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Abstract. This paper describes algorithms to perform optimal assign-
ment of teams of robots translating in the plane from an initial formation
to a variable goal formation. We consider the case when each robot is
to be assigned a goal position, the individual robots are interchangeable,
and the goal formation can be scaled or translated. We compute the costs
for all candidate pairs of initial, goal robot assignments as functions of
the parameters of the goal formation, and partition the parameter space
into equivalence classes invariant to the cost order using computational
geometry techniques. We compute a minimum completion time assign-
ment for an equivalence class by formulating it as a linear bottleneck
assignment problem (LBAP). To improve efficiency, we solve the LBAP
problem for each equivalence class by incrementally updating the solu-
tion as the formation parameters are varied. This work is motivated by
applications that include the motion of droplet formations in digital mi-
crofluidic lab-on-a-chip devices, and of robot and drone formations in the
plane.

Keywords: Robot formations, linear bottleneck assignment, multiple
robots

1 Introduction

The assignment and motion of teams of robots from one formation to another
is a problem that arises in multiple applications ranging from robot and drone
formation planning ([13, 30, 31, 34]) to the motion of droplet formations in digital
microfluidic lab-on-a-chip devices ([19]). Most previous work on multiple robot
assignment has either assumed fixed initial and goal formations when computing
robot assignments, or has assumed a fixed assignment while varying the scale,
location, or orientation of the goal formations.

In this paper, we introduce the problem of performing robot assignment
while simultaneously considering variable goal formations that can be either
scaled or translated. Since energy expenditure and completion time are impor-
tant for many tasks, we wish to miminize the maximum distance traveled or
the maximum time taken by any of the robots. We introduce the scaled goal
formation problem and the translated goal formation problem, where the goal
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(a) (b)

Fig. 1. Example motivating applications. (a) A robot formation on the left that has
to change its shape to pass through the passage between two obstacles. Each circle
represents a robot. (b) Schematic figure showing overhead view of an LADM chip
(indicated by a square) on a smartphone, with circles indicating chemical droplets.
(Left) Initial formation of droplets. (Right) Goal formation of droplets for mixing.
LADM chip and droplets are shown enlarged and chemicals are color coded for clarity.

formation may be scaled or the goal formation may be translated in a region
respectively. Given an initial formation of the robots and a specified shape forma-
tion, we wish to determine the assignment of each robot in the initial formation
to a configuration in the variable goal formation that minimizes the maximum
distance traveled by the robots. We formulate these assignment problems with
variable goal formations as linear bottleneck assignment problems (LBAP) with
geometric constraints where the size or location of the goal formation, which
influences the LBAP costs, must be computed. Our approach exploits the rela-
tive cost ordering property of LBAPs and the geometric structure captured by
arrangements of cost curves and surfaces. We thus partition the goal formation
parameter space into equivalence classes invariant to the cost order. This enables
a comprehensive evaluation to identify the globally optimum solution.

Motivating applications: The multi-robot assignment problem for variable
goal formations is motivated by applications including the following examples.

1. Multiple-robot assignment: The assignment and planning of teams of robots,
drones, and spacecraft often requires motion between formations. Exam-
ple applications include search and rescue operations, package delivery, con-
struction, surveillance, and sensor network monitoring [30, 31, 33, 9, 3]. These
tasks can be subject to spatial constraints (e.g., the team of robots must
squeeze through a passage while maintaining a minimum separation dis-
tance, as in Figure 1(a)) or communication range constraints (e.g., a team
of UAVs must stay within a maximum distance of team members), which
can be represented by the allowable scaling and/or translation of the goal
formation.

2. Digital microfluidic lab-on-chip systems: Low-cost, portable lab-on-a-chip
systems can impact a wide variety of applications including point-of-care
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medical diagnostics. Recent hardware advances are enabling lab-on-a-chip
devices that can be optically actuated using smartphone and tablet LCD
screens (e.g., [23], [22], [25]). In such light-actuated digital microfluidic (LADM)
chips, discrete droplets of chemicals are optically actuated using moving pat-
terns of projected light to perform chemical reactions by repeatedly moving
and mixing droplets (Figure 1(b)). A key issue is the automated planning
and coordination of droplet formations on the LADM chip, which we address
by modeling the droplets as robots. An important step is computing goal for-
mations that can fit within a specified region on the chip, and identifying
assignments of droplets that can efficiently travel to the goal formation.

2 Background: Assignment Problems

Assignment problems deal with how to assign n items (robots, tasks) to n other
items (locations, resources). Consider a problem where there are n tasks, indexed
by i, that must be assigned to n resources, indexed by j. The cost of performing
task i on resource j is cij . The cost matrix C consists of entries cij corresponding
to the cost of assigning task i to resource j. xij is a binary variable that is 1 if
task i is assigned to resource j, and 0 otherwise.

In the linear sum assignment problem (LSAP) [7], which is the standard form
of the assignment problem, the objective function to be minimized is the sum
of the assigned costs

∑
1≤i,j≤n cijxij . LSAP is the dominant form of assignment

that has been considered in the robotics literature (for example, [30, 17]), and
can be solved using the Hungarian algorithm [21, 7].

2.1 Linear Bottleneck Assignment Problem

Since we want to minimize the maximum completion time or the maximum
distance for any robot, we consider the linear bottleneck assignment problem [7].
The linear bottleneck assignment problem (LBAP) formulation is:

min1≤i,j≤n max cijxij∑n
j=1 xij = 1 ∀i = 1, . . . , n∑n
i=1 xij = 1 ∀j = 1, . . . , n

xij ∈ {0, 1} ∀i, j = 1, . . . , n

LBAPs occur in connection with assigning jobs to parallel machines to min-
imize the latest completion time. The LBAP minimizes the maximum cost of
completing any task, whereas the LSAP minimizes the total cost of completing
all the tasks. When the objective function is the time taken or distance trav-
eled, the LBAP minimizes the maximum completion time or maximum distance
traveled by a robot. We use the threshold algorithm [7], outlined in Section 4,
for solving LBAPs.
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3 Finding Optimal Assignments and Scaled Goal
Formations: An LBAP Formulation

We consider the problem of simultaneously computing both the optimal robot
assignment and scaled goal formation while minimizing the maximum robot
travel distance. The Scaled Goal Formation problem is: Given n robots in an
initial formation P = {pi} where pi ∈ R2 is the initial configuration of robot i,
and a specified shape formation S = {sj}, where sj ∈ R2, assign the robots to
configurations in the goal formation Q = {qj}, where qj ∈ R2 is the jth scaled
goal configuration, such that the maximum distance traveled by any robot is
minimized and Q is equivalent up to a scale factor α ∈ R+ of S. Here qj =
αsj + d0, where d0 ∈ R2 is a user specified translation. We assume that only
scale is varied and that all robots move in straight lines to their goals with an
equal and constant speed.

We formulate this as a linear bottleneck assignment problem (LBAP) [7]. For
a given scale value α, the cost cij of assigning robot i in the initial formation to a
location j in the goal formation is the distance from pi to qj , yielding cost matrix
C = [cij ]. xij is a binary variable that is 1 if robot i in the initial formation is
assigned to robot j in the goal formation, and 0 otherwise.

The scaled goal formation LBAP formulation is:

min max cijxij∑n
j=1 xij = 1 ∀i = 1, . . . , n∑n
i=1 xij = 1 ∀j = 1, . . . , n

xij ∈ {0, 1} ∀i, j = 1, . . . , n
where cost cij is a function of scale α.

cij = ||pi − qj ||2 = [ai + bijα+ ejα
2]

1/2
where

ai = (pix − d0x)
2 + (piy − d0y)

2, bij = −2((pix − d0x)sjx + (piy − d0y)sjy),
and ej = s2jx + s2jy.

We must find the value of α that minimizes the objective function. An in-
teresting property of LBAP is that the optimal assignment depends only on the
relative order of the costs cij and not on their actual values (Lemma 6.1 [7]).
The key idea is to exploit this property and identify intervals of α over which
the relative order is invariant. Over each such interval, the value of the optimal
LBAP assignment is determined by the cost of one particular initial and goal
position combination. We call this the critical cost. The value of this cost varies
as α is varied over the interval, but the cost element that determines the value
of the optimal assignment does not change.

The cost cij of each assignment is a function of α. So we have a set of curves
cij and the relative order of the costs changes only at the intersection points of
the curves. See Figure 2. If we can compute all the intersection points as α is
varied, for each interval we can compute the LBAP assignment at a specified
value (say at the midpoint of the interval αmid) and the associated critical cost.
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Fig. 2. Cost curves, showing cost cij as a function of scale factor α, with curve inter-
sections indicated by dark points. There is an invariant cost order between every pair
of consecutive intersections.

By minimizing the critical cost in the interval, we find the α value in the interval
that gives the optimal assignment and cost for the interval. We compare the
optimum costs over all intervals to find the globally optimal assignment and
cost. See the example in Figure 3.

Algorithm for scaled goal formation LBAP:

1. From the given initial formation P and specified shape formation S, and
range of permitted α values, compute the cij cost curves.

2. Compute all intersections of the cost curves by a line sweep algorithm. For
each interval, compute the ordering of the costs using αmid, the alpha value
at the midpoint of the interval. See Figure 2.

3. Compute the cost matrix at αmid in the first α interval, and compute an
LBAP solution for this cost matrix.

4. Compute the optimal LBAP solution for each α interval using the optimal
LBAP solution from the previous interval (to avoid solving the problem from
scratch). Using the known optimal assignment for the previous cost ordering,
the new optimal assignment when two consecutive elements of the ordering
swap places can be efficiently computed (as will be described in Section 4).

5. From the computed LBAP solution, identify the critical cost cij , the cij
that determines the objective function value, and optimal assignment for
the interval. Then compute the minimum value of the critical cost cij over
the interval to obtain the optimal objective value and corresponding optimal
alpha value αopt.

6. Compare the LBAP solutions for all intervals at their respective αopt, and
select the minimum among them as the global optimal assignment and opti-
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Fig. 3. A three robot example using the cost curves of Figure 2. (a) The optimal cost
assignment, at α = 0.2057. (c) An example assignment for α = 0.49519. (d) A different
assignment for α = 0.58956. The start positions are indicated by plus symbols, and the
goal positions are indicated by circles.

mal scale factor. (This global optimal solution can be updated as the optimal
assignment for each interval is computed.)

There are O(n2) costs cij . Finding all pairwise intersections of cij curves by
the sweep line algorithm will yield O(n4) intersections in O(n4 log n) time [11].
There are O(n4) intervals, and explicitly writing out the cost order for an interval
takes O(n2) time. As we will discuss in Section 4, solving a new instance of the
LBAP problem takes O(n2.5/

√
log n) time [7] while using a solution to a closely

related LBAP takes O(n2) time. So the overall running time is O(n6).

4 Incremental Updates to Compute the Optimal LBAP

We now present an approach to update the optimal solution to an LBAP from
the optimal solution of a closely related LBAP. We use the threshold algorithm [7]
for solving an LBAP instance. The threshold algorithm alternates between two
phases. In the first phase, a cost element c∗, the threshold value, is chosen and
a threshold matrix C is defined by cij = 1 if cij > c∗ and 0 otherwise. In the
second phase, we check whether there exists an assignment with total cost 0 for
the cost matrix C. For this, we construct a bipartite graph G = (U, V ;E) with
|U | = |V | = n and edges [i, j] ∈ E if and only if cij = 0. In other words, we check
whether the bipartite graph with threshold matrix C contains a perfect matching
or not. A perfect matching exists for a bipartite graph G with n vertices if there
exists a set of n edges in G such that each vertex is incident on exactly one edge.
Let the threshold graph G(c) be the bipartite graph such that an edge eij = [i, j]
exists if and only if cij ≤ c; the edge has weight 0. The edge eij has a cost cij
associated with it in the cost matrix C. The smallest value c∗ for which the
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threshold graph G(c∗) contains a perfect matching is the optimal value of the
LBAP; this c∗ is the critical cost. For the case of dense graphs, there is a version
of the threshold algorithm with a total time complexity of O(n2.5/

√
log n) [7].

To explain and analyze our incremental LBAP update algorithm, we use
the LBAP property that the optimal solution of an LBAP depends only on the
relative order of the cost coefficients and not on their numerical value [7]. This
enables us to simplify the cost structure of the cost matrix so it consists of
consecutive integers starting at 0. In the remainder of this section, cij will be a
representative integer cost (and not the cost from the actual matrix C). Now the
questions are: If two entries in the cost matrix swap their cost values, is there
an efficient way of telling whether the optimal assignment has changed? If the
optimal assignment has changed, is there an efficient way of computing it from
the previously computed optimal assignment?

When two entries in the cost matrix swap their cost values due to the in-
tersection of their cost curves, they are represented by consecutive integers (we
assume here that the costs are all distinct). Let the two edges that are swapping
costs be eij and ekl with costs cij and ckl respectively before the swap (where
cij and ckl are consecutive integers). Then edge eij will have cost ckl and ekl will
have cost cij after the swap. Let the optimum objective value of the LBAP prior
to the swap be copt. Therefore there is a perfect matching in the threshold graph
G(copt). Using the threshold algorithm for solving the LBAP after the swap, the
four possible cases that can occur are:

1. If copt > max(cij , ckl), then both edges eij and ekl are present in the thresh-
old graph G(copt) before the swap. The threshold graph after the swap
Gswap(copt) will be unchanged because the only edges affected are eij and
ekl, and they will both be present. Therefore the optimum value and the
perfect matching will be unchanged after the swap.

2. If copt < min(cij , ckl), then both edges eij and ekl are not present in the
threshold graph G(copt) before the swap. The threshold graph after the swap
Gswap(copt) will be unchanged because the only edges affected are eij and
ekl, and they will both still be absent. Therefore the optimum value and the
perfect matching will be unchanged after the swap.

3. If copt = max(cij , ckl), assume without loss of generality that copt = cij ,
that is, cij > ckl before the swap. Therefore there is a perfect matching in
the threshold graph G(cij). We have two cases to consider since the LBAP
optimum after the swap must be greater than or equal to ckl

1.
(a) If we consider the threshold graph Gswap(cij) after the swap of cij and

ckl, it will be identical to G(cij) before the swap. Therefore a perfect
matching is present, and the objective function value cij and the match-
ing will be unchanged after the swap.

1 Proof that optimum value of the LBAP after the swap, cswap
opt , cannot be less than

ckl: Assume the LBAP after the swap has an optimum value cswap
opt = c∗ < ckl < cij .

This implies that Gswap(c∗) has a perfect matching without edges eij and ekl. Since
Gswap(c∗) = G(c∗), this implies the optimum LBAP value before the swap is c∗,
which leads to a contradiction.

918 S. Akella



(b) The optimum value after the swap may decrease at most to ckl. So we
need to additionally evaluate Gswap(ckl), which is a subgraph of G(cij).
Here edge eij is present, but edge ekl is not present. A new matching must
be computed, and if the graph Gswap(ckl) contains a perfect matching,
the optimum objective will be ckl (= cij −1). We can avoid recomputing
the matching from scratch in this graphGswap(ckl) by using the matching
in G(cij) before the swap to efficiently compute the new matching. To do
this, we use the standard reduction of the maximum cardinality matching
problem to the maximum flow problem [21], and use a procedure linear
in the size of the graph to compute the new maximum flow for Gswap(ckl)
with one edge (ekl) whose capacity has decreased to 0 from 1 in G(cij),
for which we have the maximum flow from its perfect matching. If this
corresponds to a perfect matching, it represents the optimum value of
the LBAP.

4. If copt = min(cij , ckl), assume without loss of generality that copt = ckl, that
is, ckl < cij before the swap. Therefore there is a perfect matching in the
threshold graph G(ckl). We have two cases to consider.

(a) If we consider the threshold graph Gswap(cij) after the swap, it will
include the edge eij in addition to all edges in G(ckl) before the swap.
Therefore a perfect matching is present, with an optimum value of cij .

(b) We need to additionally evaluate Gswap(ckl). Here edge eij is present, but
edge ekl is not present. A new matching must be computed, and if this
graph contains a perfect matching, the optimum objective will be ckl.
We can use the matching before the swap to efficiently compute the new
matching. We use the reduction from the maximum cardinality matching
problem to the maximum flow problem, and use a procedure linear in
the size of the graph to compute the new maximum flow. To do this, we
use the perfect matching from G(ckl) in Gswap(cij), and then reduce the
capacity of edge ekl from 1 to 0 in the flow problem corresponding to
Gswap(ckl). If this corresponds to a perfect matching, it represents the
optimum value of the LBAP.

The threshold graph G has 2n vertices and up to n2 edges, where n is the
number of robots. Computing the new maximum flow takes time linear in the
size of this graph, and so takes O(n2) time. Therefore computing the optimal
LBAP by an incremental update takes O(n2) time.

5 Finding Optimal Translated Goal Formations

Selecting an optimal location for the goal formation Q can minimize the maxi-
mum distance traveled by any robot (or maximum completion time). We there-
fore introduce the Translated Goal Formation problem: Given an initial formation
P with n robots and a specified shape formation S, assign the robots to configu-
rations in the goal formation Q such that the maximum distance traveled by any
robot is minimized and Q is equivalent to S up to translation d, which is to be
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computed. As before, P = {pi}, S = {sj}, Q = {qj}, and pi, sj , qj , d ∈ R2. Here
we assume that the scale is fixed, and that the origin of the shape formation can
be translated by d = (dx, dy) in the plane. So qj = sj + d, where d is measured
with respect to the same reference frame as P .

We formulate this problem as an LBAP. We now need to compute the relative
order of the costs cij as functions of two variables: dx, dy. Our goal is to partition
the dxdy-plane into cells with invariant cost orderings. We can then apply the
algorithm of Section 3, appropriately modified, to identify the optimal (dx, dy)
value.

The translated goal formation LBAP formulation is:

min max cijxij∑n
j=1 xij = 1 ∀i = 1, . . . , n∑n
i=1 xij = 1 ∀j = 1, . . . , n

xij ∈ {0, 1} ∀i, j = 1, . . . , n

where cost cij can be written as a function of translation (dx, dy).

cij = ||pi − qj ||2 = [(pix − (sjx + dx))
2 + (piy − (sjy + dy))

2]1/2

= [(dx − (pix − sjx))
2 + (dy − (piy − sjy))

2]1/2

Each cij(dx, dy) describes a surface, and the obvious approach is to determine
the intersections of all the surfaces for all pairs i, j, and use this to determine the
dx, dy regions over which the cost ordering is invariant. We instead characterize
the dx, dy regions with invariant cost order using a different approach. It will
be helpful to first introduce new variables rij = pi − sj and rewrite the cost
equation as: cij = [(dx − rijx)

2 + (dy − rijy)
2]1/2.

Each cij can now be viewed as describing the distance of the point (dx, dy)
from a fixed site rij . We have a set R = {rij} of n2 sites in the plane, and we use
the reformulated costs to compute the regions of dxdy-space that are invariant in
their cost ordering. For this, we use some beautiful connections between Voronoi
diagrams, unit paraboloids, and arrangements from computational geometry [6].
Consider the unit paraboloid z = d2x + d2y. For each site rij , lift it by projecting
it vertically upwards to the paraboloid, to the point (rijx, rijy, rijz) where rijz =
r2ijx + r2ijy. Next construct the plane Hij tangent to the paraboloid at the point

(rijx, rijy, rijz). The equation of this plane is z = 2rijxdx+2rijydy−(r2ijx+r2ijy).
Given any point (dx, dy), the upward vertical ray from it intersects the set of
planesH = {Hij}. The order in which the ray intersects these planes corresponds
to their decreasing cost order, where the cost associated with a plane Hij is the
distance of its site rij to the point d. The highest plane identifies the site closest
to the point2, and the lowest plane identifies the site farthest from the point,

2 To understand the connection between the height ordering of the planes and the
point’s distances to the sites, consider two planes Hij and Hkl. Let the equation of
plane Hij be zij = 2rijxdx + 2rijydy − (r2ijx + r2ijy) and the equation of plane Hkl

be zkl = 2rklxdx + 2rklydy − (r2klx + r2kly). When plane Hij is higher than plane
Hkl, zij > zkl, which implies that 2rijxdx + 2rijydy − (r2ijx + r2ijy) > 2rklxdx +
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and the planes from highest to lowest are ordered in increasing order of distance
of their sites to the point (dx, dy).

An arrangement A(H) induced by the set of planes H is the convex subdi-
vision of space defined by the set of planes H [6]. A cell lies at depth i if there
are exactly i planes above the cell. Level i refers to the boundary of the union
of cells at depths zero, one, up to i− 1. Here a level is a piecewise-linear surface
formed by pieces of the planes Hij .

The arrangement A(H) of the planes H provides useful geometric structure.
The projection of the upper envelope of these planes (i.e., level 1 of A(H)) onto
the dxdy-plane gives the Voronoi diagram of the set of sites R [6]. This is in fact
the order-1 Voronoi diagram, where each cell contains the points closest to one
site. More generally, we can partition the space according to the k closest sites
of N sites, for some 1 ≤ k ≤ N − 1. The resulting diagrams are called higher-
order Voronoi diagrams, and for a given k, the diagram is called the order-k
Voronoi diagram. An order-2 Voronoi diagram is one where each cell contains
the points closest to an unordered pair of sites. This order-2 Voronoi diagram can
be computed by projecting level 2 of A(H). We can similarly compute the order-
3 through order-(N − 1) Voronoi diagrams. Conceptually, the overlay of these
order-1 through order-(N − 1) Voronoi diagrams on the dxdy-plane partitions
the plane into convex cells, and each cell has an invariant ordering of sites based
on the distances of points in the cell to the sites. In other words, within each
cell, the cost order is invariant.

There are N = n2 sites in R, which implies O(n2) planes that intersect at
O(n4) intersection curves. When projected onto the dxdy-plane, we obtain a
planar arrangement with at most O(n8) faces, edges, and vertices [11, 10]. This
arrangement can be computed in O(n8) time, and the cost order for each cell
can be enumerated in O(n2) time.

At each cell of the planar arrangement, we compute an LBAP at an interior
point to identify the critical cost, say cij . Since each cell is a convex polygon, we
can compute the optimal dx, dy values that minimize the LBAP by formulating
a convex quadratic program (QP) that minimizes c2ij given the linear boundary
constraints of the cell. The QP formulation is:

minimize c2ij = (dx − rijx)
2 + (dy − rijy)

2 subject to

2(rvwx−rtux)dx+2(rvwy−rtuy)dy+(r2tux+r2tuy)−(r2vwx+r2vwy) ≤ 0 ∀rtu, rvw
lx ≤ dx ≤ ux

ly ≤ dy ≤ uy

where sites rtu, rvw ∈ R correspond to consecutive distances in the cost order
in the cell, and lx, ly and ux, uy are lower and upper bounds for dx and dy.

Since this is a convex QP in just two variables, it can be solved in time that is
linear in the number of edges of the cell. Each cell has an invariant cost ordering

2rklydy − (r2klx + r2kly). Adding d2x + d2y to both sides and rearranging terms shows
that (dx − rklx)

2 + (dx − rkly)
2 > (dx − rijx)

2 + (dx − rijy)
2, thus establishing that

point (dx, dy) is closer to site rij than site rkl.
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Fig. 4. A translation LBAP example for 3 robots. (a) Arrangement that results from
overlay of order-1 through order-(N − 1) Voronoi diagrams, for N = 9 sites indicated
by black plus symbols. (b) Initial formation and specified shape formation. (c) Initial
formation, shape formation, and optimal goal formation, with the lines indicating the
optimal assignment. The initial positions are indicated by red plus symbols, the shape
positions are indicated by blue circles, and the goal positions are indicated by black x
symbols.

of N sites, with each edge corresponding to a bisector of two sites that defines
the relative ordering of a successive pair of distance costs. At each cell edge, we
can interchange only consecutive cost elements. Since there is a maximum of
N − 1 swaps between consecutive elements, this implies a maximum of N − 1
edges for each cell. A cell has less than N − 1 edges if it is completely on one
side of a bisector corresponding to two of its consecutive distances (i.e., it is
completely contained in the corresponding halfplane). Therefore the QP can be
solved in O(N) time, that is, O(n2) time.

We find the globally optimal solution by comparing the optimal LBAP so-
lutions over all the cells in the dxdy-plane. See Figure 4 for an example. The
overall running time of the algorithm is O(n10), since there are O(n8) cells with
O(n2) computation at each cell.

6 Related Work

Multi-robot Assignment and Path Planning: Coordinating multiple robots
in a shared workspace has attracted much attention in the robotics community
[16], [26], [2], [33]. A typical goal of coordination is to achieve collision-free
and time-optimal robot motions. There has been extensive research on motion
planning for multiple robots; see [14, 15, 8] for overviews and [16, 26, 24, 33] for
example approaches related to our work. There have been many exciting recent
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developments in multiple robot motion planning and formation planning, some
of which are summarized below.

Derenick and Spletzer[9] coordinated a large-scale robot team to change the
shape of formation, for a fixed robot assignment, by modifying scale, translation,
and rotation through second-order cone programming techniques. The solution is
explored by minimizing the total distance or minimizing the maximum distance
robots travel while geometric shape constraints are satisfied.

Kloder and Hutchinson [13] developed a representation for collision-free path
planning of multiple unlabeled robots translating in the plane from one formation
to another formation. They represent a formation by the coefficients of a complex
polynomial whose roots represent the robot configurations.

The CAPT algorithm [30] developed by Turpin et al. performs concurrent
assignment and planning of trajectories for unlabeled robots when there are
N robots and M goals, and each goal is visited by one robot. They used the
Hungarian assignment algorithm to minimize the sum of individual robot-goal
costs. They developed synchronized trajectories that are collision-free when the
start and goal locations are at least 2

√
2R from each other. They also present

an online decentralized version of the algorithm.

Yu and LaValle [34, 35] demonstrated that multi-robot path planning on
unit distance graphs can be modelled as multi-commodity dynamic network
flow problems. They provide fast and complete algorithms to efficiently solve
permutation-invariant versions of these problems. They also studied time and
distance optimality of the feasible solutions. They [35] use integer linear program
formulations to solve time and distance problems. Katsev, Yu, and LaValle [12]
perform path planning for large robot formations of indistinguishable robots
using a hierarchical approach. The algorithm provides paths with total distance
within a constant multiple of the optimal total distance.

Solovey and Halperin [27] developed a sampling-based algorithm for the k-
color multi-robot motion planning problem, where the robots are partitioned
into groups such that the robots are interchangeable within each group. The al-
gorithm reduces the k-color problem to several discrete pebble problems. Adler
et al. [1] present an efficient algorithm for multi-robot motion planning for un-
labeled discs in simple polygons. They transform a continuous problem into a
discrete pebble motion on a graph problem.

Solovey, Yu, Zamir, Halperin [29] present a polynomial-time complete algo-
rithm for unlabeled disc robots in the plane. It minimizes the total path length
for the set of robots, shown to be at most 4m longer than the optimal solu-
tion, where m is the number of robots, assuming certain robot-obstacle and
start-goal separation constraints are satisfied. Solovey and Halperin [28] show
that the problem of unlabeled unit-square robots translating among obstacles is
PSPACE-hard.

Luna and Bekris [18] developed a method for cooperative path-finding that
is polynomial in the number of robots and is complete for all problem instances
with at least two empty vertices in the graph. It uses push-and-swap primitives
to restrict unnecessary exploration of search space. Liu and Shell [17] devel-
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oped a hierarchical dynamic partitioning and distribution scheme for large-scale
multi-robot task allocation. Nam and Shell [20] analyzed cost uncertainties in
multi-robot task allocation problems, and the sensitivity of optimal assignments
to variations in the cost matrix. Wagner and Choset [32] develop an efficient
multiple robots path planning algorithm, where paths for individual robots are
initially generated and coordination among robots is performed when needed
due to collisions.

van den Berg et al. [4] presented an efficient method for reciprocal n-body
collision avoidance that provides a sufficient condition for multiple robots to
select an action that avoids collisions with other robots, though each acts inde-
pendently without communication with others. van den Berg et al. [5] study path
planning for multiple robots in the presence of obstacles. They apply optimal de-
coupling techniques to problems with low degrees of coupling. They decompose
a multi-robot problem into a sequence of subproblems with a minimum degree
of coupled control. The arrival times of the robots are not optimal as the plans
are executed sequentially.

Light-actuated digital microfluidics: Lab-on-a-chip technology scales
down multiple laboratory processes to miniature chips capable of performing
automated chemical analyses.

Light-actuated digital microfluidics (LADM) systems use moving patterns of
projected light on a continuous photoconductive surface to move droplets [22],[23].
The projected pattern of light effectively creates virtual electrodes on the lower
substrate. By moving the virtual electrodes, droplets can be moved in parallel on
the microfluidic chips to perform multiple biochemical reactions (Figure 1(a)).

By modeling droplets as robots, we can achieve collision-free motions opti-
mized to reduce completion time. We have explored the problem of coordinating
multiple droplets in light-actuated digital microfluidic systems intended for use
as lab-on-a-chip systems. We focused primarily on creating matrix formations
of droplets for biological applications. To achieve collision-free droplet coordina-
tion while optimizing completion times, we applied multiple robot coordination
techniques. We used a mixed integer linear programming (MILP) approach to
schedule coordination of both individual droplets and batches of droplets given
their paths [19]. We also developed a linear time coordination algorithm for batch
coordination of droplet matrix layouts.

7 Conclusion

This paper described algorithms to perform optimal assignment of teams of
robots translating in the plane from an initial formation to a variable goal for-
mation. We considered the case when each robot is to be assigned a goal position,
the individual robots are interchangeable, and the goal formation can be either
scaled or translated. We computed the costs for all pairs of initial, goal robot as-
signments as functions of the parameters of the goal formation, and partitioned
the parameter space into equivalence classes using computational geometry tech-
niques. We compute a minimum completion time assignment for an equivalence
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class by formulating it as a linear bottleneck assignment problem (LBAP). To
improve efficiency, we solved the LBAP problem for each equivalence class by
incrementally updating the solution as the formation parameters are varied. This
work is motivated by applications that include the motion of droplet formations
in digital microfluidic lab-on-a-chip devices, and of robot and drone formations
in the plane.

Our emphasis has been on robot assignment with variable goal formations. In
the event that two or more robots have assigned paths that lead to collisions, we
must take additional steps to avoid collisions. These could include coordination
using MILP solutions [2], path coordination [26], or collision avoidance [4].

With the LBAP solution, once the critical edge that determines the objective
function value has been determined, some of the lower cost edges can have their
assignments swapped without affecting the LBAP cost. This can potentially re-
sult in multiple optimal assignments. One way to enforce a consistent assignment
for each cell of the arrangement is to solve the Lexicographic LBAP [7] instead
of the standard LBAP. The advantage of using the Lexicographic LBAP (LexL-
BAP) is that for the optimum LBAP value, it minimizes the distance traveled
by each robot. We need to evaluate the LexLBAP only once, for the optimal
LBAP found.

This paper describes initial steps towards addressing the problem of simul-
taneously optimizing robot assignments and variable goal formations. There are
many aspects to be explored in future work. We are working to solve the as-
signment problem with combined scaling and translation. The relatively high
computational complexity of the approach will make application to very large
formations (with hundreds of robots) challenging. We are therefore interested in
approaches to reduce the effective complexity. For example, methods to prune
the set of cells at which an LBAP has to be solved will be useful. Another ap-
proach is to partition the set of robots into smaller subsets. Since UAVs and
spacecraft operate in a 3D workspace, another useful direction is to extend the
approach to 3D formations.
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