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The propagation of optical pulses through primary types of deterministic aperiodic structures is
 numerically studied in time domain using the rigorous transfer matrix method in combination with
Accepted: 26 April 2017 . analytical fractional transport models. We demonstrate tunable anomalous photon transport, including
Published online: 23 May 2017 . the elusive logarithmic Sinai sub-diffusion in photonic systems for the first time. Our results are in
. excellent agreement with the scaling theory of transport in aperiodic media with fractal spectra, and
additionally demonstrate logarithmic sub-diffusion in the presence of multifractality. Moreover, we
establish a fruitful connection between tunable photon diffusion and fractional dynamics, which
provides analytical insights into the asymptotic transport regime of optical media with deterministic
aperiodic order. The demonstration of tunable sub-diffusion and logarithmic photon transport in
deterministic aperiodic structures can open novel and fascinating scenarios for the engineering of wave
propagation and light-matter interaction phenomena beyond the conventional diffusive regime.
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In 1855, Adolf Fick proposed his laws governing mass transport through diffusive media'. In particular, FicK’s
second law predicted how the concentration ¢(x, t) of a diffusing substance changes with space and time. Fick
showed that in one spatial dimension ¢(x, t) obeys the well-known diffusion equation 9,4(x, t) = DO, ¢(x, t),
where D is the diffusion coefficient. Almost 60 years later, in his theoretical study of the Brownian motion Albert
Einstein unveiled the microscopic origin of diffusion by introducing a memoryless (i.e., Markovian) random walk
model?. It is now well-known that the microscopic dynamics of Markovian random walks obeys a stochastic dif-
ferential equation which, in the continuum limit of vanishingly small steps, reduces to the FicK’s diffusion equa-
tion. Conversely, the fundamental solution (i.e., the Green’s function) for the Cauchy problem of the linear
diffusion equation can be interpreted as a Gaussian Probability Density Function (PDF) in space, which evolves
in time. All moments of this PDF are finite and its variance, or Mean Square Displacement (MSD), is proportional
to the first power of time, i.e., (x*(t)) oc £, which is the hallmark of a standard diffusion process.

However, after Richardson’s 1926 pioneering work on diffusion in turbulent media®, many natural phenomena
have been discovered that exhibit anomalous transport characterized by a nonlinear scaling of the MSD according
to the power law*: (xz(t)) o £ with (B areal number in the interval [0, 2]. In particular, anomalous sub-diffusion
occurs when (< 1 and anomalous super-diffusion when 3> 1. The extremal cases 3= 1 and =2 correspond to
standard diffusion and ballistic wave transport, respectively. At the microscopic level, anomalous diffusion pro-
cesses can be described by generalized Continuous Time Random Walks (CTRWs) that capture non-Markovian
correlations between different steps of a walker in non-homogeneous random media®. Contrary to standard (i.e.,
uncorrelated) random walks, CTRW models allow for the possibility of incorporating separate statistical distri-
butions for the waiting times and step sizes of the random walker, including long-tailed non-Gaussian distribu-
tions with algebraic decays that yield divergent moments, as in the case of Lévy flights®.

Remarkable examples of anomalous transport have been recently discovered in various scientific domains
such as turbulent plasmas, viscoelasticity, percolation and transport through fractals and porous media, amor-
phous solids, biological systems, and even unveiled in the internet traffic’. Super-diffusive optical transport has
been intensively investigated and artificial media that give rise to super-diffusion of photons, called Lévy glasses,
have been recently demonstrated®.
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In this paper, by numerically investigating optical pulse propagation through dielectric structures, we demon-
strate transport regimes that are largely tunable from sub- to super-diffusion in photonic media with long-range
aperiodic order. Moreover we demonstrate a novel logarithmic-in-time photon transport regime in deterministic
pseudo-random systems with multifractal energy spectra and show that the temporal scaling of the MSD follows
the law: (x*(t)) ~ log”(t) with a tunable exponent. Such an intriguing phenomenon was theoretically investigated
by Sinai in the context of random walks in non-homogeneous random media® and is referred to as ultra-slow
Sinai sub-diffusion, or strong diffusion anomaly. Sinai-type transport has never been reported in deterministic
electronic or optical systems and photonic structures that exhibit such an unusual property may provide exciting
opportunities for novel optical technologies. In particular, tunable anomalous photon diffusion and logarithmic
optical transport in deterministic photonic structures offer novel degrees of freedom to engineer time dynamics
and wave dispersion phenomena beyond the conventional framework of diffusion theory.

In order to systematically investigate light transport phenomena in controllable aperiodic environments we
focus on one-dimensional (1D) dielectric multilayer structures with fractal and multifractal energy spectra. These
structures are rigorously described by well-established transfer matrix and trace map techniques, and have been
extensively investigated as model systems to explore the rich physics of aperiodic scattering in electronic, acous-
tic, and optical media'®!!. However, the main conclusions of this paper remain valid for more general photonic
systems, such as coupled resonator structures or waveguide arrays, that can be exactly modeled using the transfer
matrix technique.

Anomalous transport and fractional wave propagation in aperiodic media
Understanding the influence of positional correlations and aperiodic order on the nature of optical transport in
electronic and photonic structures remains to date a challenging problem of fundamental as well as technological
interest. Anomalous transport of electron wave packets through 1D quasi-periodic potentials with fractal energy
spectra has been intensively investigated in recent years using the transfer matrix approach'?, and the connection
between the spreading of wave packets and the fractality of energy spectra has been established'®!*. In particular,
both scaling analysis and numerical simulations have suggested that the exponent 3 for quantum wave packets
diffusing through a 1D quasi-periodic sequence of scattering potentials can be written as 3 = 2D}'/D,’, where DJ'
and Dy’ are the fractal dimensions of the spectrum and of the wave functions, respectively'*. While many fascinat-
ing results have been established in recent years by resorting to extensive numerical simulations of electronic
transport in fractal systems, their physical interpretation remains vastly unexplored.

A comprehensive analytical framework that effectively captures the asymptotic transport properties of wave
excitations in complex media has only recently been established based on generalized kinetic equations'®. This
powerful approach exploits the recently developed mathematical tools of fractional calculus'® that provide the
physical underpinning for anomalous transport phenomena in the presence of memory and long-range spatial
correlations'. In particular, it became clear only recently that at the continuum level, CTRWs produce fractional
transport equations with space and time derivatives of fractional order'”. These are integro-differential operators
with power-law kernels that account for space correlations and time memory effects invariably established when
wave excitations are multiply scattered in strongly non-homogeneous environments'®.

Due to the well-known isomorphism between the Schrédinger and Helmholtz equations in 1D scattering
potentials, classical wave scattering shares fundamental analogies with its electronic counterpart. Striking exam-
ples are the formation of photonic band gaps in periodic scattering media'® !, the optical Hall effect®, optical
negative temperature coefficient resistance?', and Anderson localization of light waves in disordered random
media?> %,

Building on this powerful analogy we use full-vector electromagnetic modeling to demonstrate novel trans-
port phenomena in photonic systems with deterministic aperiodic order beyond what has been established in
their electronic counterparts. In particular, we found that the photonic transport can be switched from super- to
sub-diffusion by modulating the refractive index contrast and Sinai-type logarithmic sub-diffusion of optical
waves can be achieved in deterministic multifractal environments. The nature of optical transport in our paper is
investigated by considering the time scaling of the MSD and the temporal autocorrelation function (ACF) of opti-
cal wave packets that propagate across photonic multilayers with periodic, quasi-periodic, and pseudo-random
positional order.

Aperiodic structures can be rigorously classified according to the nature of their diffraction and energy spec-
tra, which correspond to mathematical spectral measures. According to the Lebesgue’s decomposition theorem,
any measure ¢ can be uniquely decomposed in terms of three primitive spectral components (or mixtures of
them), namely: pure-point (1), singular continuous (isc), and absolutely continuous spectra (ft,¢), such that
1= pp~+ ptsc+ f1ac- The structures investigated in this work are the chief representatives of each spectral class.
Fibonacci structures are quasi-periodic and their diffraction spectra are pure-point, featuring a countable set
of §-like Bragg peaks at incommensurate intervals. On the other hand, their energy spectra are singular con-
tinuous and converge to a Cantor-set. More complex structures exist, such as the Thue-Morse ones*, which
display singular continuous diffraction and fractal energy spectra. The individual Bragg peaks in such systems
are not separated by well-defined intervals and form broad bands in Fourier space. These systems are structurally
more complex than quasi-periodic ones. Interestingly, their optical properties have been found to be closer to
the ones of periodic structures®. Finally, Rudin-Shapiro structures' are pseudo-random with absolutely con-
tinuous diffraction spectra and pure-point energy spectra akin to random media in the localization regime.
However, the nature of their eigenmodes and their localization properties are not yet fully understood®. For
instance, differently from fractal structures such as Fibonacci and Thue-Morse ones, the integrated density of
states of Rudin-Shapiro structures was found to scale logarithmically and their energy spectra display multifractal

SCIENTIFICREPORTS|7:2259 | DOI:10.1038/s41598-017-02170-9 2



www.nature.com/scientificreports/

Figure 1. Schematic of a set of scattering layers with representative fractal pulse shapes displayed at different
times.

behavior for certain values of the scattering strength?’. In this paper we demonstrate that such unusual spectral
properties give rise to logarithmic transport of optical waves in such systems for the first time.

The device structures considered in this work are all generated by binary inflation rules that act on two con-
stituent layers (say A and B) with refractive indices n, and n,, respectively, as schematically represented in Fig. 1.
With no loss of generality the optical thickness of each layer is set to be X\j/4, and we chose X\y= 1550 nm. The
spatio-temporal electric field distribution of propagating pulses and the optical transmission spectra are calcu-
lated using the rigorous transfer matrix method over a wide frequency range centered at w, = 27c/ . Additional
details on this well-established technique can be found in our methods section. In analogy with the electronic
case, we define the MSD of optical wave packets as'*25:

1 rL 1 pL 0 iy 2
() = fo b = xof |[ECo, O dx = — fo x — x, fo EA0, w)i(x, w)e “'duw| dx

(1)

where L represents the total length of the sample, E(x, t) is the electric field inside the sample as a function of
space and time (methods section), E,(0, w) is the frequency spectrum of incident field, and ¢(x, w) is the scatter-
ing map of the system (methods section). Moreover, we study the temporal ACF of optical wave packets defined
as':

_1r / 2 g4
() tfo (E(x, t)|E(x, 0))Pdt o
where <, > indicates the inner product (E(x, t)|E(x, 0)) = > ,E(x;, t)E(x;, 0).

The temporal scaling of the above quantities fully reveals the anomalous nature of diffusive transport in arbi-
trary 1D scattering systems. In particular, it is well-known that the transport of electronic excitations across
quasi-periodic structures with fractal energy spectra displays an asymptotic scaling of C(¢) that decays algebrai-
cally as ~t~%, where the exponent § is equal to the fractal dimension of the spectrum'* . Interestingly, this behav-
ior has not been reported for optical wave excitations, motivating our study.

Transport across localized photon states in periodic structures

In order to validate our computational method we first considered as a reference case the optical pulse transport
through localized states in photonic coupled micro-cavities with structural defects distributed periodically along
an otherwise regular photonic crystal structure. The defects consisted in additional layers of type A positioned
along the periodic AB layer sequence. The investigated system can be symbolically represented as
[(AB), Aly (BA),;» where M and N indicates the number of repeated units inside the parenthesis. This photonic
system supports a number of resonant defect modes forming a comb-like structure within its fundamental Bragg
gap. The number of localized states in the gap equals the number N of cavity defects introduced in the system,
which are regularly spaced with respect to the central frequency w, as shown by the calculated transmission spec-
trum in Fig. 2(a), overlapped with the spectrum of the incident pulse. The transmission spectrum contains a large
number of regularly separated resonant states with very close spacings. However, even for large systems with
several hundred defect layers, the resonant states always overlap resulting in coherent photon tunneling (i.e.,
resonant tunneling) across the entire structure. This phenomenon is analogous to the well-known formation of
transmission mini bands for the electron transport in semiconductor superlattices. Moreover, despite the large
number of resonant modes, this spectrum does not support a fractal structure or fractal eigenstates, and therefore
D{'/D} = 1. According to the scaling theory of electron transport in 1D, no anomalous diffusion is expected to
take place under such condition and in fact we show that wave transport occurs ballistically. This qualitative pic-
ture is confirmed by our numerical simulations obtained by computing the spatial-temporal evolution of a
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Figure 2. (a) Transmission spectrum of N =40 cavities of \(/2n, thickness each \y= 1550 nm. Cavities are
separated from each other by periodic Bragg reflectors made of 20 alternating layers of refractive indices
n;=1.5, n,=1.75 and thickness \j/4n, and \y/4n,, respectively. Dashed line represents the frequency spectrum
of the incident optical pulse. (b) Intensity distribution (|E[*) of an optical pulse propagating through the layers at
different times normalized to the incident pulse. (¢) Calculated MSD of the pulse in coupled cavity systems with
varying cavities ranging from N =10 to N =100 (in steps of 10). (Inset) Calculated scaling exponent of the MSD
as a function of N. ‘ct’ in (b) and (c) is the time equivalent length where c represents the velocity of light and t
represents time.

Gaussian optical pulse transported across the structure (details in methods section). In Fig. 2(b) we show few
representative snapshots of the pulse intensity that propagates inside the structure.

The normally incident input pulse tunnels into the system and propagates ballistically while spreading in time
until it reaches the output face of the structure. At any spatial position in the sample, the envelope of the pulse
remains Gaussian with a high-frequency spatial modulation that results from the interference inside the struc-
ture®. Calculated MSD for pulses transported across coupled cavities with different numbers of defect states are
displayed in Fig. 2(c). The MSD time traces feature a power-law scaling with a constant slope for systems with up
to 100 coupled cavities, irrespective of the refractive index contrast in the structure. This behavior demonstrates
coherent transport of the wave packet with an asymptotic scaling exponent =2, which indeed corresponds to
the ballistic regime. The inset in Fig. 2(c) summarizes the results obtained for different numbers N of cavity
(defect) states. Notice that the values of the transport exponent converge to the ballistic value =2 when the
structures are large enough to avoid spurious reflections from their end facets, which cause an artificial drop in
the MSD curves. In all our simulations we exercised particular care to verify that the coupling of the pulse to the
end facet of the structures is negligible, so that the values of the transport exponents (obtained by power-law fit-
ting) do not depend on the launching conditions of the pulses or on the total length of the system. The ballistic
nature of pulse transport in periodic coupled cavity systems is further confirmed by the study of the correspond-
ing ACF time decay, which was found to follow the power law C(t) ~ t ® with §= 1, irrespective of the index
contrast.

Tunable anomalous photon transport in Fibonacci and Thue-Morse structures

We can now address the optical pulse transport in quasi-periodic Fibonacci and in deterministic aperiodic
Thue-Morse and Rudin-Shapiro photonic media. In contrast to periodic structures, these photonic systems
exhibit largely tunable anomalous transport as a function of the refractive index contrast between the constituent
layers A and B.

As a first case we consider a quasi-periodic Fibonacci photonic system where the scattering layers are arranged
according to the well-known Fibonacci inflation rule!®!: A — AB and B— A starting with A. The optical trans-
mission spectrum of this structure is truncated at N= 2048 layers, and it is shown in Fig. 3(a) overlapped with the
spectrum of the input pulse. It is known that in the limit of N— oo (where N is the number of layers) the highly
fragmented spectrum of the Fibonacci multilayer converges to a self-similar Cantor set with zero Lebesgue meas-
ure and with fractal dimension df: In2/In3, irrespective of the refractive index contrast®®. Moreover, differently
from periodic systems, Fibonacci multilayers support distinctive modes, known as critical states, with an envelope
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Figure 3. (a) Representative transmission spectrum of a Fibonacci multilayer with refractive indices n, = 1.5
and n,=1.9 with layer thickness \/4n, and \,/4n, respectively. Dashed line represents the frequency spectrum
of the incident optical pulse with central wavelength at 1550 nm. (b) Computed MSD values as a function of
time and refractive index contrast between the constituent layers (n, = 1.5 in all cases), Inset shows the scaling
exponent of the MSD obtained using numerical fitting of the data to power law. The quality of the fitting is
demonstrated with representative dashed lines overlapping the data in main panel. (¢) Computed ACF as
function of time. Solid lines represent the numerical data and dashed lines are theoretical prediction (Lines are
scaled vertically for better visualization). The inset shows a magnified portion of the initial-time ACF decay
curve that support fractal log-periodic oscillations. ‘ct’ in (b) and (c) is the time equivalent length where c
represents the velocity of light in vacuum and t represents time.

that decays according to a power law and with a highly fluctuating character described by a distribution of fractal
exponents (multifractal states) that vary with frequency and with the strength of the scattering potential®. As we
will demonstrate in this paper, these distinctive spectral and mode properties provide vastly unexplored oppor-
tunities to tailor the optical transport in aperiodic systems.

We first note that exact fractality of the spectrum (at all frequencies) only occurs in the limit of infinite layers.
However, almost perfect self-similarity across broad spectral regions can be obtained even for relatively short
Fibonacci structures with only few hundred layers. For our study we selected a number of layers that gives rise
to a constant fractal dimension across the part of the frequency spectrum that overlaps with the envelope of the
propagating pulse. Under these conditions, we show that due to the fractality of the Fibonacci spectrum and the
broad distribution of fractal dimensions of the critical eigenmodes’! it is possible to achieve anomalous transport
with the exponent (3 controlled by the refractive index contrast. To demonstrate this behavior we perform numer-
ical simulations of the MSD scaling, shown in Fig. 3(b) for different values of the refractive index contrast. We
found that the slopes of the MSD curves, plotted on a double logarithmic scale, strongly depend on the choice of
the refractive index contrast. The strong dependence of the transport exponents (3 on the values of the refractive
index contrast is summarized in the inset of Fig. 3(b). Our data clearly demonstrate that the transport properties
of optical Fibonacci systems can be tailored from super-diftusion (3> 1) to sub-diffusion (3< 1) depending on
the strength of the scattering potential (i.e., refractive index contrast), in close analogy with the tunable quantum
dynamics of quasi-periodic electronic systems qualitatively explained by renormalization group arguments'> It
should be emphasized that the observed tunability of photon transport is not associated with the excitation of a
single critical mode but rather with a distribution of multifractal states that overlap the spectrum of the incident
pulse.

Moreover, we discovered a very similar behavior also in Thue-Morse structures'® !> 2> which are gen-
erated by the inflation rule: A — AB and B — BA. Similarly to the Fibonacci case, these structures support a
singular-continuous energy spectrum with self-similar fractal properties® >> 2. Earlier work has compared
the transport properties of Fibonacci and Thue-Morse structures within the tight-binding model and reported
anomalous super-diffusion for electrons®®. Moreover, it was shown that, for a given scattering strength, elec-
trons in Thue-Morse structures are less localized compared to Fibonacci ones and the degree of aperiodicity of

SCIENTIFICREPORTS|7:2259 | DOI:10.1038/s41598-017-02170-9 5



www.nature.com/scientificreports/

10" 102 103 10" 102 10°
ctum ctum

Figure 4. (a) Representative transmission spectrum of a Thue-Morse multilayer with refractive indices n, = 1.5
and n,=1.9 with layer thickness \/4n, and \,/4n, respectively. Dashed line represents the frequency spectrum
of the incident optical pulse with central wavelength at 1550 nm. (b) Computed MSD values as a function of
time and refractive index contrast between the constituent layers (n, = 1.5 in all cases), Inset shows the scaling
exponent of the MSD obtained using numerical fitting of the data to power law. The quality of the fitting is
demonstrated with representative dashed lines overlapping the data in main panel. (¢) Computed ACF as
function of time. Inset shows the scaling exponent of the ACF obtained using numerical fitting of the data to
power law. ‘ct’ in (b) and (c) is the time equivalent length where c represents the velocity of light in vacuum and
t represents time.

Thue-Morse structures is intermediate between periodic and quasi-periodic systems. Our results on the pho-
ton transport across Thue-Morse structures with varying refractive index contrast are summarized in Fig. 4.
Similarly to the Fibonacci case, we observe widely tunable anomalous transport behavior across the self-similar
Thue-Morse structure and clearly demonstrate both super-diffusion and sub-diffusion depending on the refrac-
tive index contrast. Moreover, by comparing the decay of the transport exponents shown in the insets of Figs 3(b)
and 4(b) we realize that the transition into the localization regime (5= 0) occurs more gradually in Thue-Morse
compared to Fibonacci structures. Similarly to the case of electronic transport, this behavior is consistent with
the more extended character of the optical modes in Thue-Morse structures. The inset in Fig. 4(c) displays the
scaling exponents 6 of the ACF of the Thue-Morse structure for different values of the refractive index contrast.

Connection with fractional transport

The anomalous transport behavior discovered in the Fibonacci and Thue-Morse structures can be regarded as an
instance of fractional photon transport. The large tunability of photon transport in deterministic aperiodic sys-
tems is effectively described by the asymptotic solutions of the fractional diffusion-wave equation (FDWE):
D’ d(x, t) = DO, p(x, t)with0 < 8 < 2.1In this equation D stands for a generalized diffusion coefficient while
D? is the Caputo-type fractional time-derivative of (real) order (3, which is defined as*:

1 to dr
Lo, ] —E—if
Dot =] 5l t)}(t— =L
T 1 f’3_2¢(xt) 9T f1<p<n
L@ —p) Jolor? " i - 7! (3)

and I" is the Euler’s gamma function. When (3 is an integer (5= 1, 2) the right-hand-side in the above definition
reduces to the corresponding partial derivative of integer order and we recover either the standard diffusion equa-
tion for #=1 or the wave equation for §=2. When 1 < #< 2 the fractional equation is expected to interpolate
continuously between a diffusion and wave propagation. The large tunability of wave transport associated to the
fractional order 3 manifests the microscopic non-Markovian nature of photon transport in complex aperiodic
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systems. In fact, the FDWE kinetics provides an effective model to account for the complex photon correlations
and memory effects established by the phases of multiply scattered waves in strongly inhomogeneous aperiodic
media. The connection between field propagation through multilayered structures with fractal spectra and frac-
tional transport is established based on the scattering matrix approach® in our methods section. In particular, it is
possible to show based on simple scaling arguments that the time-dynamics of optical pulses in fractal scattering
systems is determined by a non-local fractal operator in time-domain'> 3 that depends, yet in a complex and
non-analytical fashion, on the aperiodic refractive index modulation.

The fundamental solution of the FDWE can be obtained in closed-form using Fourier-Laplace integral inver-
sion methods (i.e., Mellin-Barnes integrals) and it can be expressed analytically in terms of the transcendental
Wright functions or using the Fox H-functions®**’. The reduced Green’s function (see methods section), can be
interpreted as a symmetric spatial PDF evolving in time with a stretched exponential relaxation, which provides
the following expression for the MSD*":

, 29
olo 2
r@G+1 (4)

It is essential to notice here that the transport process predicted by the FDWE model is widely tunable and can be
switched from anomalous sub-diffusion (0 < #< 1) to anomalous super-diffusion (1 < 5 < 2).

As we appreciate in Figs 3 and 4, our numerical results on the MSD scaling can be accurately described by
considering the asymptotic solutions of the FDWE model, which are shown by the dashed lines. A similar FDWE
approach has been recently proposed to model the multiple scattering of acoustic waves in one-dimensional
multiscale media with long-range spatial correlations®. In this context, the FDWE is associated to lossless inho-
mogeneous random media and describes an effective medium with power-law frequency dependent attenuation
coefficient®. The fractional wave transport approach is well-established in fields such as viscoelasticity and seis-
mic wave propagation®, but it has yet to receive proper consideration in optics. However, from a physical stand-
point fractional transport naturally follows from the fractal memory kernel in the field equation governing the
dynamics of optical waves in aperiodic media with self-similar spectra. A heuristic scaling analysis of the MSD
and ACF scaling of photonic systems with fractal spectra is described in our methods section.

The fractal nature of the Fibonacci and Thue-Morse transport is directly revealed by the ACF decay, displayed
in Figs 3(c) and 4(c) for varying refractive index contrast. All the ACF curves exhibit an inverse power law scaling
with constant slope. The decay exponent § is found to be independent on the refractive index contrast, in agree-
ment with the analytical scaling law C(t) ~ ¢~ previously introduced for electronic systems. We further validated
our numerical results by computing the fractal dimension of the Fibonacci transmission spectrum using the
accurate Wavelet Transform Modulus Maxima (WTMM) technique**-*? as summarized in the methods section.
This analysis confirms that the calculated fractal dimension (d;=1In2/In3) of the Fibonacci spectrum equals the
exponent ¢ independently estimated from the power-law fitting of the ACF decay. Finally we show in the inset of
Fig. 3(c) a magnified portion of a typical ACF decay curve to emphasize the presence of initial-time log-periodic
oscillations that develop in close analogy to the case of electronic systems'?. Such oscillations have been recently
addressed using the analytical theory of spectral zeta functions on fractals*>*4. Physically, they manifest resonant
scattering phenomena between neighboring lattice clusters that share similar local geometrical structures in frac-
tal environments. This intriguing phenomenon was also discussed in the context of the electron transport across
Fibonacci chains using the renormalization group approach®. Interestingly, we report similar oscillations in
Thue-Morse structures for the first time.

Sinai logarithmic photon transport in Rudin-Shapiro structures

We now address Sinai logarithmic sub-diffusion of optical wave packets in Rudin-Shapiro (RS) photonic struc-
tures. RS structures features unique spatial correlations associated to an unusual scaling of the density of states
that can be described by multifractal analysis?. Indeed, in our method section we utilize the WTMM analy-
sis to compute the multifractal spectrum of the RS optical transmission. RS multilayers are generated from a
two-letter alphabet subject to the simple inflation rule: AA — AAAB, BB— BBBA, AB— AABA, BA— BBAB,
starting from the initial seed AA'!. The transmission spectrum of the RS photonic structure (N = 2048 layers)
shown in Fig. 5(a) is characterized by a singular distribution of narrow resonant peaks. Figure 5(b) summarizes
our results for the MSD of optical wave packets propagating through the systems. The data are plotted in a double
logarithmic scale and demonstrate a clear logarithmic scaling behavior, in stark contrast to the case of Fibonacci
and Thue-Morse systems. To the best of our knowledge this behavior is not displayed by other deterministic opti-
cal systems and provides exciting opportunities to engineer ultra-slow diffusion phenomena using conventional
dielectric structures.

Logarithmic sub-diffusion also falls within the very general umbrella of fractional kinetics. In fact, at
the continuum level, Sinai logarithmic sub-diffusion is described by a fractional diffusion equations of
distributed-order*® ¥’. The distributed-order time fractional diffusion equation can be obtained from the FDWE
by integrating with respect to the order (3 the fractional time derivative as follows:

[ p9)p2 6, 1145 = DB, 1
0 (5)

where p(3) is a non-negative dimensionless weight function subject to the normalization condition
j; ! p(8)dB = 1. Clearly when the weight is a delta function the distributed-order time fractional diffusion equa-
tion reduces to the FDWE as a special case. Ultra-slow kinetic processes with tunable logarithmic MSD scaling
(x?) ~ log"(t) manifest the asymptotic solution of the distributed-order diffusion equation with a power-law

SCIENTIFICREPORTS|7:2259 | DOI:10.1038/s41598-017-02170-9 7



www.nature.com/scientificreports/

(a) 1

0.5

0.6 0.8 1 1.2 1.4

(b) 10 - 3 () T
3 12 10"

10 =

2-‘ 2 8 0100

> 10 >

N>\§ e 10" 10> 10°
10" 4 ctum
10°

. - 0
10" 102 10° 1 1112131415
ct um n2/n1

Figure 5. (a) Representative transmission spectrum of an RS multilayer with n, = 1.5 and n, =1.75. The

dashed line represents the frequency spectrum of the incident optical pulse at 1550 nm. (b) Calculated

MSD scaling curves for different values of the refractive index contrast between the constituent layers. MSD
scaling is observed to have logarithmic behavior in a double-log plot representing ultra-slow Sinai diffusion.
The deviation from logarithmic behavior at higher time scales is due to the finite size of the system of layers
(reflections from the other end of the layers). (¢) Calculated scaling exponent of the MSD curves shown in panel
(b) using the logarithmic Sinai model. The quality of the fitting is demonstrated with representative dashed lines
overlapping the data in panel (b). Inset in (c) is calculated ACF for few representative refractive index contrasts.
The lines are scaled vertically for better visualization. ‘ct’ in (b) and (c) is the time equivalent length where ¢
represents the velocity of light in vacuum and t represents time.

weight function p(8) = v3" "1 (v>0) that is associated to a very broad distribution of localization traps (i.e.,
localized modes). Therefore, distributed-order diffusion equations result from microscopic CTRWs processes
with extremely broad waiting time PDFs, characteristic of strongly non-homogeneous environments. The case
v=4 corresponds to the original Sinai model*.

The dashed lines in Fig. 5(b) are best fits obtained according to the general Sinai model (x*) ~ log”(t)*.
Notice that also in the case of the RS structure distinctive oscillations develop in the MSD curves, reflecting the
correlated nature of the aperiodic order. In addition, our results show that the Sinai transport exponent v can be
largely controlled by the refractive index contrast. According to the microscopic Sinai transport theory the
parameter v describes the degree of spatial non-homogeneity of transition rates (or scattering potentials) in the
system. Our data demonstrates that this exponent can be tailored over a large range in the case of photon scatter-
ing, as shown in Fig. 5(c). In the inset of Fig. 5(c) we also display the calculated ACF decay curves for different
values of refractive index contrast, vertically translated for better visualization. Notice that for structures with
multifractal spectra it is not possible to associate a unique scaling exponent to the ACF decay. However, our data
demonstrate an approximate inverse power-law scaling of the ACF of the RS structure. This behavior can be
attributed to the contribution of the leading dimension in the multifractal spectrum, shown in the methods sec-
tion. However, it is presently not possible to establish a simple relation between the ACS decay and the multifrac-
tal transmission spectrum. We also observe that, differently from Fibonacci and Thue-Morse structures, the ACF
decay curves of RS structures present a weaker oscillatory behavior. This is consistent with the more inhomoge-
neous character of multifractal systems?® with a very broad singularity spectrum (shown in the methods section).
However, to what extent Sinai logarithmic sub-diffusion of light is a generic attribute of wave propagation in
multifractal aperiodic media remains to be investigated in the future.
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Finally it is interesting to realize that in anomalous sub-diffusive processes the diffusion constant vanishes
(x*®)

asymptotically, i.e., D = lim,_, . Therefore, photon sub-diffusion provides a mechanism to inhibit diffusive
transport that fundamentally differs from traditional Anderson localization in random media. Moreover, it is
important to notice that Sinai-type sub-diffusion occurs under conditions such that the localization length of the
modes in the RS structure is larger than the system size, implying that interference effects are very weak. This
situation is in stark contrast with Anderson localization in random media that requires strong wave interference
effects. In order to demonstrate this important feature of Sinai sub-diffusion we performed analytical and numer-
ical calculations of the localization length and the scattering mean free path in the RS structure as a function of
refractive index contrast (see methods section). The results clearly show that Sinai sub-diffusion occurs for values
of the refractive index contrast such that the localization length exceeds the size of the RS system, i.e., outside the
wave localization range. Therefore, the demonstration of logarithmic sub-diffusion in RS multifractal systems
provides novel opportunities to inhibit the diffusion of optical waves in deterministic dielectric environments at
relatively small values of the refractive index contrast. In the emerging technological opportunities offered by
aperiodic structures in photonic metamaterials'> *®*°, the engineering of deterministic systems with
logarithmic-in-time processes can directly impact optical devices due to the enhancement of the photon resi-
dence time (or dwelling time) intrinsically associated to sub-diffusion processes. By increasing light-matter cou-
pling in a scattering medium over what is possible using classical transport mechanisms, logarithmic
sub-diffusion paves the way to broadband photonic trapping and localization effects even in the weak scattering
regime, where a modified (fractional) diffusion picture can be applied. Since such mechanisms fundamentally do
not rely on strong wave interference effects the resulting photon transport is broadband, naturally stimulating
novel applications to active photonic devices such as light sources, absorbers, and optical sensors.

Conclusions

In conclusion, we systematically investigated the propagation of optical wave packets through primary examples
of periodic, quasi-periodic and pseudo-random photonic multilayer structures and we demonstrated largely tun-
able anomalous photon transport, including logarithmic Sinai sub-diffusion of photons for the first time. In par-
ticular, while optical pulses in self-similar Fibonacci and Thue-Morse systems with monofractal energy spectra
obey power-law anomalous scaling, in pseudo-random RS structures with multifractal energy spectra they are
transported logarithmically, in agreement with the analytical predictions of a distributed-order fractional diffu-
sion model. The fruitful connection between fractional transport equations and photon transport in deterministic
aperiodic media has been established providing novel insights into the complex behavior of multiple light scat-
tering in non-homogeneous environments with tunable spatial correlations. The demonstration of novel photon
transport regimes including logarithmic sub-diffusion in deterministic optical media provides novel degrees of
freedom to tailor light-matter interactions and to engineer unusual pulse propagation and wave dispersion phe-
nomena in optical devices. This is in stark contrast with the traditional vision that predicts the vanishing of the
diffusion constant only in the strong scattering regime due to the interplay of multiple interference and disor-
der effects. In our paper we demonstrated an alternative path to localization that relies on a different transport
mechanism other than strong scattering. This feature can be very advantageous in many device contexts where
strongly scattering (i.e., high refractive index) materials are not readily available or where broad band frequency
responses are desirable. Moreover, since materials with large refractive index and with minimal absorption across
broad frequency spectra are not readily available, the engineered photon sub-diffusion approach may provide
a different route to wave localization that relaxes such stringent materials requirements. We envision that our
demonstration of tunable sub-diffusion of optical waves in deterministic media will enable the development of
novel thin-film light trapping devices such as solar cells and photodetectors where light absorption efficiency
can be significantly enhanced by slowing down the photon transport in weakly absorbing optical media. Finally,
engineered sub-diffusion of photons may lead to a fundamentally novel strategy to boost light-matter interaction
in low-index, structurally complex aperiodic laser structures where, similarly to the case of random lasers, the
lasing threshold relates directly to the photon diffusion constant.

Methods

Electromagnetic calculations. The calculation of the electromagnetic fields through multilayer structures
has been performed using the scattering matrix method and the electromagnetic pulse transport in time-domain
obtained by Fourier synthesis. The central frequency of the pulse is w, = 2mc/ X, where Ay=1550 nm. The inci-
dent field E,(x =0) is described by a Gaussian spectral profile as: E(x = 0, w) = Eoexp(faz(w - wo)z), with
Ey=1and a =33 fs. The propagation of waves occurs normally to the layers (i.e., along x axis) and the layers are
homogeneous in the yz-plane. The electric field is polarized along y axis. Under these conditions, the electric field
at a given position x within the sample can be expressed as:

E(x, t) = fo F B0, w)e “N(x, w)dw

(6)
where ¥(x, w) is the so-called scattering map™.
For an arbitrary layered structure, 1)(x, w) can be expressed in closed form as:
izl . .
0, @) =| T] ) [™5750 4 rw)e079)] = B(x, w)x(x, w)
m=1 7)
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Figure 6. Net transmission (a—c) and reflection (d-f) spectrum defined using equations (8) and (9) respectively
in the middle layer of the samples investigated in the main text. Each structure has 2048 layers and the panels
display the net reflection and transmission values at the 1024" layer. (a,d) Correspond to Fibonacci multilayers
with n, =1.5 and n,=1.9. (b,e) Correspond to Rudin-Shapiro multilayers with #, = 1.5 and n,=1.75 and (c), (f)
correspond to the Thue-Morse multilayers with n, = 1.5 and n,=1.75.

where x,_| < x < x; are inside the j* layer in the structure, k is the free space wavenumber and #; represents the
refractive index of j" layer. The reflection and transmission functions rw) and t(w) are obtained iteratively for
each layer using the recursive relations:

(11 — m)dy + 2mgy 1y (W) (W)

rj(w) =
Nt m (8)
t(w) = 2101
! (”j_1 + I’lj) + (nj_l - nj)‘f’jrj(w) 9)

assuming ry=0 and ty=1, where N represents the total number of layers and &; = exp(ikn;(x; — x;_)) is the
propagation phase inside each layer. Equations (8) and (9) represent a compact form of scattering matrix equa-
tions for waves propagating at normal incidence to the layers®.

Heuristic scaling analysis. The scattering map 9(x, w) of aperiodic structures with fractal spectra is a
self-affine two-dimensional function of space and frequency in the limit of large sample size L. A self-affine func-
tion describes fractality with different scale-invariant symmetries along the x- and w-directions. Indeed we show
in Fig. (6) that, for a large sample length L, 1(x, w) approaches the fractal transmission spectrum of the corre-
sponding aperiodic structure. More precisely, it has been shown that the counting function, or the integrated
density of states, of a fractal spectrum centered around the central frequency w, follows the power-law scaling
relation: T, (w) = |w — wo\ﬁ G(In|w — wy|/y) where G is a log-periodic function, 3 and +y are scaling constants
that depenci on the choice of the central frequency®'. In addition, both the r(w) and the product of the #,(w) are
self-similar functions, as illustrated in Fig. (6). For a fixed value of w, the function 1(x, w) provides the spatial
profile of the corresponding critical mode. In general, critical modes are non-uniform fractals, or multifractal
signals, characterized by a distribution of scaling exponents that depends on the choice of the optical frequency
w. Therefore, in the laf@ge L-value limit the 1(x, w) is asymptotically self-affine with local scale-invariance symme-
try: ¥(ax, bw) = a®b”(x, w) for a and (3 positive real numbers that depend in general on the local position in
space and frequency.

In order to justify the anomalous scaling of the transport in the considered aperiodic structures we need to
address the time evolution of the optical pulses. This can be done by considering the the scattering map in the
space-time domain t(x, t), which is obtained by inverse Fourier transforming Equation (7):

Yx, 1) = B(x, 1) ® Xx, 1) (10)

where ®(x, t) and Y(x, t) are the inverse Fourier transforms of the functions ®(x, w)and y(x, w) defined in (7).

Despite the non-analytic and complex character of the functions involved, Equation (10) defines a non-local
convolution that reveals the long-range correlated nature of the wave scattering in layered systems. Assuming a
local scaling relation (x, w) ~ Cx“w” and remembering that power law functions are invariant under both
Fourier transformation and convolution operations, it follows immediately that ¢(x, t) is asymptotically self-affine
as well. The computed scattering maps 1(x, w) and ¢(x, t) for the investigated aperiodic photonic structures are
shown in Figs (7) and (8) along with the electric field distributions of few representative critical modes.

Connection with anomalous transport. The above scaling analysis allows us to establish that both the
ACF and the MSD of photonic structures characterized by self-affine scattering maps exhibit anomalous
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Figure 7. Scattering Map of fields in different sequence of layers. (a) Periodic micro cavities (n,=1.5 and
n,=1.65; 207 Layers), (b) Fibonacci (n, = 1.5 and n, =2.5; 233 Layers), (c) Rudin-Shapiro (1, =1.5and n,=1.7;
256 Layers) and (d) Thue-Morse (1, = 1.5 and n, = 3.5; 256 Layers). Color represents|(x, w)| calculated using
equation (7).
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Figure 8. Time evolution of optical pulse in different sequence of layers. (a) Periodic micro cavities (1, =1.5
and n, =1.65; 207 Layers), (b) Fibonacci (1, = 1.5 and n,=2.5; 233 Layers), (c) Rudin-Shapiro (#, =1.5 and
n,=1.7; 256 Layers) and (d) Thue-Morse (1, = 1.5 and n,=3.5; 256 Layers). Color represents |t(x, t)|calculated

using equation (10). ‘ct’ in all panels is the time equivalent length where c represents the velocity of light in
vacuum and t represents time.
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Figure 9. Localization length and scattering mean free path of the RS sample as a function of refractive index
contrast. Dashed lines represent localization length normalized to the sample length. Solid lines represent the
same calculated using the analytical formula derived for random systems™.

transport behavior according to a nonlinear (power-law) scaling with respect to time. In particular, by noticing
that the ACF is the time integral of the scattering map, and that any causal power function of the form
(1) = 7Y T () transforms into Q1) when integrated between zero and ¢, it follows that ACF must exhibit
power-law scaling asymptotically, consistently with our numerical simulations. A similar argument can be made
to support the power-law scaling of the MSD as well. On the other hand, in structures with multifractal transmis-
sion spectra, as the RS systems discussed in the main text, it is not possible to asymptotically represent the scat-
tering maps (x, w) and 1 (x, t) as power-laws due to the broad distributions of their scaling exponents. As
explained in the text, when the weight function is a power-law, then ultra-slow Sinai sub-diffusion arises in the
MSD scaling. No closed-form results are known for the corresponding ACF decay in this case.

Connection with fractional dynamics. 1In the previous section we have shown that both the
space-frequency ¥(x, w) and the space-time (x, t) scattering maps of fractal structures are self-affine objects that
can be expressed asymptotically as a convolution integral with a power-law kernel. This feature is the hallmark
of fractional calculus since fractional operators are defined by convolution integrals with non-local power-law
kernel functions'®. The fractional (non-local) character of the time-dynamics of optical transport across fractal
structures is exemplified by the scattering maps (x, t) plotted in Fig. 8. The non-Markovian (i.e., correlated)
nature of the pulse dynamics is clearly evidenced by the fractal distributions of internal pulse reflections that
characterize aperiodic systems (Fig. 8b-d).

Solutions of the FDWE. The fundamental solutions (i.e., Green’s functions) corresponding to the Cauchy
problems of the FWDE in Equation (3) are denoted by Gg )(x, t) (j=1, 2) and can be analytically obtained*. In
particular, by introducing the similarity variable x/t”'* we can express the two Green’s functions in terms of the
one-variable reduced Green’s functions K éf )(x) (j=1,2) as follows:

6§/, 1) = 1Pt ™) (an
G/(f)(x, £ = t—ﬂ/2+1K/(32)(x/tﬂ/2) (12)

A convenient expression for the Green’s functions as convergent power series has been recently derived**:

0 1™ (=x)" )
K (x) = =" . 5j=1,2
2, on'T[—p0n/2 + (G — B/2)] (13)
Both the Green functions above have been shown to be non-negative and normalized, so they can be interpreted
as probability density functions.

Localization length analysis. In Fig. 9 we estimate the localization length ¢ and photon mean free path
I for RS structures as a function refractive index contrast. We also compare the results with the case of binary
pseudo-random structures with the same total length. The data in Fig. 9 demonstrate excellent agreement
between the analytical theory valid for 1D random structures®* > and the numerical results on RS structures
obtained from the scaling of their transmission spectra. These results indicate that the scattering mean free path
is larger than the total length L of the samples for the range of refractive index contrast where Sinai sub-diffusion
is reported. This implies that logarithmic photon transport is strongly influenced by spatial correlations in wave
interference, which develop even for small values of the refractive index contrast if L is sufficiently large.

The localization length of pseudo-random and RS structures is calculated using the ensemble-averaged
transmission over the frequency spectrum and it is defined by ref. 52: /L = —1/(InT), where T is the trans-
mission coefficient of the sample and L is the total length of the sample. To calculate the localization length in
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Figure 10. Scaling exponent 7(g) of the optical transmission of a Rudin-Shapiro structure (1024 layers). The
inset shows the corresponding singularity spectrum D(«) calculated numerically with a Legendre transform of
7(g). The wavelet transform WT (u, s) of the optical transmission was computed using an analyzing wavelet

1) =—0" where 0 is a Gaussian wavelet.

1D random multilayers we averaged over the frequency spectrum of the optical pulse the analytical expression
provided in ref. 53:

2 2\2 -t
E\) = 2(d, + dy){In|(313 + np)(n2 + 3nd) + 3 m) | 21n (4n,np)
4 cos(mAy/A) — 5 (14)
The scattering mean free path [ is estimated using the approximate expression valid for 1D random systems:
£~ (1 +ml (15)

Wavelet Transform Modulus Maxima (WTMM) method. This powerful mathematical technique was
introduced to investigate the hierarchical structure of singular signals and it is particularly suited to characterize
fractal and multifractal measures with non-isolated singularities such as the spectra of the aperiodic structures
discussed in the main text.

The method enables the computation of the singularity spectrum D(«) of a multifractal signal or measure
by analyzing the scaling properties of a global partition function defined on the maxima of the modulus of the
wavelet transform of the signal. The partition function is defined as:

Z(q,s) = S| Wi(w, 5)f
(g 9) anl f(uys 9)] 16)

where| Wf(u,, s)|is the modulus of the wavelet transform of the function fand u,, (#n integer) denotes the position
of the local maxima of fat a given scale s and q is a real number. For each value of g, the partition function features
a power-law scaling according to:

2(q, 5) ~ 5@ (17)

at fine scales. All maxima that do not propagate up to the finest scales are typically removed in the calculation
of the partition function. The singularity spectrum of the multifractal can now be obtained by computing the
Legendre transform of 7(g):

D(a) = mi 1/2) —
() mqm[q(a+ 12) — 7(g)] (18)

Additional details on wavelets and multifractal analysis can be found in ref. 54.

We prove the multifractality of the RS transmission spectrum by computing its singularity spectrum using
the free library of MATLAB wavelet routines WaveLab850°. The non-linear behavior of the 7(q) exponent in Fig.
(10) demonstrates the multifractal nature of the signal. Moreover, besides a nonlinear 7(q) exponent, multifrac-
tals are also characterized by a distinctive single-humped (concave) shape spectrum D(«)*!. The singularity spec-
trum of the RS transmission spectrum is shown in the inset of Fig. (10). Indeed, a very broad singularity spectrum
is obtained consistently with the multifractality of the RS structure. In contrast, mono-fractals spectra, such as
Fibonacci quasi-periodic structures, feature a linear scaling exponent 7(q) and the D(«) singularity spectrum is
supported by a single point coinciding with their fractal dimension.
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