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Abstract: The low Reynolds number condition presents a fundamental constraint on designing
locomotive mechanisms for microscale robots. We report on the use of an oscillating magnetic field to
induce on-surface translational motion of particle based microrobots. The particle based microrobots
consist of microparticles, connected in a chain-like manner using magnetic self-assembly, where
the non-rigid connections between the particles provide structural flexibility for the microrobots.
Following the scallop theorem, the oscillation of flexible bodies can lead to locomotion at low
Reynolds numbers, similar to the beating motion of sperm flagella. We characterized the velocity
profiles of the microrobots by measuring their velocities at various oscillating frequencies. We also
demonstrated the directional steering capabilities of the microrobots. This work will provide insights
into the use of oscillation as a viable mode of locomotion for particle based microrobots near a surface.
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1. Introduction

The concept of using microrobotics for both in vitro and in vivo applications had been
well explored; such as micromanipulation and microfabrication [1,2], drug delivery [3,4], tissue
manipulation [2,5], and in situ sensing [6], such as in vivo diagnostics [7-9]. At the center of the
development of microrobotics has been the study of locomotive mechanisms at low Reynolds numbers.
The understanding of locomotion in the context of low Reynolds numbers is critical, as the negligible
inertia at low Reynolds numbers requires the use of nonreciprocal motion for movement. Because
of this, designing locomotive mechanisms has been one of the difficulties in low Reynolds number
motion since many conventional swimming strategies, such as a rigid flapping fin, are ineffective at
the micro- and nanoscale due to their reciprocity. According to Purcell, the flexible oar is one of the
two major classifications of biological mechanisms for low Reynolds number locomotion; the other
being the rotating corkscrew [10]. The bending of an oscillating flexible oar allows for nonreciprocal
motion; the oscillating flagella of sperm and the beating cilia of protozoa are biological examples of the
flexible oar.

To overcome low Reynolds number constraints, various mechanisms and strategies have
been employed in a number of different microrobots such as the helical chiral swimmers [11-19],
the bacteria powered microrobots (BPMs) [20-22], the magnetically steered swimming cells [23],
the magnetically controlled Mag-uBot [24], the optically-deformed three-bead systems [25],
the self-assembled nanoparticle swimmers [26], the biflagellate micro-objects [27], and the
chemically-driven robots [28-35]. In this work, we focus on a class of microrobots that utilize their
flexible bodies for motion. Notable examples of existing microrobots in this category include
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microscopic artificial swimmers with flexible DNA linkages [36], flexible nanowire motors [37],
MagnetoSperm [38], sperm-shaped microrobots [39,40], and soft micromachines [41].

The chain-like conjugation of beads that makes up a particle based microrobot is flexible since the
connections between the beads are not completely rigid. Note that although the previously reported
three-bead achiral microswimmers were claimed to be rigid while rotating [42], this does not apply
to particle based microrobots undergoing oscillation. A flexible object rotating at a constant rate will
eventually reach a steady state shape where the structure of this object can be modeled as near rigid;
this was reported for bacterial flagella where a flexible flagellar filament can be modeled as a rigid
helix when rotating [43—46]. This is caused by the constant viscous force experienced by the object
under a constant rate rotation at steady state. Viscous forces on an object under oscillation, however,
are time varying; thus, the object will undergo deformation in a cyclic manner as seen in the flexible
oar example [10].

In this study, we investigate the motion of particle based microrobots induced by an oscillating
magnetic field as an alternative strategy of locomotion for near surface movements. The particle based
microrobot converts rotational motion into translation motion and swims in the bulk fluid [42,47,48].
When near a boundary, the microrobot’s flow field interacts with the boundary, leading to rolling
motion [42]. The rolling motion leads to movement in the direction perpendicular to the swimming
direction. Thus, rotation based microrobots, including particle based microrobots and helical
swimmers, move diagonally when near a boundary. Oscillation, on the other hand, does not lead to
rolling motion. In a situation where a rotating microrobot navigates through tight boundaries, rolling
will cause the microrobots to deviate from the expected path. While oscillation based locomotion
does not present an advantage in terms of speed, the elimination of rolling can provide reliability in
predicting the trajectory for near boundary navigation. Therefore, oscillation can be considered as an
alternative locomotive strategy for the particle based microrobots when moving near a boundary.

2. Materials and Methods

2.1. Fabrication

The particle based microrobots used in this study consisted of six or more magnetic microparticles
(4.35 pm diameter) connected in a chain-like manner. The process of connecting beads using
streptavidin-biotin linkages and magnetic attraction is illustrated in Figure 1. First, two batches
of coated magnetic microparticles are prepared; one batch with streptavidin coating and the other
with biotin coating. The coated particles are commercially available (Spherobeads). Alternatively,
particles can be coated using streptavidin and biotin solutions with the same results [42]. Next, the
two batches are mixed together and then placed inside a magnetic field. Finally, the magnetized
particles will actively move towards each other and then bond together by magnetic forces and the
streptavidin-biotin linkages. One of the advantage of using a magnetic field in the fabrication process
is the alignment of dipoles, which ensures that the particles bond in a chain-like manner. Note that
the chains are not perfectly linearly due to other factors in the mixing process, such as electrostatic
forces, surface roughness, sphericity of particles, etc. The connections between the particles in the
chain provide flexibility which allows for swimming or fluid transport at low Reynolds number.
Previous work on tethered flexible magnetic bead cilia, fabricated in a similar manner as the particle
based microrobots, had demonstrated that particle chains can be used to transport fluids at low
Reynolds number by using nonreciprocal beating [49-52]. Similarly, the particle based microrobots are
untethered swimmers that can generate a propulsive force when their body oscillate.
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parameter c in Equation (2), we can manipulate the angle of osc1llat10n of the mlcrorobots In Figure 3b
six arcs are drawn using Equation (2) to represent full cycles of oscillation of the magnetic field at six
angles of oscillation. The value of By does not matter here since By only serves as a scaling parameter.
The frequency of oscillation w also does not matter for the static representation of the oscillation.

From the arcs, six different angles of oscillation are presented along with the corresponding ¢ values.
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The velocity profiles and images of the five oscillating microrobots are shown in Figure 4.
The five different microrobots were tracked and exhibited linear relationships between the swimming
velocity and the osciliation frequency. The approxiate length of the microrobots were 29.11 um,
23.63 pm, 28.06 um, 27.30 um, and 33.21 um, respectively. The velocities were offset by subtracting
the background flow. The background flow velocities were determined by observing the movement
of the nonmotile microrobots at 0 Hz. After the offset, velocities at 0 Hz became 0 um/s, and the



pm, 27.30 um, and 33.21 um, respectively. The velocities were offset by subtracting the background flow.
The background flow velocities were determined by observing the movement of the nonmotile
microrobots at 0 Hz. After the offset, velocities at 0 Hz became 0 um/s, and the velocities at other
frequencies were offset accordingly by the background flow. It should be noted that the background
velogitiesiwerelyesysmall due to how close the microrobots were to the surface. From these data, # «famn
be seen that the velocities of the microrobots vary from one another due to their geometry. Due to the
fabrication process, the geometry of the microrobots is not the same, therefore, we chose microrobots
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We applied a linear fit to the average velocities of the five robots with a slope of 0.13 and a R? value
of 0.99. The standard deviation for the error bars at 10, 20, and 30 Hz were 0.4478 um/s, 0.9301 um/s,
and 0.9198 um/s, respectively. The coefficient of variations were 0.4824, 0.3880, and 0.2384, respectively.
The information for the fitted line in Figure 4 is listed in Table 1.

Table 1. Values for the fitted line in Figure 4.

Frequency Mean Velocity (um/s)  Standard Deviation (um/s) Coefficient of Variations

10 0.9284 0.4478 0.4824
20 2.3973 0.9301 0.3880
30 3.8580 0.9198 0.2384
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4. Discussion

The results of this work demonstrate movement speed control and directional control of
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using externally applied magnetic fields.

5. Conclusions

In summary, the demonstration of using oscillation as a mode of motion for particle based
microrobots presents the possibility to move on or near surfaces where rotational motion might not be
preferred. As experiments have shown, the microrobots can be assembled en masse using chemical and
magnetic bonding. To show the viability of using oscillation as a strategy for locomotion, experiments
were performed to characterize the velocity profiles of five different microrobots at incremental
frequencies. The linearity of the velocity profiles demonstrated the feasibility of manipulating the
movement speed by controlling the oscillation frequency. The steerability of the microrobot was also
investigated, to demonstrate that both speed and direction control can be achieved using magnetically
induced oscillation.
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Supplementary Materials: The following are available online at www.mdpi.com/2072-666X/8/2/46/s1.
Video S1: On surface translational motion of an oscillating microrobot.
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