monogenic disease classes. The remaining ten genes are known

to harbor mutations for two or more disease classes. Sequences had

been captured using one of the two custom probe sets (Agilent Sure-

SelectXT Target Enrichment Kit) and sequenced using Illumina MiSeq

to generate paired-end reads (2 × 100 nt reads). Two capture bed files

(v01, v02) describing the two probe sets were provided as part of the

challenge. The Hopkins group called sequence variants and produced

two VCF files for each patient, one a gVCF for SNVs (using GATK Uni-

fiedGenotyper, v2.7-4) and theother aVCF for insertion–deletion vari-

ants (Indels, GATKHaplotypeCaller, v2.7-4). For the challenge, all VCF

files from 106 patients had been combined into two files, one each for

SNVs and Indels.

2.2 Building the gene list for disease classes

All the genes annotated in the two capture bed files (v01 and v02)

were extracted to compile a list of genes to examine. The descrip-

tion of 14 disease classes was provided on the challenge Webpage

(https://genomeinterpretation.org/sites/default/files/protected_files/

4-Hopkins_clinical_panel_disorders.pdf). We made extensive use of

the Hopkin’s DNA Diagnostic Laboratory Website to map genes to

disease class (http://www.hopkinsmedicine.org/dnadiagnostic/). The

website lists a number of gene panel tests and also gives a detailed

description of the genes associated with each disease as well as their

inheritance pattern. Using this resource we were able to group 53

of the 83 genes to 12 disease classes and obtain the inheritance pat-

tern. We used literature and the Genetic Home Reference Database

(http://ghr.nlm.nih.gov/) to group another 24 genes to some of the

disease classes and obtain the inheritance pattern. In total 77 out of 83

genes were grouped among the 14 disease classes as shown in Table 1.

The remaining six genes (DHODH, TRIM37, EFTUD2, AMACR, AGXT,

andCAT) are associatedwith diseases that are not related to any of the

14 disease classes and therefore were excluded from any downstream

analysis.

2.3 Gene panel sequencing data analysis pipeline

Themethod developed for this challenge (VarP—Variant Prioritization)

uses open-source and in-house software tools to analyze gene panel

sequencingdatawith respect to rare genetic disorders in anautomated

https://genomeinterpretation.org/
https://genomeinterpretation.org/content/4-Hopkins_clinical_panel
https://genomeinterpretation.org/content/4-Hopkins_clinical_panel
http://www.hopkinsmedicine.org/dnadiagnostic/tests/
http://www.hopkinsmedicine.org/dnadiagnostic/tests/
http://enigma.lbl.gov/chandonia-john-marc/
http://genetics.bwh.harvard.edu/wiki/sunyaevlab/
http://genetics.bwh.harvard.edu/wiki/sunyaevlab/
https://github.com/kunduk/VarP
https://genomeinterpretation.org/sites/default/files/protected_files/4-Hopkins_clinical_panel_assessor1_AAdhikari_remixable.pptx
https://genomeinterpretation.org/sites/default/files/protected_files/4-Hopkins_clinical_panel_assessor1_AAdhikari_remixable.pptx
https://genomeinterpretation.org/sites/default/files/protected_files/4-Hopkins_clinical_panel_disorders.pdf
https://genomeinterpretation.org/sites/default/files/protected_files/4-Hopkins_clinical_panel_disorders.pdf
http://www.hopkinsmedicine.org/dnadiagnostic/
http://ghr.nlm.nih.gov/
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TABLE 1 The 14 disease classes and genes identified as relevant to each class

Disease Class Gene List

Cystic Fibrosis and CF-related disorders CA12, CFTR, *SCNN1A, *SCNN1B, *SCNN1G

Diffuse LungDisease ABCA3, AP3B1, CSF2RA, CSF2RB, *DKC1, FOXF1, HPS1, HPS4, NKX2-1,
SFTPA2, SFTPB, SFTPC, SLC7A7, *TERC, *TERT, *TINF2

Primary Ciliary Dyskinesia CCDC103, CCDC39, CCDC40, DNAAF1, DNAAF2, DNAAF3, HEATR2,
DNAH11, DNAH5, DNAI1, DNAI2, DNAL1, HYDIN, LRRC6, NME8,
RSPH4A, RSPH9

Peroxisomal Beta-Oxidation Defects ACOX1, HSD17B4, SCP2

Rhizomelic Chondrodysplasia Punctata AGPS, GNPAT, PEX7, PHYH

Zellweger SpectrumDisorders DNM1L, PEX1, PEX2, PEX3, PEX5, PEX6, PEX10, PEX12, PEX13, PEX14,
PEX16, PEX19, PEX26

Loeys-Dietz Syndrome *TGFBR1, *TGFBR2, TGFB2

Marfan Syndrome *FBN1, *TGFBR2

Thoracic Aortic Aneurysm andDissection (TAAD) *FBN1, ACTA2,MYH11,MYLK, SMAD3, *TGFBR1, *TGFBR2, COL3A1

Ataxia Telangiectasia ATM

Liddle Syndrome *SCNN1B, *SCNN1G

Pseudohypoaldosteronium Type 1 NR3C2, *SCNN1A, *SCNN1B, *SCNN1G

Telomere Shortening Disorders CTC1, NHP2, NOP10, *TERC, *TERT, *TINF2,WRAP53, *DKC1

Treacher Collins and Related Syndrome POLR1D, TCOF1, POLR1C, SF3B4

Note:Genes associatedwithmore than one disease class are indicated by an asterisk.

F IGURE 1 The Variant Prioritization (VarP) Method. Circles represent the four modules. Modules are executed sequentially starting from Vari-
ant Annotation and ending with Probability Scoring. The “Varant” tool in step 1 annotates variants with genomic region of occurrence, mutation
type, minor allele frequency, and prediction of pathogenicity for variants. Ts/Tv, Transition/Transversion; Het/Hom, Heterozygous/Homozygous;
AD, Autosomal Dominant; AR, Autosomal Recessive; CH, Compound Heterozygous; XD, X-linked dominant; XR, X-linked recessive; PAD, Pseudo
Autosomal Dominant; and PAR, Pseudo Autosomal Recessive

manner. The method has four modules—Variant annotation, QC (qual-

ity control) analysis, Variant Prioritization, and estimation of the prob-

ability of eachvariantbeing causative for thedisease. The fourmodules

were executed in a sequential manner (Fig. 1). The inputs were the two

VCF files and a gene configuration file that contained the genes associ-

ated with each disease class and their inheritance pattern (autosomal

dominant/recessive, compound heterozygous, pseudoautosomal dom-

inant/recessive, X-linked dominant/recessive).

2.3.1 Variant annotation

The two VCF files (one for SNVs and another for Indels) were anno-

tated using Varant (http://compbio.berkeley.edu/proj/varant, https://

doi.org/10.5060/D2F47M2C). Details on Varant are provided in the

supplementary material. Varant annotated each variant in the VCF

files with region of occurrence (intron, exon, splice site, or inter-

genic), observed minor allele frequencies (MAF) from ExAC (Lek et al.,

2016) and 1000 Genomes Phase-3 (Auton et al., 2015), mutation type

(missense, nonsense, silent, frameshift, and non-frameshift indels),

predicted impact on protein function, and previously associated phe-

notypes reported in ClinVar (Landrum et al., 2016). Varant used

dbNSFP (v2.9) (Jian, Boerwinkle, & Liu, 2014) database to fetch

the mutation impact predictions from PolyPhen-2 (v2.2.2) (Adzhubei,

Jordan, & Sunyaev, 2013), SIFT (release January, 2015) (Kumar,

Henikoff, & Ng, 2009) and CADD (v1.2) (Kircher et al., 2014). The

RefGene (Pruitt et al., 2014) gene definition file was used for gene

and transcript annotations. The principal isoforms of each gene

were taken from the APPRIS database (Rodriguez et al., 2013). In

addition, the VCF files were annotated with SNPs3D (May, 2015)

(Yue, Melamud, & Moult, 2006) mutation impact predictions, HGMD

(version June 2014) (Stenson et al., 2003) disease-related variants

and with dbscSNV (Jian et al., 2014) variants that potentially alter

splicing.

2.3.2 QC analysis

Three types of QC analysis were run on the Hopkin’s dataset. The

first QC analysis is a comparison of Transition versus Transversion

http://compbio.berkeley.edu/proj/varant
https://doi.org/10.5060/D2F47M2C
https://doi.org/10.5060/D2F47M2C


1204 KUNDU ET AL.

ratio (Ts/Tv), Heterozygous versus Homozygous variants (Het/Hom),

no call sites versus low quality sites, and common versus rare versus

novel variant counts across all 106 samples and with those in a control

variant set from2,504 samples in 1000GenomesPhase-3 (Auton et al.,

2015). No call sites (sites where neither reference nor alternate allele

was called) and low-quality sites (sites not marked PASS and/or geno-

type quality [GQ] less than or equal to 30) per sample were computed

from the challenge gVCF file. A variant is considered novel if it was

not present in the 1000 Genomes and ExAC (Lek et al., 2016) dataset

and considered rare if present with an MAF of less than 5% in both of

these datasets. Other 1000 Genomes or ExAC variants were consid-

ered common.Only SNVsflagged as PASS in theVCFfile andwith aGQ

greater than 30 were included in the analysis. Scatter plots were gen-

erated to represent the results. The QC module also estimated which

samples are of African ethnicity, to aid in interpretation of variant

count differences. The ethnicity analysis used the population-specific

AF from the 1000 Genomes Phases-3 dataset to identify population

enriched variants (i.e., variants that are common (AF > 0.05) in a pop-

ulation but rare (AF <= 0.05) in other populations). Samples whose

African population enriched variant count was highest in number com-

pared to other populations in 1000 Genomes (Admix American, South

Asian, East Asian, and European) were assigned African ethnicity. The

second QC analysis is a comparison of the average read depth for 83

genes across 106 samples, using the read depth provided in the gVCF

file. The module produced a heat-map of these data, allowing conve-

nient visual inspection for anomalies. The third QC analysis identi-

fies capture regions (exon or intron) with anomalous read depth with

respect to other captured regions in the samegene,where the anomaly

is found in at least 85% of the samples. Anomalous coverage was iden-

tified by first computing the average read depth across the gene (𝜇)

and its standard deviation (𝜎), and then checking each region for sig-

nificantly low (<𝜇 − 2𝜎) or high (>𝜇 + 2𝜎) coverage. The anomalous

coverage regions were then visually inspected using gene coverage

plots.

2.3.3 Identification of potentially causative variants

Only rare or novel variants rated high quality (marked PASS andwith a

GQ> 30 in the VCF files) were considered in the search for causal vari-

ants. At this stage, a rare variant was defined as one reported in ExAC

(Lek et al., 2016) with a MAF less than or equal to 0.01 and a novel

variant was defined as one not found in ExAC. Indels in low complex-

ity regions (LCR) were excluded from the analysis, based on the LCR

dataset computed for the human genome by Li (2014). For each sam-

ple, each QC qualified variant in each of the 83 genes was assigned

to one of four categories, ranked by the likelihood that the variant is

causative.

Category 1: Variants reported in HGMD with either DM (disease-

causing mutation) or DP (disease-associated polymorphism) status,

and/or reported in ClinVar with pathogenic or likely pathogenic

clinical significance.

Category 2: Variants annotated as nonsense mutations, direct splicing

mutationsdisruptingeither a splicedonoror acceptor site, frameshift

or non-frameshift causing Indels, splice altering variants predicted in

the dbscSNV database, andmissensemutations predicted as damag-

ing by one ormore of SNPs3D, SIFT, PolyPhen-2, and CADD.

Category 3: Variants annotated as missense but not predicted to

be damaging by any of the above methods, and UTR and intronic

variants.

Category 4: All other variants (including synonymous and all with

MAF> 0.1). These were not considered as potentially causative.
Each variant was also grouped by frequency based on its ExAC

MAF: group 1, novel; 2, very rare (MAF <= 0.005); or 3, rare

(0.005<MAF<= 0.01).

For each sample, the variant assigned to the lowest category was

taken as the potentially causative variant. If there were two or more

variantswith the same category, the one in the lowest frequency group

was selected. When there were two or more variants with the same

category and frequency group, all were selected. Once a selection had

been made, no other variants in that sample were considered. Cate-

gory 1 variants were assumed to be of highest confidence, followed by

category 2 and 3 variants and so selection was made in that order: If

a suitable variant or variants were found in category 1, no category

2 ones were considered, and similarly, if suitable variants were found

in category 2, no category 3 ones were considered. No phase infor-

mation was available for these data, so for non-homozygous variants

where the inheritance model of the gene containing the selected vari-

ant required a second allele as part of a compound heterozygous pair,

the next ranked variant in that genewas selected.

Thus, for each of the 106 samples, the output from the module

was usually one (for dominant or homozygous recessive situations)

or two (for compound heterozygous situations) potentially causative

variants in a particular gene. Since each gene is associated with one

or more of the 14 disease classes (shown in Table 1), identification

of a gene implied one or in some cases two possible disease classes.

For some samples, no potentially causative variants were found, or for

compound heterozygous situations, only a single variant met selection

criteria, and so no disease was identified.

2.3.4 Estimating probability for the disease

Table 2 lists the probability of pathogenicity assigned for each category

of potentially causative variant. Category 1 variants (based on HGMD

or ClinVar entries) were assigned a probability of 1.0, except for some

missense variants where prediction methods suggested low impact.

Category 2missense variantswere assigned a probability based on the

extent of consensus among the four missense impact analysis meth-

ods used (SNPs3D, SIFT, PolyPhen-2, and CADD), utilizing a calibra-

tion from HGMD data and a control set of inter-species variants. That

calibration shows a strong and approximately linear dependence of

pathogenic probability on agreement betweenmethods (Supp. Fig. S1).

Other variant types were subjectively assigned probabilities as shown

in Table 2. For autosomal recessive situations, the combined proba-

bility of pathogenicity was taken as the product of probabilities for

the two contributing variants. Those values were incremented by 0.2

for homozygous cases, as an ad hoc correction for increased confi-

dence, and by 0.1 in compound heterozygous situations. Based on this

scoring scheme, a probability of pathogenicity for a disease class

was generated for all the samples in which one or more potentially



KUNDU ET AL. 1205

TABLE 2 Pathogenicity probability estimates for each variant type

Variant Type Probability Score

Reported in HGMDor ClinVar as pathogenic 1

Missense – Reported in HGMDor ClinVar as pathogenic and predicted damaging by only 2, 1, or 0 out of 4methods 0.9

Missense – Predicted damaging by 4/4methods 1

Missense – Predicted damaging by 3/4methods 0.8

Missense – Predicted damaging by 2/4methods 0.5

Missense – Predicted damaging by 1/4methods 0.25

Missense – Not predicted damaging by anymethods 0.15

Nonsense 1

Frameshift/Non-Frameshift Indel 1

Variant predicted to affect splicing 0.8

Variant close to Splice Donor site 0.2

Variant close to Splice Acceptor site 0.2

UTRVariant 0.05

Intronic Variant 0.05

All other variants 0

causative variants were identified. For the cases in which a gene was

associated with more than one disease class, equal probability was

assigned for all the disease classes.

2.4 Post-challenge analysis

We performed many post challenge analyses on the results in order

to gain insight into the performance, strengths, and weaknesses of the

method, and in doing so, made a number of observations.We assessed

performance based on the official answer key provided by the Johns

Hopkins DNA Diagnostic Laboratory group. For each patient, the key

specified thedisease class, thepossibly causative variants (if any) found

in the subset of the 83 genes examined, and a classification of each of

these variants (pathogenic, likely pathogenic, VUS (variant of uncer-

tain significance), likely benign, and benign). The Hopkins classifica-

tions were based on the ACMG evidence rules (Richards et al. 2015).

3 RESULTS

3.1 QC analysis summary

Supp. Figures S2 and S3 and Supp. Table S1 together with accom-

panying text provide details of the QC analysis. Overall, transi-

tion/transversion ratios and heterozygosity/homozygosity ratios are

consistent with those found in 1000genome data, with the exception

of one sample (P8) with excess homozygosity. There are a maximum of

2,000 low quality and 940 no-call calls per sample in the v01 capture

data and lower numbers in v02.We expect that any causative variants

at these positions would be missed. Common, rare, and novel variant

(SNV and Indel) counts for all the samples are consistent with 1000

genome data, except for two outlier samples identified as of African

ethnicity which have larger rare Indel counts. The average read depth

per gene per sample is high (greater than 100×) with the exception

of two capture regions (Exon-53 and Exon-60 of HYDIN gene in Supp.

Fig. S4)whereanomalous coverage couldpotentially result in causative

variants beingmissed or in false positives.

3.2 Missensemutations are amplified in the

potentially causative variant set

TheVCFfiles provided for the challenge have a total 2,311 unique vari-

ants across the 106 patients. This variant set consists of 40% intronic

variants, 26% missense variants, 20% synonymous variants, and 14%

of variants that are assigned as LoF (frameshift Indels, non-frameshift

Indels, and nonsense), UTR, or splicing (Fig. 2A). After applying the

PASS (PASS in VCF file), genotype (GQ > 30) and frequency filters

(MAF <= 1% in ExAC), the total number of variants was reduced

by almost 50% to 1,291, with 233 variants filtered because of low

quality and 787 further variants filtered because of high MAF. Fig-

ure 2B shows that the frameshift and non-frameshift indels decreased

the most (by 40% and 27%) on applying the PASS filter and NonSyn,

Syn, UTR, CodingIntronic, and “Close to splice site” variants decreased

the most (by 37%–42%) on applying the frequency filter. After all fil-

tering, 138 out of the 1,291 variants were assigned as potentially

causative by the prioritization procedure. In this set, the fraction of

LoF variant is 16% and the fraction of missense variants is doubled to

more than half (56%), while intronic variants drop to 8% and synony-

mous to 1%. The high fraction of potentially causative missense vari-

ants emphasizes the importance of correctly interpreting this class of

mutation.

3.3 Matching individuals to disease class

Application of the categorization procedure described in Materials

and Methods resulted in a non-zero probability for a specific disease
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F IGURE 2 Distribution of variant types for the gene panel sequencing data for 83 genes from106 patients. (A) Distribution of variant types. The
outer circle shows the distribution for all variants present in the VCF files provided as part of the challenge. The middle circle shows the distribu-
tion of high-quality rare variants after applying PASS, GQ, and frequency filters using data in the VCF file. The inner circle shows the distribution of
potentially causative high quality rare and novel variants in 104 patients after applying the variant selection algorithm. Missense and loss of func-
tion variants are substantially enhanced in the latter set. (B) Changes in the variant type distribution during the filtering process, from total VCF
variants, to those annotated as PASS, to those with low frequency, and finally those selected as potentially causative. The heat map indicates the
percent decrease in variants on applying each filter (in the direction indicated by the arrows): The larger the decrease, themore orange; the smaller
the decrease, themore green. The frameshift and non-frameshift Indel count decreased themost (by 40% and 27%) on applying the PASS filter and
NonSyn, Syn, UTR, CodingIntronic, Close to splice site variants decreased themost (by 37%–42%) on applying the frequency filter

class being assigned to 87 of the 106 patients. A further 17 patients

were assigned a non-zero probability for two disease classes, as a

consequence of a single gene being associated with two of the 14

disease classes. Two patients (P59 and P86) were not assigned to

any disease class. P59 had the lowest average read depth for 50

genes out of 83 and next to lowest for the other 33 genes compared

with other samples, suggesting that causative variants may have been

missed.

3.4 Correct disease assignments alsomade by

Hopkins

Overall, the assessors determined that we made correct disease

assignments for 36 of 106 cases (Fig. 3A), in the sense that the highest

probability was assigned to the disease class specified in the Hop-

kins answer key. The Hopkins group reported “pathogenic,” “likely

pathogenic,” or “VUS”, based on ACMG variant classification, for 43

cases (Fig. 3B). The VarP pipeline assigned the maximum probability

to the same disease class for 26 of these 43 cases, with the same

variants assigned as causative. There are two primary reasons for

our non-identification of the other 17 cases (row 4 and row 8 in Fig.

3A). First, for 10 of these patients, the Hopkins group found only one

heterozygous variant in genes known to be associatedwith disease in a

recessive inheritance pattern. Ourmethod considered this insufficient

evidence. Second, for the remaining seven patients, we found an alter-

native disease that ranked higher in the variant categorization scheme.

As noted in Materials and Methods, the selection scheme only consid-

ered thedisease identifiedby thehighest-rankedvariants, and rejected

all others. Had we considered diseases identified by lower confidence

categorizations, five of these seven cases the Hopkins reported dis-

ease would have received 2nd ranking; one 3rd ranking; and one 4th

ranking.

3.5 Additional correct disease assignments

Out of the 63 patients for which the Hopkins analysis found no

causative variants in the genes ordered as part of the clinical test, our

method made 10 correct assignments of disease class and assigned

potentially causative variants (row5 in Fig. 3A). Sevenof these patients

were found to carry autosomal dominant or homozygous recessive

variants and remaining three patients carried compoundheterozygous

variants. For nine of these 10 cases, the gene hosting the potentially

causative variant was not analyzed by the Hopkins group, presumably

because coverage was not selected by the requesting physician. For

the remaining case, the Hopkins group did not report the potentially

causative variant even though they analyzed the relevant gene. For the

other 53 patients (row 6 and row 9 in Fig. 3A), neither our method

nor the Hopkins group found any causative variants for the expected

disease class. However, we found potentially causative variants for

a different disease in four of these patients, suggesting alternative

diagnoses (see the Alternative Diagnosis section).

3.6 Assignment of probability

In order to estimate the accuracy of our probabilitymodel, we checked

how well the probability of pathogenicity scores correlated with
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F IGURE 3 Disease assignment statistics for the 36 patients with correctly identified disease class. (A) Distribution of the number of patients
across prediction performance. The highlighted numbers represent the patients with correct disease class assignment. The reasons for incorrect
disease assignment are described in the text. (B) Distribution of Positive cases (orange) are those found by Hopkins to be carrying pathogenic or
likely pathogenic variants, the VUS cases based on ACMG guidelines (yellow) are those carrying variants of uncertain significance and Negative
cases (gray) are those in which no causative variant was found by Hopkins. * indicates the number of cases with correct disease class assignment.
The VarP pipeline assigned the correct disease class for 26 of the Positive and VUS cases and also correctly assigned disease class (with potentially
causative variants) in 10 of the Hopkins Negative cases

F IGURE 4 Distribution of patients with incorrectly assigned disease
class versus estimated probability of pathogenicity. The dotted line
shows the expected value in each bin (e.g., in the 0.8 to 1.0 bin, 10% of
disease assignments are expected to be incorrect). Bars show the % of
patients in each bin that actually have incorrect assignments. Bar col-
ors show the number of patients with assignments made in each cat-
egory (Category 1, most confidence). The error bar for each bin is the
standard deviation of the number of patients in that bin. As should be
the case for a good probability algorithm, patients with a high proba-
bility of a correct disease assignment do have a lower rate of incorrect
disease classes.However, theplot also shows that there are25patients
with high probability scores (> 0.8) but incorrect disease class. 15 of
these patients carry variant(s) reported as pathogenic (tagged as DM)
in the HGMDdatabase. Reasons for this are discussed in the text

incorrect disease class assignment. The dependence of incorrect dis-

ease assignment on assigned probability follows the correct trend,

with a high fraction at low probability and a lower fraction at high

probability (Fig. 4). However, there are 25 patients with incorrect

disease class assignments and a probability greater than 0.8. We

found following reasons for this: (1) High confidence given to DM

status HGMD variants—11 out of the 25 anomalies are of this type.

These are discussed below in the Selection section and listed in Table

4. (2) In five cases, there were pairs of Indels (frameshift or non-

frameshift) close together (less than 10 bp apart; Supp. Table S2) in

the CCDC40 gene and classified by us as causative compound het-

erozygous variants. Very likely, these are false Indels arising fromalign-

ment errors or errors near perfect repeat regions (Fang et al., 2014).

(3) In two cases, there are two heterozygous variants predicted dam-

aging by three methods in genes associated with recessive disease.

It is possible that these are on the same copy of the gene (no phas-

ing information was available). (4) In the remaining seven cases, we

found possible alternative diagnoses. These are discussed in detail

below.

3.7 Variant assignment accuracy for each selection

category

As described in Materials and Methods, we used a work flow to assign

variants to one of three categories, ranked by likelihood of pathogenic-

ity. Table 3 shows the percent of correct disease assignments for

variants in each category. The highest fraction of cases (42%, 11 out of

26) agreeing with the Hopkins disease class were based on category

1 variants. The corresponding fractions for category 2 and category

3 variants are 38% and 23%, respectively. This trend is expected,

since assignment confidence decreases with increasing category

number.

As noted earlier, category 1 variants are those annotated in HGMD

and/or ClinVar as disease-causing. Further inspection showed that 11

out of the 15 discordant assignments cases had conflicting database

annotations and sometimes weak or no supporting evidence (Table

4). In seven cases, the corresponding variant is annotated “DM” (dis-

easemutation) inHGMDbut is annotated “benign” or “likely benign” in
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TABLE 3 Percentage of correct disease assignments in each of the three variant selection categories

Minor Allele Frequency

Category Variant Considered Novel <=0.005 <=0.01
%Correct
Assignment

Category 1 In HGMDwith DM, DP status and/or in
ClinVar with Pathogenic or Likely
pathogenic tag

4/4 7/19 0/3 11/26: 42%

Category 2 Missense (Predicted damaging either by
SNPs3D, SIFT, PolyPhen2 or CADD)

Frameshift / Non-Frameshift Indel
NonSense
Direct Splicing
Any variant predicted damaging by
dbscSNVs

9/14 7/28 2/5 18/47: 38%

Category 3 All other missense, UTR, and Intronic 4/17 2/12 1/2 7/31: 23%

17/35: 49% 16/59: 27% 3/10: 30%

Note: As expected, accuracy is highest in category 1, then category 2, then category 3. Novel variant assignments aremore accurate than for rare variants.

ClinVar. Consistent with the ClinVar annotation, a check of the sup-

porting literature for these showed either no experimental support

or no evidence favoring pathogenicity. For the other four cases,

ClinVar had no relevant entry and there was no literature sup-

port. Seven out of these 11 cases involved missense variants, and

none of those were rated high confidence pathogenic by our con-

sensus method. With the wisdom of hindsight, we should have fac-

tored these considerations into the categorization and probability

procedures, and placed less faith in HGMD. The remaining four dis-

cordant assignments have either functional validation of the vari-

ant as damaging or are annotated as pathogenic in ClinVar as well.

As discussed later, these four patients may really have a different

disease.

Category 2 variants are those selected because of being a LoF

variant, the computational method assigning pathogenicity for mis-

sense variants, a direct hit on a splice site, or a prediction of an

impact on splicing (Jian et al., 2014). The 18 correct assignment cases

include seven compound heterozygous and 11 autosomal dominant or

recessive cases. Seven out of these 11 cases carry a LoF (nonsense,

frameshift or non-frameshift Indel) or direct splicing variant, and the

remaining four carry missense variants (two predicted damaging by

two methods and two predicted damaging by one method). The 29

cases with discordant disease class with respect to the Hopkins infor-

mation in this category include 11 compound heterozygous cases and

18 autosomal dominant or recessive cases. For the 11 discordant com-

pound heterozygous cases, the assumption that the two variants are

appropriately phased is a likely cause of misassignment. The 18 other

cases include one frameshift Indel and 17 missense variants. Of the

17 missense, only one was high confidence, predicted damaging by

all four methods. Four were damaging by three methods (expected

accuracy 0.8), 10 were damaging by two methods (expected accuracy

0.5), and two were damaging by only one method (expected accuracy

0.25).

Category 3 variants aremissensemutations predicted benign by all

four computational methods and those which are intronic or in a UTR.

All were assigned low causative probability, ranging from 0.05 to 0.29.

There are only seven out of 30 with correct disease class assignments

that were assigned based on category 3 potentially causative variants.

Six of these seven cases carried intronic insertions or deletions close

to a splice site (within 5–30 bases), suggesting proper treatment of

this mechanism is important. The remaining case carries a missense

mutation predicted benign by the four mutation impact prediction

methods.

There is a marked dependence of level of agreement with the

Hopkins disease class and the frequency of the potentially causative

variants (Table 3): 49% of disease assignments made for novel variants

agree with the Hopkins answer key, compared with 27%–30% for the

other, non-novel variants with less than 1%MAF.

3.8 Alternative diagnoses

There is an important difference between the Hopkins laboratory pro-

cedures and the CAGI challenge. In the laboratory, in accordance with

clinical guidelines, for each patient, variant analysis was performed

only on the subset of genes identified by the physician requesting the

test, usually those for a single disease, and sometimes only a sub-

set of genes for a single disease. On the other hand, the challenge

required analysis of all genes for each patient. That led to a num-

ber of findings suggesting that in some cases, causative variants are

overlooked in the clinic. Of the 70 cases where our disease assign-

ments and the disease tested by theHopkins pipeline differ, sevenhave

strong evidence supporting assignment to a different disease (Table

5). In four of these cases, no variants supportive of the tested dis-

ease were found by ourselves or by Hopkins. In two further cases, the

Hopkins pipeline reported only one variant in a recessive gene and

for the remaining case (patient P8 in Table 5), there is evidence that

the patient may have two diseases. These seven cases fall into three

groups:

1. Three cases where the patient carried variants likely causative of a

disease phenotype that has overlapping symptomswith the disease

tested at Hopkins. One of these is a patient (P36) carrying a very

rare (AF = 0.0047 in ExAC) autosomal dominant missense muta-

tion (rs5738:G>A, NM_001039.3:c.589G>A, p.(E197K)) in exon-3
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of the SCNN1G gene. This mutation is reported in HGMD and Clin-

Var to be causative for Bronchiectasis with pathogenic clinical sig-

nificance (Fajac et al., 2008). The patient was tested for Diffuse

Lung disease and no variants with the required inheritance pattern

were found in the relevant genes. Bronchiectasis has been previ-

ously shown to be associated with Idiopathic Pulmonary Fibrosis,

one of the diseases in the Diffuse Lung disease class (International

Consensus Statement of the American Thoracic Society and the

European Respiratory Society, 2000; Bourke, 2006).

2. One case where a patient (P8) carried a variant reported in

HGMD and ClinVar to have pathogenic clinical significance for

a disease other than that tested for, and where the tested

and apparent diseases cannot be easily confused. P8 carries a

very rare (AF = 0.0051 in ExAC) homozygous recessive muta-

tion (rs1800098:G>C, NM_000492.3:c.1727G>C, p.(G576A)) in

the CFTR gene, consistent with the disease class “Cystic Fibro-

sis and CF-related disorders.” A functional study found the muta-

tion causes an increased amount of skipping of exon-12 during

splicing (Pagani et al., 2003). This patient was originally tested

for Peroxisomal Beta-Oxidation Defects and a homozygous reces-

sive frameshift mutation was found in the relevant gene. We did

not report that variant because of finding the CFTR variant which

we categorize as higher confidence of pathogenicity. The data are

consistent with the patient having both diseases.

3. Three cases where the patient carried variant(s) predicted dam-

aging by all reporting computational methods or a LoF variant.

For example, one of these is a patient (P46) to whom we assigned

“Treacher Collins and Related Syndromes” based on a very rare

(MAF = 0.0002 in ExAC) missense mutation (rs538401137:C>T,

NM_001135243.1:c.3029C>T, p.(T1010I)) in the TCOF1 gene and

assigned as damaging by all four computational methods. This

patient was tested for the Diffuse Lung disease class in the Hop-

kins pipeline, and no variants consistent with that phenotype were

found by them or us.

3.9 Protein structure coverage for potentially

causative variants

In principle, information from three-dimensional structure and on the

detailed functional roles of residues, motifs, and domains should be

of considerable value in evaluating the impact of missense variants.

In practice, it is often ignored, and indeed we did not use it in this

challenge. What difference might it have made? To investigate this,

we considered only potentially causative missense variants that are

not included in HGMDor ClinVar. Current ACMG guidelines (Richards

et al., 2015) would place a low weight on computational analysis of

these, and thus they would likely be reported as VUSs. There are 47

such missense variants distributed over 41 patients. ∼50% (23/47)

of these are either included in an experimental structure or can be

included in a homology model based on 22% or higher sequence iden-

tity to an experimental structure (Fig. 5A). Three of these mutations

are in proteins with experimental structure (X-ray structure). We use

these three cases to illustrate how protein structure could be used to:
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F IGURE 5 Structural coverage of prioritized missense mutations. (A) Missense variant distribution: (1) Known (variant reported in HGMD or
ClinVar) versus VUS variants, (2) structural coverage for VUS variants, (3) number of mutations in different sequence identity ranges between the
protein hosting the mutation and the closest available homologous protein in the PDB. Panels B and C show two examples of structure assisting
mutation interpretation. (B) Part of a zinc finger domain of the Mineralocorticoid receptor protein (PDB: 4TNT) including the mutation C603S
found in aHopkins patient, showing that C603 is one of the Zn ligands. Analogy to other zinc coordinatingmutations in zinc fingers provides strong
evidence structure and hence function will be disrupted. 5(C) Mutation R1283S, found in one of the Hopkins patients, is predicted deleterious by
the three out of four computational methods. Inspection of the structure shows disruption of two charge–dipole interactions forming a helix cap,
expected to significantly destabilize the structure

(a) supplement the sequence analysis methods to increase confi-

dence in a pathogenic or benign assignment and (b) understand

the pathogenicity mechanism at the protein level. Two of these

mutations have correctly assigned disease classes and causative

variants in our submission. One of those is of a novel mutation

(NM_000901.4:c.1807T>A, p.(C603S)) at a highly conserved position

in theMineralocorticoid receptor. This protein is associatedwith Pseu-

dohypoaldosteronism Type 1. Although we correctly identified this

mutation from sequence information, only two of the four (SNPs3D,

SIFT, PolyPhen2, CADD) methods assigned it as pathogenic, and the

other two did not. Thus additional evidence would have improved

confidence in the assignment. Inspection of the structure (PDBID:

4TNT) showed that the wild-type amino acid (CYS-603) is a zinc lig-

and in a zinc finger domain (Fig. 5B). Many other zinc ligand muta-

tions in these domains cause loss of function of the corresponding pro-

teins (Kambouris et al., 2014; Vincent et al., 2014), providing addi-

tional evidence of pathogenicity. The second case with correct disease

assignment is of another novel mutation (NM_000492.3:c.3849G>C,

p.(R1283S)) at a highly conserved position in the second nucleotide

binding domain of the CFTR protein. Mutations in CFTR cause Cys-

tic Fibrosis, one of the disease classes in the Hopkins dataset. This

mutation is predicted damaging by three out of four (SNPs3D, SIFT,

PolyPhen2, CADD) sequence methods. Inspection of the protein

structure (PDBID: 3GD7) hosting this mutation shows the wild type

side chain (R1283) makes two charge–dipole interactions with main

chain carbonyl groups of L1258 and R1259, providing a helix cap

(Hol, Halie, & Sander, 1981), consistent with significant destabiliza-

tion of the structure (Fig. 5C). Loss of protein stability has been

shown to be the most common cause of monogenic disease (Wang

& Moult, 2001; Yue, Li, & Moult, 2005). A different mutation at

this position (rs77902683, NM_000492.3:c.3848G>T, p.(R1283M))

has previously been found in CF patients (Cheadle, Meredith, &

al-Jader, 1992) and has been reported as pathogenic in ClinVar

andHGMD.

The third mutation with experimental structure coverage is one

where we made an incorrect disease assignment on the basis of just

one of the four missense analysis methods predicting deleterious.

Although that was already a low confidence prediction, further evi-

dence would be useful. This is a very rare (MAF = 0.0005 in ExAC)

variant (rs147398624:G>A, NM_000901.4: c.2578G>A, p.(V860I)) in

the Mineralocorticoid receptor, with an autosomal dominant pattern

disease inheritancepattern. Themutation is locatedon theprotein sur-

face (PDBID: 2AA5) and is not part of any known interface, providing

further evidence themutation is benign.

4 DISCUSSION

The CAGI4 challenge based on panel sequencing data provided by

the Johns Hopkins DNA diagnostic laboratory has allowed a blind

test of current methods for identifying causative variants in clini-

cal rare disease sequence data. Participants were asked to match

each of 106 patients to one of 14 classes of disease. To address this

challenge, we developed an analysis pipeline, VarP, designed to iden-

tify potentially causative variants. Using this pipeline, we were able

to correctly match 36 patients to the reported disease class. The
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analysis provided a number of insights into issues related to gene

panel testing, including the relationship between data quality and suc-

cess in finding causative variants, variant prioritization procedure lim-

itations, inconsistencies in databases, and cases of possible alternate

diagnosis.

4.1 Undiagnosed cases

Even with full knowledge of the reported disease class, the

Hopkins pipeline could only find potential causative variants for

43 cases, leaving 63 with no causative variants. As discussed below,

we were able to find variants correctly matching a further 10, but

that still leaves half (53) of the cases where neither we nor Hopkins

could find variants. There are three major factors that may contribute

to the high fraction of undiagnosed cases. First, a limitation in all

studies of this type is data quality. Our QC analysis suggests the

Hopkins data are generally of high quality. Read depth per gene per

sample is high (between 107× to 983×) and each sample has only

about 2,000 positions with no call or a low-quality variant call. But

there are some particular sample level properties in the data that

may affect analysis. For example, sample P8 (tested for an autoso-

mal recessive disease, Peroxisomal Beta-Oxidation defect) has an

abnormally high fraction of homozygous variant calls compared with

heterozygous ones, increasing the chances of finding an apparently

causative homozygous variant. Our pipeline identified a potentially

causative homozygous missense variant in CFTR, consistent with

cystic fibrosis, and annotated as pathogenic in both HGMD and

ClinVar, whereas the Hopkins pipeline found a homozygous frameshift

variant in HSD17B4, consistent with the tested disease. There are

also some areas of low coverage, for instance 78 samples have zero

coverage of Exon-60 in HYDIN. Variants in this gene may cause

Primary ciliary dyskinesia. Overall though, sequencing data quality

does not appear to make a large contribution to missing diagnostic

variants.

A second factor contributing to non-identification of causative vari-

ants is that there may be other, unknown, genes where variants cause

the disease phenotype. Many new monogenic disease genes are still

being discovered (more than 67 genes in a two-year period; Beaulieu

et al., 2014). Thirdly, the causative variantsmay have been not covered

in the panel, which consists of mostly exon sequence. Missing variants

may include those affecting the expression of a relevant gene, CNVs,

and larger scale structural genomic changes. In some rare disease anal-

yses using whole genome sequence, such as in the SickKids Genome

Clinic (http://www.sickkids.ca/CGM/genome-clinic/index.html), the

latter type of variant has been found tomake a significant contribution

(Stavropoulos et al., 2016). However, those patients mostly exhibit

major developmental disease phenotypes, and may not be typical of

rare disease patients in general.

4.2 Correct diagnosis for cases where the Hopkins

pipeline did not find causative variants

For 10 cases, we were able to identify the reported disease class even

though Hopkins reported no potentially causative variants. In nine out

of these 10 cases, the Hopkins pipeline did not include analysis of the

gene carrying the diagnostic variant(s). Apparently this is because the

requested test did not include the gene, a choice made by the refer-

ring physician. As noted earlier, Hopkins is only permitted to analyze

the requested gene set. For the 10th (a compound heterozygous case

where one of the variants is missense predicted damaging by four

methods and other is an intronic variant close to a splice acceptor),

Hopkins did not report the potentially causative variants even though

they analyzed the relevant gene.

4.3 Missed diagnoses

There are 17 cases where we did not identify the correct disease class,

but the Hopkins analysis did find potentially causative variants. For 10

of these, theHopkins variants are in genes expected tohave a recessive

inheritance pattern, and only one heterozygous variant was present—

not sufficient for our evidence rule. Had we used such a weak crite-

rion for inheritance model filtering many more false positives would

have been generated. Thus these should not be regarded as failure of

the VarP approach but rather an appropriate filtering strategy used

in VarP. In the other seven cases where Hopkins found variants, VarP

found stronger evidence for a different disease class. For two of these,

as discussed below, we consider the evidence that the patients have

the VarP identified disease very strong, and if so, these also are not

errors. For the other five,wemade two sorts of errors. Onewas placing

too much trust in HGMD that affected three cases—in each of these

cases the HGMD annotations were incorrect and contradicted or not

supported by ClinVar or experimental data. The other source of error

was for two compound heterozygous cases where one of the partner

variants was a low impactmissense (predicted benign by 1/4methods)

or an intronic variant and so provided very weak evidence. In retro-

spect, the procedure of taking just the most likely causative variant(s)

and ignoring all other variants in a patient was sub-optimal. A better

procedure would probably be to use all variants in each gene to assign

a probability of pathogenicity and to use those probabilities to infer

disease class.

4.4 Incorrect diagnoses

For 25 patients VarP made high confidence (probability score > 0.8)

incorrect disease class assignments. A primary factor was again over-

reliance on HGMD annotation, accounting of 11 out of the 25 cases.

A further five cases involved pairs of Indels very close to each other

(less than 10 base pairs apart), and consistent with a compound het-

erozygous cause for a recessive disease. In fact, these Indel pairs

are probably coupled alignment errors. There are two cases where

the assumption that a pair of recessive variants are on different

copies of the gene may be incorrect (there was no phasing data

available). In seven of the remaining cases, we found high confi-

dence pathogenic variants in genes associated with a different dis-

ease from that in the Hopkins answer key. As discussed later, the evi-

dence for some of these is sufficiently strong that they may not be

errors.

http://www.sickkids.ca/CGM/genome-clinic/index.html
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4.5 Distinct potentially causative variants that led

to disease classification

VarP identified 105potentially causative variants each ofwhich occurs

once in a total of 78 patients. A further 14 potentially causative vari-

antswere seen in twoormore of the other 28 patients (Supp. Table S3).

We also considered accuracy in terms of the fraction of these 119 dis-

tinct variants which led to correct and incorrect disease assignments.

By this measure, correct disease identification increases from 34% (36

out of 106) to 36% (33 out of 91). The improvement occurs because

themajority of repeat variants are present in cases where an incorrect

disease was assigned, and we speculate that some of these may reflect

sequencing artifacts.

4.6 Reliability of probability for disease assignments

In the clinic, perhaps more important than having an accurate method

of determining pathogenicity is having an accurate method for assign-

ing a probability of correctness to a pathogenic assignment. The CAGI

challenge required participants to also provide these probabilities, and

so itwas possible to evaluate howeffective our approachwas.Weused

a largely ad hoc probability scale in this analysis. Although there is a

reasonable overall correlation between these quantities (Fig. 4), there

were a substantial number of variants assigned a high probability that

were not in fact pathogenic. Therewere twoprimary reasons for that—

first, as noted earlier, we misjudged the reliability of HGMD assign-

ments of disease mutations. Had we used a model that included dis-

agreements between HGMD and ClinVar, these cases would have had

more appropriate probabilities. Second, as discussed below, in a num-

ber of cases we consider the evidence strong that these patients had a

different disease.

4.7 Reliability of missense probability estimates

As described in Results, overall, the estimated probabilities of

pathogenicity shows qualitative though not quantitatively correct

properties. Themajority of potentially causative variants aremissense,

so improved confidence in assigning a probability of pathogenicity to

these are of particular importance. As described earlier, we assigned

a probability based on the fraction of four different missense analysis

methods reporting deleterious. The method was calibrated (Yin et al.)

using a set of HGMD mutations (all assumed pathogenic) and a set

of interspecies variants (assumed benign). There are a number of

limitations to this dataset, and so we were interested to see to what

extent the estimated probabilities were useful. Interpretation of

the results is complicated by the alternative diagnosis cases and by

compound heterozygous cases, involving two different variants. Supp.

Figure S5 shows the relationship between estimated probabilities

and correct disease class assignment, omitting those cases. Counts

here are too small to draw firm conclusions. A high proportion of

mutations assigned with a probability of less than or equal to 0.5 are

incorrect, consistent with expectations. However, more than half of

the mutations with probabilities higher than 0.7 are also incorrect,

not as expected. Further analysis Yin et al. (ref to Yin et al. CAGI

issue paper when available) suggests that a probability method based

on more than four missense impact prediction methods would have

yielded better results. But clearly amore extensive blind test is needed

to evaluate this approach.

4.8 Apparent cases of alternative diagnoses

Using quite stringent criteria we identified seven cases where the

data are consistent with patients having a different disease class than

that provided in the Hopkins answer key. Four of these patients carry

variants for the alternative disease class that are reported in HGMD

and ClinVar as pathogenic. The remaining cases carry missense vari-

ants predicted damaging by all reporting methods, frameshift or non-

frameshift indels, or variants directly affecting splicing. In three cases,

symptomsof the answer keydisease and the alternative overlap, so it is

possible that there was amisdiagnosis in the referring clinic. The other

cases aremore puzzling. Since we have no information as to why a par-

ticular test was ordered (and inmany cases theHopkins groupmay not

either), it is difficult to comment further. But it is concerning that in a

number of cases there could be confusion of some sort as to what dis-

ease patients have. In these seven cases, the Hopkins pipeline did not

report any variant for four cases, reported only one variant in a reces-

sive gene for two cases and reported a homozygous frameshift muta-

tion in the remaining case. The pipeline was prevented from discover-

ing the possible alternatives by the current guidelines, which require

that only requested genes for a specific disease test be examined. On

the basis of these limited data, it is not clear whether on balance this

practice is in the patients’ best interest.

4.9 VarP performance improves when the patients’

clinical indications are known

Clinical laboratories typically have information on each patient’s dis-

ease phenotype, and variants are evaluated with that knowledge. In

that aspect, the CAGI Hopkins challenge creates an artificially harder

problem, since disease class is not known to participants. If the dis-

ease classes were known, would VarP identify the variant(s) reported

by Hopkins pipeline? We tested this scenario by searching for poten-

tially causative variant(s) only in genes associated with each patient’s

diagnosed disease class, using the VarP pipeline. On this basis, VarP

identifies potentially causative variants for 61 patients, 18 more cases

than the Hopkins pipeline. However, there are still nine cases where

Hopkins identified potentially causative variants and VarP does not.

As discussed earlier, these patients each carry only one heterozygous

variant in a recessive gene, which we considered insufficient evidence.

4.10 Better results would have been obtained not

using HGMD

As noted earlier, 11 of the 25 incorrect disease class assignment cases

with a probability of pathogenicity higher than 0.8 are a result of

accepting HGMD annotations of pathogenicity. Such a high error rate

from a single cause suggests that it might be better to ignore HGMD

altogether and just use ClinVar for pathogenicity information. We
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tested this by running the VarP pipeline again, omitting HGMD. The

success rate (correct match to disease class) increases from 36 to 40

(Supp. Table S4).

4.11 Lessons learned

Going forward, how would we now improve performance of the VarP

analysis pipeline? As noted earlier, a suboptimal feature of the pro-

cedure was terminating the variant search once a suitable candidate

had been found, rather than finding all possible causative variants and

assigning each a probability. As also noted earlier, over-reliance on

HGMD was a cause of errors and this can be corrected by consider-

ing ClinVar and HGMD annotations together, and, where appropriate,

include missense impact analysis in assigning a probability to these

category 1 variants. Structure also has the potential for contributing to

the discovery of causative variants and providing mechanistic insight.

However, full automation of that analysis will require the development

of newmethods. In general, much more work must be done to provide

a reliable probability of pathogenicity, not only for missense but for all

types of variants.
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