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Abstract—The platooning of connected and automated 
vehicles (CAVs) is expected to have a transformative im-
pact on road transportation, e.g., enhancing highway 
safety, improving traffic utility, and reducing fuel con-
sumption. Requiring only local information, distributed 
control schemes are scalable approaches to the coordi-
nation of multiple CAVs without using centralized com-
munication and computation. From the perspective of 
multi-agent consensus control, this paper introduces 
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I. Introduction

T
he platooning of connected and automated vehicles 
(CAVs) on the highway has attracted extensive inter-
est due to its potential to significantly impact road 
transportation. The control of a platoon aims to en-

sure all the vehicles in the same lane move at a consistent 
speed while maintaining the desired spacing between ad-
jacent vehicles. To our best knowledge, the earliest imple-
mentations date back to the PATH program in the 1980s, 
where many topics were studied such as division of control 
tasks, the layout of control architecture, as well as control 
laws for headway control [1]. Recently, some demos were 
performed in the real world, including the GCDC in the 
Netherlands [2], SARTRE in Europe [3], and Energy-ITS in 
Japan [4].

Earlier studies on platooning often only consider radar-
based sensing systems, in which the types of information 
exchange topologies are quite limited. However, the rapid 
deployment of vehicle-to-vehicle (V2V) communications, 
such as dedicated short range communication (DSRC)[5], 
[6], can generate a variety of new topologies for platoons, 
e.g., two-predecessor following type and multiple-prede-
cessor following type [7], [8]. New challenges naturally 
arise due to the topological variety, which is even critical 
when considering time delay, packet loss, and quantization 
error in the communications. In such cases, it is prefer-
able to view a platoon as a network of dynamical systems, 
and to employ multi-agent consensus control schemes to 
design distributed controllers [7], [23]. For example, Wang 
et al. introduced a weighted and constrained consensus 
seeking framework to study the influence of time-varying 
network structures on the platoon dynamics by using a 
discrete-time Markov chain [10]. Bernardo et al. analyzed 
vehicle platoons from the viewpoint of consensus control of 
a dynamic network [11]. Zheng et al. introduced two funda-
mental methods to improve the stability margin of platoons 
via topological selection and control adjustment [22]. Gao 
et al. proposed an H3  control method to address uncertain 
vehicle dynamics and time-delays [42]. More recently, both 
robustness analysis and distributed  H3  control synthesis 

have been discussed for a platoon of connected vehicles 
with undirected topologies in [12].

From the perspective of multi-agent consensus control, 
a platoon of CAVs is actually a one-dimensional network 
of dynamical systems, where the vehicles only use their 
neighboring information for feedback. This perspective 
naturally decomposes a platoon of CAVs into four interre-
lated components, i.e., node dynamics (ND), information 
flow network (IFN), distributed controller (DC), and for-
mation geometry (FG), which is originally proposed in [22], 
[23]. This decomposition is able to provide a unified frame-
work to analyze, design, and synthesize the platoon sys-
tem, as well as further on-road implementations [23], [24]. 
The main contributions of this paper are: 1) we summarize 
the modeling techniques of each component in a platoon 
according to the proposed four-component framework; 2) 
we present a detailed discussion of techniques on four per-
formance metrics in a platoon, i.e., internal stability, stabil-
ity margin, string stability, and coherence behavior; 3) we 
introduce basic distributed synthesis methods, including 
linear consensus control, distributed robust control, dis-
tributed sliding mode control, and distributed model pre-
dictive control.

The rest of this paper is organized as follows: Section II 
introduces the four-component framework, and presents 
the modeling techniques of each component. Section III 
reviews four main performance metrics, followed by dis-
cussions on distributed controllers in Section IV. Section V 
concludes this paper.

II. Modeling of a platoon of CAVs:  
the Four-component Framework
This paper considers a platoon of CAVs on a flat road, which 
aims to move at the same speed while maintaining desired 
spacing among vehicles. The platoon has a leading ve-
hicle and other following vehicles. As shown in Fig. 1, 
the platoon system can be viewed as a combination of four 
main components [22], [23]:
1)	 Node dynamics (ND), which describes the behavior of 

each involved CAV;

a decomposition framework to model, analyze, and design the platoon system. In this 
framework, a platoon is naturally decomposed into four interrelated components, i.e., 
1) node dynamics, 2) information flow network, 3) distributed controller, and 4) geom-
etry formation. The classic model of each component is summarized according to the 
results of the literature survey; four main performance metrics, i.e., internal stability, 
stability margin, string stability, and coherence behavior, are discussed in the same 
fashion. Also, the basis of typical distributed control techniques is presented, including 
linear consensus control, distributed robust control, distributed sliding mode control, 
and distributed model predictive control.
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2)	 Information flow network (IFN), which defines how the 
nodes exchange information with each other, including 
the topology and quality of information flow;

3)	 Distributed controller (DC), which implements the 
feedback control only using neighboring information;

4)	 Formation geometry (FG), which dictates the desired 
inter-vehicle distance when platooning.
Each component in Fig. 1 has significant influence on 

the collective behavior of a platoon. According to the four-
component framework, a categorization of existing litera-
ture can be found in [23], [24]. In this section, we present 
a detailed discussion of the modeling techniques for each 
component. For completeness, we first introduce the defi-
nitions of some performance measures that are widely 
used in platoon control.

Definition 1 (Internal Stability). A linear platoon is 
said to be internally stable if and only if the closed-loop sys-
tem has eigenvalues with strictly negative real parts [5], [7];

Definition 2 (Stability Margin). The stability margin 
of a platoon is defined as the absolute value of the real part 
of the least stable eigenvalue, which characterizes the con-
vergence speed of initial errors [22], [25];

Definition 3 (String Stability). A platoon is said to be 
string stable if the disturbances are not amplified when 
propagated downstream along the vehicle string [27], [33];

Definition 4 (Coherence Behavior). The coherence be-
havior describes how well the formation resembles a rigid 
body subject to exogenous disturbances [39], [54], which is 
quantified as a certain H2  norm of the closed-loop system.

Note that we only present the ba-
sic descriptions of the performance 
metrics, and the exact mathematical 
definitions might be slightly differ-
ent in the literature.

A. Node Dynamics (ND)
Many previous studies on platoon 
control only emphasize on the longi-
tudinal dynamical behaviors. Only a 
few studies discussed the integrated 
longitudinal and lateral control [44], 
[45]. Bicycle model is usually used to 
describe the lateral dynamics for con-
trol design (see [44], [45] for details). 
Here, we only review the modeling of 
longitudinal dynamics. In addition, 
we mainly focus on continuous mod-
els, and there is an alternative class 
of modeling techniques using timed 
automata or hybrid models; see [65]–
[67] for details.

Vehicle longitudinal dynamics are 
inherently nonlinear, consisting of drive 
line, brake system, aerodynamics drag, 

rolling resistance, gravitational force [15], [29]. The following 
nonlinear equations and its variants are widely employed to 
model the nonlinear longitudinal dynamics:
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where, , , , ;    N p t v t1 2 andN i if= ^ ^h h" ,  denote the posi-
tion and velocity of vehicle ;i  mi  is the vehicle mass;  C ,A i

is the lumped aerodynamic drag coefficient; g  is the ac-
celeration due to gravity; f  is the coefficient of rolling re-
sistance; T ti ^ h denotes the actual driving/braking torque; 
T t,ides ^ h is the desired driving/braking torque; ix  is the in-
ertial delay of vehicle longitudinal dynamics; r ,w i  denotes 
the wheel radius and  ,T ih  is the mechanical efficiency of 
driveline. The position and velocity of the leading vehicle 
are denoted by  p t0 ^ h and ,v t 0 ^ h  respectively.

Some studies directly use nonlinear models for platoon 
control (see [19], [21], [27], [34], [45]). The asymptotic stability 
and string stability can be guaranteed by carefully selecting 
the control parameters, but explicit performance limits are 
rather difficult to analyze with given spacing policy and 
communication topology. Actually, linear models are more 
frequently used for tractable issues. In the literature, the 
commonly used models include 1) single integrator model, 
2) second-order model, 3) third-order model, and 4) single-
input-single-output (SISO) model.
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Fig 1 Four major components of a platoon [22], [23]: 1) node dynamics, 2) information flow network, 
3) distributed controller, 4) geometry formation; where dr  is the actual relative distance, ddes  is the 
desired distance, ui  is the the control signal, xi  is the state, ∆ i  denote the dynamical uncertainty, 
and C denotes the controller.
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The single integrator model is 
the simplest case, which takes the 
vehicle speed as control input and 
position as the exclusive state, i.e.,

	 .p t u ti i=o ^ ^h h � (2)

where the control input u t  i^ h  is the 
velocity of each vehicle. This single 
integrator model (2) can significantly 
simplify the theoretical analysis on 
controller design. For instance, the structured optimal con-
trol of platoons can be transformed into a convex problem 
under the single integrator assumption, but this problem is 
challenging for other models [39]. However, in addition to 
largely departing from actual vehicle dynamics, the single 
integrator model fails to reproduce string instability [35]. An 
improvement is to assume ND as a point mass, resulting in 
the double-integrator model [18], [35], [36]:
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where u t  i^ h  is the acceleration of each vehicle. Many im-
portant theoretical results, like decentralized optimal 
control [39], stability margin analysis [18], [25], [26], and 
coherence behavior [54], rely on the assumption of second-
order dynamics. This assumption still does not catch many 
features of real vehicle dynamics, e.g., inertial delay in 
powertrain dynamics. One modeling trend is to further in-
crease one state and yield so-called third-order model. The 
added state is often to approximate the input/output behav-
iors of powertrain dynamics, which equivalently degrades 
the control input to engine torque and/or braking torque 
[15], [17], [20]. Most approximations use either feedback 
linearization technique [5], [15], [37] or lower-layer control 
technique [1], [45], resulting in a state space model as:
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where , ,x t p v ai i i i
T=^ h 6 @  is the state,  u ti ^ h  is the desired 

acceleration of each vehicle, and ix  is the time constant of 
approximated powertrain dynamics. An alternative of the 
abovementioned models is the transfer function model, 
which is often used to analyze string stability in frequen-
cy domain.

,  ,p s s v s v s s a s1 1
i i i i= =^ ^ ^ ^h h h h

	 ,a s H s u si i i=^ ^ ^h h h � (5)

where , ,p s v s a si i i^ ^ ^h h h are the Laplace transforms of 
node i’s position, velocity and acceleration, respectively; 
u si^ h is the control input, and H si^ h is a linear single-in-
put-single-output (SISO) strictly proper transfer function. 
This model has two integrators and a lower order iner-
tial delay, which leads to some fundamental limitations 
for certain platoons [33]. The pioneer work on this model 
started from Seiler, Pant, and Hedrick [33], and later wide-
ly employed in many other studies; see e.g., [50] and [53].

B. Information Flow Network (IFN)
The control of the collective behavior of multiple CAVs is based 
on vehicles’ mutual awareness of their states (e.g., inter-vehi-
cle distance and vehicle speed), which is achieved by inter-
vehicle sensing and communication. As shown in Fig. 1, the 
information provided by inter-vehicle sensing and communi-
cation serves as an important input to each local controller, 
thus having a significant impact on the collective behavior. 
Here, we briefly discuss the topology and quality of informa-
tion flow, as well as a graph-based modeling approach.
1)	 Information Flow Topology (IFT). The IFT captures 

the connectivity of information exchange between ve-
hicles, and affects the platoon behavior such as string 
stability [33], stability margin [22], [25], and coherence 
behavior [39], [54]. Early-stage platoon control is mainly 
based on radar-sensing, and a vehicle can only obtain 
information about its nearest neighbors, i.e., imme-
diately preceding and following vehicles. In this case, 
feasible IFTs include the predecessor following (PF) 
and bidirectional (BD) topologies, as shown in Fig. 2(a) 
and (b) respectively. Nowadays, with V2V communica-
tion via technologies such as IEEE 802.11p-based DSRC 
and the emerging 5G solutions, various IFTs become 
feasible since a vehicle can communicate with vehicles 
beyond its immediate surroundings [5], [7]. Typical to-
pologies include the predecessor-following leader (PFL) 
type, bidirectional leader (BDL) type, two predecessor-
following (TPF) type, and two predecessor-following 
leader (TPFL) type, as shown in Fig. 2(c)–(f) respective-
ly. Since IFT has a significant impact on the behavior of 
a platoon, it is important to adapt IFT (e.g., by control-
ling the transmission power of communications) based 
on the need of platoon control [49].

Many important theoretical results rely on the assumption  
of second-order dynamics which still does not catch many 
features of real vehicle dynamics, e.g., inertial delay in 
powertrain dynamics.
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2)	 Quality of information exchange. Given a specific IFT, 
the quality of inter-vehicle sensing and communica-
tion also impacts the platoon behavior. For instance, 
the accuracy of radar sensing impacts the robustness 
and performance of platoon control. Meanwhile, wire-
less communication quality significantly impacts the 
safety and performance of platoon control [47], [48]. 
Therefore, it is important to take the sensing and wire-
less communication quality into account in platoon con-
trol. For wireless communication whose quality can be 
controlled by using mechanisms such as scheduling, 
power control, and rate control, it is important to con-
sider the joint control of wireless communication and 
vehicle platoon [63]. Existing IEEE 802.11p-based inter-
vehicle wireless communication does not enable pre-
dictable control of co-channel wireless interference and 
thus unable to ensure predictable control of communi-
cation quality. With recent breakthroughs in wireless 
control networking, wireless communication quality 
can be controlled in a predictable manner [49], thus 
having opened the door to the co-design of vehicular 
wireless networking and platoon control [63].

3)	 Graph-based topological modeling. Directed graphs can 
be used to model allowable information flow between the 
vehicles in a platoon [7], [22]. More descriptions on graph 
theory can be found in [59] and the references therein.
The information flow among followers is described by 

a directed graph , ,  G V E AN N N N= " ,  with a set of nodes 
, , ,  ,N1 2VN f= " ,  a set of edges E V VN N N#3  and 

the adjacency matrix .a RAN ij
N N!= #6 @  Each edge ,j i^ h 

represents a directed information flow from j  to .i  An 
edge ,j i^ h belongs to ,EN  if and only if  a 1ij = ; other-
wise .a 0ij =  It is assumed that there are no self-edges. 
The neighbor set of node i  is denoted by . j a 1Ni ij= =" ,

The in-degree of i-th node is .deg ai ijj

N

1
=

=
/  Denote

, , , ,deg deg degdiagDN n1 2 f= " ,  and the Laplacian ma-
trix l RL ij

N N!= #6 @  of GN  is defined as .L D AN N= -

To model the information flow from the leader to the 
followers, we define an augmented graph as GN 1+  with 
a set of nodes , , , , N0 1 2VN 1 f=+ " , and a set of edges  

. E V VN N N1 1 1#3+ + +  A pinning matrix represents how  
each follower connects the leader, which is defined as 

, , , ,diagP N1 2/ / /f= " ,  where 1 i/ =  if edge , ;i0 EN 1! +" ,  
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A spanning tree is a directed path connecting all the 
nodes in the graph [59]. The augmented graph GN 1+  should 
contain one spanning tree rooted at the leader for control-
lability. It is easy to see that all the IFTs demonstrated in 
Fig. 2 contain at least a spanning tree. To illustrate some 
notations, considering PF and BD topologies, we have
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The matrices ,L P  encapsulate the topological connec-
tions of the information flow in a platoon. In the proposed 
framework, L P+  plays an important role in the closed-
loop dynamics (see (15)). The eigenvalues of L P+  have 

...

...

... ...

...

(a)

(c)

...
(b)

(d)

(e) (f)

Fig 2 Typical IFTs: (a) PF, (b) BD, (c) PFL, (d) BDL, (e) TPF, (f) TPFL.
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a key impact on the stability margin for platoons with lin-
ear node dynamics (see Lemma 5 in [7]). It is proved that 
all the eigenvalues of L P+  locate in the open right-half 
plane when GN 1+  contains one spanning tree rooted at the 
leader [7], [59]. Further, it is shown that for undirected to-
pologies, the minimum eigenvalue of L P+  has a close re-
lationship with the number of followers that are pinned to 
the leader (see Theorem 1 in [22]). The discussion in this 
paper mainly focuses on the impact of IFT, but the graph-
based modeling approach can be extended to model the 
quality of information flow by introducing weights to each 
edge of the graph [59].

C. Distributed Controller (DC)
The DC implements the feedback control using neighbors’ 
information, specified by ,I N Pi i i,=  to enable the global 
coordination. An unstructured DC is one that corresponds 
to a complete graph which requires all-to-all communica-
tions. Many existing studies consider structured control 
laws either in an explicit or implicit way; see [14], [15], [37] 
and [39].

The commonly used DC is linear for comprehensive 
results on theoretical analysis, and convenience in hard-
ware implementations [7]. The general form of linear con-
troller is:
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where k ,#ij  # , ,p v a=^ h is the local controller gain, iic  is 
the time delay corresponding to obtain its own state, and 

ijc  is the time delay corresponding to receive the state of 
node j  via a communication channel. Many previous work 
only employed specific types of (6). The internal stability 
of a platoon with a linear controller largely depends on the 
structure of IFT. For example, the stabilizing region of lin-
ear control gains was explicitly derived in [7] for a class 
of topologies, and string stability requirements for PF to-
pology were established in [15]. The optimization methods, 
either numerical or analytical, were also used to optimize 
the localized gains [36], [39]. There are also some studies 
employing sliding mode control (SMC) to design a string-
stable platoon [15]. For SMC, the internal stability and 
string stability of platoons are usually realized through a 
posterior controller tuning.

There are two main drawbacks in the design methods 
above: 1) they are unable to explicitly address string sta-
bility, and 2) they are unable to handle the state or con-
trol constraints. Recently, H3  controller synthesis has 
been proposed to include the string stability requirement 
in the design specification [20]. Model predictive control 
(MPC) has been introduced into platoon control to fore-

cast system dynamics, explicitly handling actuator/state 
constraints by optimizing given objectives [2], [19], [21]. 
In Section IV, we will introduce more details on how to 
design linear consensus controller, distributed robust con-
troller, sliding mode controller, and model predictive con-
troller for platoons.

D. Formation Geometry (FG)
The objective of platoon control is to track the speed of the 
leader and to maintain a desired formation governed by an 
inter-vehicle spacing policy, i.e.,
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where d ,i i1-  is the desired space between i 1-  and ,i  which 
determines the formation geometry of a platoon.

There are three major policies of FG: 1) constant dis-
tance (CD) policy, 2) constant time headway (CTH) policy, 
and 3) nonlinear distance (NLD) policy [13]. For the CD 
policy, the desired distance between two consecutive ve-
hicles is independent of vehicle velocity, which can lead 
to a high traffic capacity. In this case, d ,i i1-  is a given con-
stant number,

	 ,  ,d d i N,i i1 0 !=- � (8)

where d0  is a positive number. For CTH policy, the de-
sired inter-vehicle range varies with the velocity, which is 
in accord with driver behaviors to some extent but limits 
achievable traffic capacity. One commonly used formula-
tion is:

	 ,  ,d t v d i N,i i h i1 0 != +- � (9)

where th  is the time headway. For NLD policy, the desired 
inter-vehicle is a nonlinear function of velocity, i.e.,

	 ,  .d g v i N,i i i1 !=- ^ h � (10)

Note that NLD policy has the potential to improve both the 
traffic flow stability and traffic capacity compared with CD 
and CTH policies [58].

III. Performance of a Platoon of CAVs:  
Stability and Robustness
In this section, we discuss the performance of a platoon 
of CAVs, with a special focus on stability and robustness. 
Some practical benefits, such as reducing fuel consump-
tion and improving traffic efficiency, are not covered 
here (we refer the interested reader to [30]–[32]). For 
example, a special design for fuel optimized platoon 
control was designed in [32], which uses a distributed 
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Pulse-and-Glide (PnG) controller to switch the engine 
operation point between two optimum positions to achieve 
lower average fuel.

In the field of platoon control, there are four important 
and commonly discussed performance metrics, namely, 
internal stability, stability margin, string stability, and 
coherence behavior. In general, the first two metrics fo-
cus on stability of a platoon, while the other two metrics 
focus on the robustness of a platoon considering external 
disturbances. We note that a detailed categorization can 
be found in [24]. In addition to these performance mea-
sures, some other metrics, such as fast convergence and 
safety, are also important when designing a practical pla-
toon system.

A. Internal Stability
No matter what kind of topology is employed, internal stabil-
ity must be guaranteed in a platoon. Two main approaches 
have been proposed to ensure the internal stability: 1) global 
approach [17], [57], and 2) local approach [9], [15], [21].

The first approach is to straightforwardly take the 
overall platoon as a structured system and then design 
a controller in a centralized way, in which IFT becomes 
less important in the design process. For example, a linear 
matrix inequality (LMI) was obtained based on the global 
platoon dynamics to guarantee internal stability [17], [57]. 
One major drawback of this approach is that the com-
putation efficiency quickly worsens with increasing the 
platoon size. Therefore, most studies decomposed a pla-
toon into sub-systems and applied decentralized control 
methods, leading to the second approach. For instance, 
under PF topology, a platoon can be naturally viewed as 
unidirectional cascade systems, which only needs to study 
any two successive vehicles to guarantee stability; see [9], 
[15], [20] and [28]. Besides, the inclusion principle was used 
to decompose such kind of platoon into local subsystems, 
where an overlapping controller was designed [37]. This 
technique is not suitable for a platoon with BD topology 
since its spacing errors propagate from both forward and 
backward directions. Partial differential equation (PDE) 
techniques were applied to approximate the dynamics of 
platoons with BD topologies [18], [25], [26], which could 
avoid the analysis of high dimensional dynamics. In ad-
ditional, Lyapunov method based energy function was 
used to prove both longitudinal car following stability and 
latitudinal lane keeping stability [44]. As an extension, La-
salle’s invariance principle can also be utilized to prove 
asymptotic stability for time invariant platoon systems in 
the case where the derivative of a Lyapunov candidate is 
only negative semi-definite.

B. Stability Margin
Stability margin is used to characterize the convergence 
speed of the spacing errors in a platoon [22]. Most of cur-

rent research on stability margin focus on the CD policy, 
which has revealed that stability margin is a function 
of 1) platoon size ( N ), 2) ND, 3) IFN, 4) DC structure [18], 
[22], [25], [26].

By considering ND as a point mass, Barooah et. al proved 
that the stability margin approached zero as /O N1 2^ h un-
der symmetric bidirectional control, and asymptotic be-
havior of stability margin could be improved to /O N1^ h by 
introducing small amounts of “mistuning” [18]. This result 
was extended to linear third-order dynamics, which cov-
ers the inertial delay of powertrain dynamics in [7]. Using 
the PDE approximation, Hao et al. showed that the scal-
ing law of stability margin could be improved to /O N1 /D2^ h 
under D-dimensional IFTs [25]. Recently, it was shown that 
employing asymmetric control, the stability margin could 
be bounded away from zero, which is independent of the 
platoon size [26]. Zheng et al. further pointed out two basic 
methods to improve the stability margin via topology selec-
tion and control adjustment [22].

C. String Stability
The achievability of string stability has a tight relationship 
with the FG and IFN in a platoon. Seiler et al. showed that 
string stability cannot be guaranteed for any linear identi-
cal controllers under PF topology and CD policy [33]. Ba-
rooah et al. further pointed out that for a homogeneous 
platoon with BD topology, linear identical controllers also 
suffered fundamental limitations on the string stability 
[50]. Middleton et al. extended the work in [33] by consider-
ing heterogeneous ND, limited communication range, non-
zero time headway policy, which showed that both forward 
communication range and small time headway cannot 
alter the string instability [53]. Some solutions have been 
proposed to improve string stability, including: 1) relax-
ing formation rigidity, i.e., introducing enough time head-
way in the spacing policy [14], [15], [36], or using nonlinear 
policy [58]; 2) using non-identical controllers for different 
vehicles [18], [38]; 3) extending the information flow by us-
ing more complex IFTs [16], [37].

Recently, some advanced controllers have been pro-
posed to ensure string stability, including sliding mode con-
trol [15], model predictive control [2], [19] and H3  control 
[17], [20]. Note that all of them either employ CTH policy or 
use the leader’s information. Current research results usu-
ally focus on string stability caused by disturbances or ma-
neuvers of the lead vehicle. However, following vehicles in 
a platoon also have the same probability encountering ex-
ternal disturbances. There are a few research results that 
consider the effects of disturbances from any vehicle in a 
platoon. For example, Seiler et al. [33] investigated multiple 
disturbances propagate in the platoon, where string insta-
bility was addressed based on a constant spacing. This 
work has been extended to a more practical situation with 
a variable spacing strategy in [52].
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D. Coherence Behavior
The coherence behavior is a scalar metric adopting H2-norm 
of the closed-loop system, which characterizes the robustness 
of a platoon driven by exogenous disturbances. This 
captures the notion of coherence [40], [54]. Bamieh et al. 
investigated the asymptotic scaling of upper bounds 
on coherence behavior with respect to the platoon size, 
and indicated that the IFN may play a more important role 
than DC [54]. Several recent research used coherence 
behavior as the cost function to optimize the local control 
gains using augmented Lagrangian approach [39]. In addi-
tion, alternative direction method of multipliers (ADMM) 
was used to optimize the communication structure of 
IFTs in [40], where the cost function was the measure 
of coherence behavior. Recently, chordal decomposition 
has been applied in the design of structured controllers, 
which has the potential to address the coherence behav-
ior of platoons efficiently [55]; also see one recent result 
in semidefinite programming [56].

IV. Controller Design of a platoon  
of CAVs: Distributed Methods
This section introduces four types of distributed controller 
design methods for a platoon of CAVs, i.e., linear consensus 
control, robust control, distributed sliding mode control, 
and distributed model predictive control. For the first two 
methods, linear vehicle models are used, while nonlinear 
vehicle models can be employed for the last two methods. 
The main strategy of these methods is to decouple the pla-
toon dynamics into several subsystems depending on the 
eigenvalues of .L P+  After decoupling, many synthesis 
methods can be used to solve the required distributed con-
troller using LMIs.

A. Linear Consensus Control
Linear control is one of the most commonly used methods 
for platoon control [13], [16], [18], since it can not only facili-
tate theoretical analysis but is also suitable for hardware 
implementations. Many existing results on stability region, 
stability margin, and string stability requirements [16], [17], 
[37] are based on linear controllers.

Here, we introduce a generic approach to analyze the 
collective behavior of platoons when employing linear 
consensus controllers (see [7], [22] for more details). The 
3rd-order state space model is adopted to describe node 
dynamics, as shown in (4). The platoon is assumed to be 
homogeneous (i.e., ,  )A A i Ni !=  and the CD policy is em-
ployed. The general linear consensus controller is given 
in (6). It is assumed that controller gains are identical, 
i.e.,  k k,# #i =  # , , ,p v a=^ h  .i N!  Besides, we assume that 
there are no time-delays, i.e., ,  , .i j0 Nij !c =  To write (6) 
into a compact form, we define a new tracking error

	 ,x t x t x t di i i0= - -u u^ ^ ^h h h � (11)

where , , .d d 0 0 ,i i
T

0=u 6 @  For CD policy, the desired distance 
between the i-th follower and the leader is .d i d ,i 0 0#=-  
Then, (6) is rewritten into

	 u t k x t x t
 

i
j

T
i j

Ii

=- -
!

/ u u^ ^ ^ ^h h hh,� (12)

where , ,k k k kp v a
T= 6 @  is a vector of local feedback gains. 

To derive the collective dynamics of a platoon, we define the 
collective state vector , , ,X x x x RT T

N
T T N

1 2
3 1f != #u u u6 @  and the 

collective control input vector , , , .U u u u RN
T N

1 2
1f != #6 @  

The collective dynamics of nodes from 1 to N are

	 X t I A X t I B U tN N$ $, ,= +o ^ ^ ^h h h� (13)

with ,,  I A I BR RN
N N

N
N N3 3 3! !, ,# #  where ,  denotes 

the Kronecker product. Based on (12), the collective form 
of the distributed control law is written into

	 .U t k X tL P T $,=- +^ ^ ^h h h � (14)

Substituting (14) into (13), the closed-loop dynamics of a 
homogeneous platoon become

	 .X t I A Bk X tL PN
T $, ,= - +o ^ ^ ^h h h6 @ � (15)

Using the eigenvalue decomposition of ,L P+  it is proved 
that (15) is asymptotically stable if and only if

	 , .A Bk i Ni
T 6 !m- � (16)

are all Hurwitz, where , i Ni !m  are the eigenvalues of 
L P+  [7]. By this way, the collective dynamics of a pla-
toon are reduced into the behavior of multiple subsystems. 
Thus, the design of feedback gains is decoupled from the 
IFT, leading to scalable solutions for large-scale platoons 
[7]. Note that the eigenvalue decomposition of L P+  plays 
a key role in decoupling the dynamics from IFTs, which 
is also used in the design of distributed robust control 
(see (19)).

As shown in (15), the closed-loop dynamics of a vehicu-
lar platoon is a function of four components, namely 1) ND, 
denoted by , ;A B  2) IFT, denoted by L P+ ; 3) FG, included 
in X  as the desired distance (see (11)); and 4) DC, denot-
ed by .k  In addition, it is easy to see that the performance 
measures of platoons must have a tight relationship with 
the four main components. However, it is usually rather 
difficult to explicitly obtain the relationship between the 
performance metrics and the decomposed components. 
Most of existing research on string stability focuses on spe-
cific cases only; see [9], [16], [17] and [37] for example.

B. Distributed Robust Control
The robustness of platoon control systems is an important 
topic. One practical way to handle model mismatches in 
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vehicle dynamics is to use the consistent and accurate in-
put-output behavior of node dynamics [41]. But it is not easy 
to accommodate the heterogeneity in node dynamics.

Considering the requirements of string stability, robust-
ness, and tracking performance, Gao et al. proposed an H3  
control method for a heterogeneous platoon with uncertain 
dynamics and uniform time delays [42]. In this study, all 
nodes were combined as a big system. One disadvantage 
is that the designed controller only works for a specific 
platoon and it needs to be redesigned when the scale or 
interaction topology changes. Similar to the case of linear 
control, the decoupling strategy of robust control is also 
an effective way to overcome this problem. This strategy is 
motivated by the eigenvalue decomposition of ,L P+  and 
can balance the performances of robustness and distur-
bance attenuation. As shown in Fig. 3, the coupling arising 
from information topology can be successfully transferred 
to the uncertain parts of nodes V  by applying a linear trans-
formation to the platoon.

In Fig. 3, the dynamics of a platoon in frequency domain 
are derived by adding the model uncertainties to (5):

,E s
s

H s
U s

s
W s p s s

1 11N2 2 0 0C= + - -^
^

^ ^ ^h
h

h h h

	 ,Z s s P s U sΩ=^ ^ ^ ^h h h h  ,W s Z sV=^ ^h h � (17)

where 
/

/
,  ,E s

e s

e s

p s p s d s

p s p s d s

1

1
1

,

,N N N

N

1 1 0 1 0

0 0

h h h= =

- -

- -

=^

^

^

^

^

^

^

h

h

h

h

h

h

h
> > >H H H  

,  , ,
d

d
diag

,

,N

N0

1 0

0

1h fT TVC = = ^ h> H  is the normalized model

uncertainty satisfying ; ( )s1iT # X3  is its weighting 
function; W s^ h  is the disturbance arising from ,V  
whose input is .Z s^ h  Note that this model (17) includes 
additional uncertainty part iT  compared to the 3rd-order 
state space model (4). The CD policy is used here. Each 

node is controlled by the distributed state-feedback con-
trol logic (12). Here, we present its expression in frequen-
cy domain:

	 ,U s K s E sL P= +^ ^ ^ ^h h h h � (18)

where .K s k k s k sp v a
2= + +^ h  The nodes are interacting 

by the information topology .L P+  For undirected topolo-
gies, L P+  has an eigenvalue decomposition as

	 , , .diagL P N1
1fm mW W+ = -^ h � (19)

where im  is the eigenvalue of L P+ , and W  is the eigenvector 
matrix of  L P+ . Using the linear transformation in Fig. 3, 
the certain parts are then decoupled to a diagonal structure:

,E s
s

H s
U s

s
W s p s s

1 11N2 2
1

0 0CW= + - --r r rr ^
^

^ ^ ^h
h

h h h

	 , , ,U s K s diag E sN1 fm m=r r^ ^ ^ ^h h h h

	 Ω , .Z s s P s U s W s Z sV= =r r r rr^ ^ ^ ^ ^ ^h h h h h h � (20)

The variables in (20) are linear transformation of its 
original counterparts:

	 , ,Z s Z s U s U s1 1W W= =- -r r^ ^ ^ ^h h h h

, ,E s E s W s W s1 1W W= =- -r r^ ^ ^ ^h h h h  

	       , .0
1

0
1V VCC W W W= =- -r r r  � (21)

Based on (20), the synthesis approach of H3  control can 
be used to numerically solve K s^ h offline, which ensures 
the requirements of robustness and disturbance.

C. Distributed Sliding Mode Control
The sliding mode control (SMC) is a promising method for 
platooning of multiple vehicles to handle nonlinear dynamics 

and actuator saturations. In [27], an 
adaptive SMC was proposed for equi-
librium-stable interconnected systems 
to guarantee string stability. In this 
study, however, applicable topologies 
are limited to unidirectional topolo-
gies, where one node can only obtain 
the information from its predeces-
sors. In [64], an urban scenario pla-
toon control method was introduced 
with two basic modes: cruise mode 
and collision avoidance mode.

In this section, we introduce a dis
tributed SMC scheme for platoons 
with homogeneous linear dynamics 
(4) and undirected (symmetric) IFTs. 

W (s ) Ψ –1W (s )

U (s ) Ψ –1U (s )

Z (s )

E (s )

Ψ –1Z (s )

Ψ –1E (s )

diag(∆1, . . . , ∆N)

{H (s ), Ω(s )}

K (s ) (L+ P )

Ψ –1 ∆Ψ

{H (s ), Ω(s )}

K(s).diag(λ1, . . . , λN)

Coupled Decoupled

Linear
Transformation

Fig 3 Decoupling of vehicular platoon systems.
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If there exists a spanning tree in GN 1+  and information flow 
between followers is undirected, L P+  is positive definite 
[22]. The design of distributed SMC is divided into two stag-
es, i .e., 1) topological sliding surface design and 2) to-
pological reaching law design. The design of sliding surface 
and reaching law highly depends on the following topological 
structured function:

,Z a z z p z
,

i
j j i

N

ij i j i i
1

C = - +
!=

/^ ^h h

where , ,  , ,  ,  ,Z z z z i j NN1 2 f_ !6 @  aij  and Pi  are elements 
of the adjacency matrix and pinning matrix. Using topo-
logical structured function, the distributed sliding sur-
face is designed as

	 s t c X p c xii P
T

i P
T

oC= -^ ^h h

	 ,a c x c x p c x c x
,j j i

N

ij P
T

i P
T

j i P
T

i P
T

o
1

= - + -
!=

/ ^ ^h h

where , , ,  c X c x x xP
T

P
T

N1 2 f= 6 @ and c Rp
3 1! #  is the com-

mon vector coefficient of distributed sliding mode, satisfy-
ing that c B  P

T
i  is invertible. Note that (4) is a single input 

model, and the invertibility of  c BP
T

i  means that c BP
T

i  is a 
nonzero constant. The topological sliding surface for the 
whole system is defined as
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s

s

c x x

c x x
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N
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1 1 0
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^
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The topological reaching law is designed by substitut-
ing sim-  to topological structured function

,s s a s s p s
,

i i i
j j i

N

ij i j i i
1

_ m mC - =- - +
!=

/o ^ e ^h h o

where 02m  is the common coefficient for the distributed re
aching law. The topological reaching law for the whole system is

.S t SL Pm=- +o ^ ^h h

Comparing the derivative of sliding error and reaching 
law, we can cancel L P+  if it is positive definite,

, , .c x x c x x SL PL P p
T

p
T

N
T

1 0 0f m- - =- ++ o o o o^ ^ ^ ^h h h h6 @  
� (22)

The positive definiteness of L P+  is essential since it 
guarantees the cancellation. Then, we have

	 .c A x c B u s p
T

i i p
T

i i im+ = - � (23)

The control law is obtained by solving the upper equa-
tion. The stability proof of distributed SMC is also divided 

into two parts, i.e., reaching phase analysis and sliding 
phase analysis. The stability of the reaching phase is ana-
lyzed with respect to the whole platoon by choosing a Ly-
apunov candidate

	 .V t S S2
1 L PT 1= + -^ ^h h � (24)

By taking the derivative of Lyapunov function, it can be 
shown that sliding surface is reached asymptotically. Dur-
ing the sliding phase, a proper selection of cp  is necessary 
to achieve stable sliding dynamics. Details can be found 
in [46].

D. Distributed Model Predictive Control
Model predictive control (MPC) is an optimization-based 
control technique to anticipate future behavior of plants 
and take control actions accordingly. Using MPC tech-
niques, the control input is obtained by numerically opti-
mizing a finite horizon optimal control problem where both 
nonlinearity and constraints can be explicitly handled. 
This technique has been embraced by many industrial ap-
plications, for instance, collision avoidance and vehicle sta-
bility [29], [60].

Currently, most MPCs are implemented in a centralized 
way, where all the control inputs are computed by assum-
ing all the states are known. When considering a platoon 
system involving multiple vehicles, the centralized imple-
mentation is not suitable due to the challenges of gathering 
the information of all vehicles and solving a large-scale 
optimization problem. Most existing work for platoon con-
trol relies on the problem formulation of adaptive cruise 
control (ACC) [61], [62], which only involves two vehicles 
in the problem formulation. There exist some extensions to 
the cooperative ACC which considers multiple vehicles [2], 
[19]. The treatments in [2] and [19], however, also directly 
consider two consecutive vehicles in the problem formula-
tion, which are only applicable to limited types of commu-
nication topologies.

Here, a synthesis method of distributed MPC is pre-
sented for a heterogeneous platoon, where each vehicle is 
assigned a local optimal control problem only relying on 
its neighboring vehicles’ information [21]. This method is 
suitable for any type of IFTs, and the asymptotical stability 
of the closed-loop platoon system can be derived for unidi-
rectional topologies [21]. The discrete version of nonlinear 
equations (1) are used to model the longitudinal dynamics 
of each vehicle, i.e.,

,x t x t u t1i i i i i$z }+ = +^ ^ ^ ^h hh h

	 y t x ti ic=^ ^h h� (25)

where , , ( / ) ,t0 0 1 Ri i
T 3 13 !} x= #6 @  ,

1
0

0
1

0
0 R2 3!c = #; E  

x Ri i
3 1!z #^ h  is defined as
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Now, we define the local open-loop optimal control prob-
lem for each node i :
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where , ,u t u N t0 1i
p

i
p

pf -^ ^h h6 @  denotes the unknown 
variables, Np  is the predictive time horizon, Ui  denotes 
the convex set of input constraints, Ii  is the cardinality of 

,Ii  and ,d d 0, ,i j i j
T=u 6 @  denotes the desired distance vector 

between i  and ,j  the function li  in (26) is the cost associ-
ated with node ,i y k ti

a ^ h is the assumed trajectory of node 
i, and y k ti

a
- ^ h is the assumed trajectory of the neighbors.

The formulation of problem Fi  only needs the informa-
tion from its neighbors, and thus it is suitable for various 
communication topologies, including all of those shown 
in Fig. 2. The key idea in the design of each local optimal 
control problem Fi  is to construct and transmit assumed 
trajectories: each vehicle solves a local optimal control 
problem to obtain its own control input, and then sends its 
assumed output trajectory to its neighbors. Here, the as-
sumed variable is a shifted optimal result of the last-step 
problem ,Fi  synthesized by disposing the first value and 
adding a last value. The last added value ensures that the 
vehicle moves at a constant speed. Details of this design 
and the asymptotical stability of the closed-loop system can 
be found in [21].

V. Conclusion
This paper has presented a four-component framework 
to model, analyze, and synthesize a platoon of CAVs from 
the perspective of multi-agent consensus control. This 
framework is well-suited for designing distributed con-
trol schemes of CAV platooning. With the four-component 
framework, this paper has introduced the modeling tech-
niques, discussed the major performance metrics, and pre-
sented the design of four types of distributed controllers.

There are some open questions, especially considering 
the emerging V2V and V2I communications. Two of them 
are briefly discussed here: 1) How to analyze and synthe-
size a platoon in a systematic fashion, considering the non-
linearity of node dynamics, the variety of topologies, and 
the need for low-cost controllers? Most existing work only 
considers simplified models and specific topologies for 
controller synthesis. Communication issues, such as time 
delays, quantization errors, and packet loss pose a signifi-
cant challenge to platoon control as well. 2) How to balance 
different performance metrics in platoon control when 
considering practical requirements from highway opera-
tions? The balance of stability (e.g., internal stability and 
stability margin) and robustness (e.g., string stability and 
coherence behavior) for a platoon is attracting research 
interest. The ultimate objectives of platooning are to en-
hance highway safety, improve traffic utility, and reduce 
fuel consumption. How to explicitly take practical perfor-
mance requirements into account is rather challenging for 
platoon control.

Acknowledgment
This article is in memory of Prof. J Karl Hedrick who has 
dedicated valuable time to contributing to this piece of 
work while he was fighting with cancer. His intellectual 
contribution to nonlinear control and transportation en-
gineering and his dedication to students and colleagues 
have always inspired and will continue inspiring us to 
explore the unknown and educate the next-generation 
of scholars.

About the Authors
Shengbo Eben Li received the M.S. 
and Ph.D. degrees from Tsinghua 
University in 2006 and 2009. He is 
currently the associate professor at 
Tsinghua University. His active re-
search interests include autonomous 
vehicle control, learning-based driver 

assistance, energy management for electrified powertrain, 
distributed control and optimal estimation, etc. He is the 
author of over 100 journal/conference papers, and the co-
inventor of over 20 patents. Dr. Li was the recipient of Ex-
cellent Young Scholar of NSF China (2016), Yangtze River 
Scholar –Excellent Young Professor (2016), etc.

Yang Zheng received his B.S. and 
M.S. degrees from Tsinghua Univer-
sity, Beijing, China, in 2013 and 2015, 
respectively. He is currently working 
toward the DPhil. degree in the De-
partment of Engineering Science at 
the University of Oxford. His research 

interests include distributed control of dynamical systems, 



IEEE Intelligent transportation systems magazine  •  56  •  fall 2017 IEEE Intelligent transportation systems magazine  •  57  •  fall 2017

with applications on vehicular platoons. Mr. Zheng re-
ceived the Best Student Paper Award at the 17th Interna-
tional IEEE Conference on Intelligent Transportation 
Systems, in 2014, and Best Paper Award at the 14th Intelligent 
Transportation Systems Asia-Pacific Forum in 2015. He was 
the recipient of the National Scholarship and Outstand-
ing Graduate in Tsinghua University, the Clarendon Schol-
arship at the University of Oxford.

Keqiang Li obtained the M.S. and Ph.D. 
degrees from Chongqing University of 
China in 1988 and 1995 respectively 
and his B.Tech degree from Tsinghua 
University of China in 1985. Dr. Li is 
the Professor of Automotive Engineer-
ing at Tsinghua University. His main 

research areas include automotive control system, driver as-
sistance system, and network/networked dynamics and con-
trol. Currently he is leading the national key project on 
connected and automated vehicles in China. Dr. Li has been 
a recipient of “Changjiang Scholar Program Professor”, 
National Award for Technological Invention in China, etc.

Yujia Wu received the B.S. degree in 
Automation Science and Electrical 
Engineering from Beihang Universi-
ty, Beijing, China, in 2013. He is now 
perusing the Ph.D. degree in Mechan-
ical Engineering from University of 
California at Berkeley, USA. His re-

search interests are in the area of nonlinear dynamical 
systems analysis and control design; distributed motion 
coordinate for groups of autonomous agents.

J. Karl Hedrick received the B.S. de-
gree in engineering mechanics from 
University of Michigan, Ann Arbor, 
MI, USA, in 1966 and the M.S. and 
Ph.D. degrees in aeronautical and as-
tronautical engineering from Stan-
ford University, USA, in 1970 and 1971, 

respectively. He was the James Marshall Wells Professor of 
University of California, Berkeley, CA, USA. His research 
interests include nonlinear control and its application to 
transportation systems.

Feng Gao received M.S. and Ph.D. 
in Tsinghua University in 2003 and 
2007, respectively. He is now a profes-
sor in School of Electrical Engineering, 
Chongqing University. His current re-
search interests include robust con-
trol and optimization approach with 

application to automotive systems. He is the author of more 

than 40 peer-reviewed journal and conference papers, and 
co-inventor of over 20 patents in China.

Hongwei Zhang (S’01-M’07-SM’13) 
received his B.S. and M.S. degrees in 
Computer Engineering from Chongq-
ing University, China and his Ph.D. 
degree in Computer Science and Engi-
neering from The Ohio State Uni
versity. He is currently an associate 

professor of computer science at Wayne State University. His 
primary research interests lie in cyber-physical systems, 
wireless sensing and control networks, and dependable net-
worked systems. He is a recipient of the NSF CAREER Award. 
His work has won the Best Demo Award at the 21st NSF GENI 
Engineering Conference in 2014.

References
[1]	 S. Shladover, C. Desoer, J. Hedrick, M. Tomizuka, J. Walrand, W. 

Zhang, D. McMahon, H. Peng, S. Sheikholeslam, and N. McKeown, 
“Automated vehicle control developments in the PATH program,” IEEE 
Trans. Vehicular Tech, vol. 40, no. 1, pp. 114–130, 1991.

[2]	 R. Kianfar, B. Augusto, A. Ebadighajari, et al. “Design and experimen-
tal validation of a cooperative driving system in the grand cooperative 
driving challenge,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 3, pp. 
994–1007, 2012.

[3]	 T. Robinson, E. Chan, E. Coelingh “Operating platoons on public mo-
torways: An introduction to the sartre platooning programme,” in 
Proc. 17th World Congress on Intelligent. Transportation System, Oct. 
2010.

[4]	 S. Tsugawa, S. Kato, K. Aoki, “An Automated Truck Platoon for Energy 
Saving,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 
San Francisco, Sept. 2011, pp. 4109–4114.

[5]	 Y. Zheng, S. Eben Li, J. Wang, etc., “Influence of information flow 
topology on closed-loop stability of vehicle platoon with rigid forma-
tion,” in Proc. 17th Int. IEEE Conf. ITSC, 2014, pp. 2094–2100.

[6]	 T. Willke, P. Tientrakool, and N. Maxemchuk, “A survey of inter-vehi-
cle communication protocols and their applications,” IEEE Commun. 
Surv. Tut., vol. 11, no. 2, pp. 3–20, 2009.

[7]	 Y. Zheng, S. Li, etc. “Stability and scalability of homogeneous vehicu-
lar platoon: Study on influence of information flow topologies,” IEEE 
Trans. Intell. Transp. Syst., vol. 17, no. 1, pp. 14–26, 2016.

[8]	 S. E. Li, Y. Zheng, K. Li, J. Wang, “Scalability limitation of homoge-
neous vehicular platoon under undirected information flow topology 
and constant spacing policy,” in Proc. 34th Chinese Control Conf., Hang 
Zhou, July 28-30, 2015.

[9]	 S. Oncu, J. Ploeg, N. Wouw, and H. Nijmeijer, “Cooperative adaptive 
cruise control: Network-aware analysis of string stability,” IEEE 
Trans. Intell. Transp. Syst., vol. 15, no. 4, pp. 1527–1537, 2014.

[10]	 L. Wang, A. Syed, G. Yin, A. Pandya, and H. Zhang, “Control of vehicle 
platoons for highway safety and efficient utility: Consensus with com-
munications and vehicle dynamics,” J. Syst. Sci. Complex., vol. 27, no. 
4, pp. 605–631, 2014.

[11]	 M. Bernardo, S. Alessandro, and S. Stefania, “Distributed consensus 
strategy for platooning of vehicles in the presence of time-varying het-
erogeneous communication delay,” IEEE Trans. Intell. Transp. Syst., 
vol. 16, no. 1, pp. 102–112, 2015. 

[12]	 Y. Zheng, S. E. Li, K. Li, and W. Ren, “Platooning of Connected Vehicles 
with Undirected Topologies: Robustness Analysis and Distributed  
H-infinity Controller Synthesis,” arXiv:1611.01412. 2016.

[13]	 D. Swaroop, J. K. Hedrick, C. Chien, and P. Ioannou, “A comparison 
of spacing and headway control laws for automatically controlled ve-
hicles,” Veh. Syst. Dyn., vol. 23, no. 1, pp. 597–625, 1994.

[14]	 G. Naus, R. Vugts, J. Ploeg, M. Molengraft, and M. Steinbuch, “String-
stable CACC design and experimental validation: A frequency-domain 
approach,” IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4268–4279, 
2010.

[15]	 L. Xiao and F. Cao, “Practical string stability of platoon of adaptive 
cruise control vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 12, 
no. 4, pp. 1184–1194, 2011.

[16]	 E. Shaw, J. K. Hedrick, “String stability analysis for heterogeneous ve-
hicle strings,” Proc. Amer. Control Conf., 2007, pp. 3118– 3125.



IEEE Intelligent transportation systems magazine  •  58  •  fall 2017

[17]	 G. Guo and W. Yue, “Hierarchical platoon control with heterogeneous 
information feedback,” IET Control Theory Appl., pp. 1766–1781, 
2011.

[18]	 P. Barooah, P. G. Mehta, and J. P. Hespanha, “Mistuning-based control 
design to improve closed-loop stability margin of vehicular platoons,” 
IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2100–2113, 2009.

[19]	 W. B. Dunbar and D. S. Caveney, “Distributed receding horizon control 
of vehicle platoons: Stability and string stability,” IEEE Trans. Auto. 
Control, vol. 57, no. 3, pp. 620–633, 2012.

[20]	J. Ploeg, D. P. Shukla, and N. van de Wouw, “Controller synthesis for 
string stability of vehicle platoons,” IEEE Trans. Intell. Transp. Syst., 
vol. 15, no. 2, pp. 854–865, 2014.

[21]	 Y. Zheng, S. Eben Li, K. Li, et al. “Distributed model predictive control 
for heterogeneous vehicle platoons under unidirectional topologies,” 
IEEE Trans. Contr. Syst. Technol., vol. pp, no. 99, pp. 1–12, 2016., 

[22]	Y. Zheng, S. Eben Li, K. Li, and L. Wang, “Stability margin improve-
ment of vehicular platoon considering undirected topology and asym-
metric control,” IEEE Trans. Contr. Syst. Technol., vol. 24, no. 4, pp. 
1253–1265, 2016. 

[23]	Y. Zheng, “Dynamic modeling and distributed control of vehicular 
platoon under the four-component framework,” Master’s thesis, Tsin-
ghua Univ., 2015.

[24]	S. Eben Li, Y. Zheng, K. Li, J. Wang, “An overview of vehicular platoon 
control under the four-component framework,” In Proc. IEEE Intel-
ligent Vehicles Symp., 2015, pp. 286–291.

[25]	H. Hao, P. Barooah, and P. Mehta, “Stability margin scaling laws for 
distributed formation control as a function of network structure,” 
IEEE Trans. Autom. Control, vol. 56, no. 4, pp. 923–929, 2011.

[26]	H. Hao and P. Barooah, “On achieving size-independent stability mar-
gin of vehicular lattice formations with distributed control,” IEEE 
Trans. Autom. Control, vol. 57, no. 10, pp. 2688–2694, 2012.

[27]	D. Swaroop and J. K. Hendrick, “String stability of interconnected sys-
tems,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 349–357, 1996.

[28]	J. Ploeg, N. van Wouw, and H. Nijmeijer, “Lp string stability of cas-
caded systems: Application to vehicle platooning,” IEEE Trans. Contr. 
Syst. Technol., vol. 22, no. 2, pp. 786–793, 2014.

[29]	J. Wang, S. Eben Li, etc. “Longitudinal collision mitigation via coor-
dinated braking of multiple vehicles using model predictive control,” 
Integr. Comput. Aided Eng., vol. 22, no. 2, pp. 171–185, 2015.

[30]	A. Alam, A. Gattami, K. Johansson, “An experimental study on the fuel 
reduction potential of heavy duty vehicle platooning,” in Proc. 13th Int. 
IEEE Conf. ITSC, 2010, pp. 306– 311.

[31]	 B. van Arem, C. van Driel, and R. Visser, “The impact of cooperative 
adaptive cruise control on traffic-flow characteristics,” IEEE Trans. 
Intell. Transp. Syst., vol. 7, no. 4, pp. 429–436, 2006.

[32]	S. Eben Li, K. Deng, Y. Zheng, and H. Peng, “Effect of pulse-and-glide 
strategy on traffic flow for a platoon of mixed automated and manually 
driven vehicles,” Comput. Aided Civil Infrastruct. Eng., vol. 30, no. 11, 
pp. 892–905, 2015.

[33]	P. Seiler, A. Pant, and J. K. Hedrick, “Disturbance propagation in vehi-
cle strings,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1835–1842, 
2004.

[34]	J. Kwon and D. Chwa, “Adaptive bidirectional platoon control using 
a coupled sliding mode control method,” IEEE Trans. Intell. Transp. 
Syst., vol. 15, no. 5, pp. 2040–2048, 2014.

[35]	S. Darbha and P. Pagilla, “Limitations of employing undirected 
information flow graphs for the maintenance of rigid formations for 
heterogeneous vehicles,” Int. J. Eng. Sci., vol. 48, no. 11, pp. 1164–1178, 
2010.

[36]	C. Liang and H. Peng, “Optimal adaptive cruise control with 
guaranteed string stability,” Veh. Syst. Dyn., vol. 32, no. 4-5, pp. 313–
330, 1999.

[37]	S. Stankovic, M. Stanojevic, and D. Siljak, “Decentralized overlapping 
control of a platoon of vehicles,” IEEE Trans. Contr. Syst. Tech., vol. 8, 
no. 5, pp. 816–832, 2000.

[38]	M. Khatir, E. Davidson, “Bounded stability and eventual string stabil-
ity of a large platoon of vehicles using non-identical controllers,” in 
Proc. IEEE Conf. Decision Control, 2004, pp. 1111–1116.

[39]	F. Lin, M. Fardad, and M. R. Jovanovic, “Optimal control of vehicular 
formations with nearest neighbor interactions,” IEEE Trans. Autom. 
Control, vol. 57, no. 9, pp. 2203–2218, 2012.

[40]	F. Lin, M. Fardad, and M. R. Jovanović, “Design of optimal sparse feed-
back gains via the alternating direction method of multipliers,” IEEE 
Trans. Autom. Control, vol. 58, no. 9, pp. 2426–2431, 2013.

[41]	 S. Eben Li, F. Gao, D. Cao, and K. Li, “Multiple model switching control 
of vehicle longitudinal dynamics for platoon level automation,” IEEE 
Trans. Veh. Technol., vol. 65, no. 6, pp. 4480–4492, 2016.

[42]	F. Gao, S. Eben Li, et al. “Robust control of heterogeneous vehicular 
platoon with uncertain dynamics and communication delay,” IET 
Intell. Transport Syst., vol. 10, no. 7, pp. 503–513, 2016.

[43]	J. A. Fax and R. Murray, “Information flow and cooperative control of 
vehicle formations,” IEEE Trans. Automat. Control, vol. 49, no. 9, pp. 
1465–1476, 2004.

[44]	Y. G. Liu and B. G. Xu, “Improved protocols and stability analysis for 
multi-vehicle cooperative autonomous systems,” IEEE Trans. Intell. 
Transp. Syst., vol. 16, no. 5, pp. 2700–2710, 2015. 

[45]	R. Rajamani, H. Tan, B. Law, and W. Zhang, “Demonstration of 
integrated longitudinal and lateral control for the operation of auto-
mated vehicles in platoons,” IEEE Trans. Contr. Syst. Technol., 2000, 
pp. 695– 708.

[46]	Y. Wu, S. E. Li, Y. Zheng, and J. K Hedrick, “Distributed sliding mode 
control for multi-vehicle systems with positive definite topologies,” in 
Proc. IEEE 55th Conf. Decision and Control, pp. 5213–5219. 2016.

[47]	L. Xu, L. Wang, G. Yin, and H. Zhang, “Communication informa-
tion structures and contents for enhanced safety of highway vehicle 
platoons,” IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4206–4220, 
2014. 

[48]	L. Xu, L. Wang, G. Yin, and H. Zhang, “Impact of communication era-
sure channels on safety of highway vehicle platoons,” IEEE Trans. In-
tell. Transp. Syst., vol. 16, no. 3, pp. 1456–1468, 2015.

[49]	H. Zhang, X. Che, X. Liu, and X. Ju, “Adaptive instantiation of the pro-
tocol interference model in wireless networked sensing and control,” 
ACM Trans. Sens. Netw., vol. 10, no. 2, pp. 28.1–28.48, 2014.

[50]	P. Barooah and J.P. Hespanha, “Error amplification and disturbance 
propagation in vehicle strings with decentralized linear control,” in 
Proc. IEEE Conf. Decision Control, 2005, pp. 4964–4969.

[51]	 S. K. Yadlapalli, S. Darbha, and K. R. Rajagopal, “Information flow and 
its relation to stability of the motion of vehicles in a rigid formation,” 
IEEE Trans. Autom. Control, vol. 51, no. 8, pp. 1315–1319, 2006.

[52]	Y. Liu, H. Gao, B. Xu, G. Liu, and H. Cheng, “Autonomous coordinated 
control of a platoon of vehicles with multiple disturbances,” IET Con-
trol Theory Appl., vol. 8, no. 18, pp. 2325–2335, 2014.

[53]	R. Middleton and J. Braslavsky, “String instability in classes of linear 
time invariant formation control with limited communication range,” 
IEEE Trans. Autom. Control, vol. 55, no. 7, pp. 1519–1530, 2010.

[54]	B. Bamieh, M. Jovanovic, P. Mitra, and S. Patterson, “Coherence in 
large-scale networks: Dimension-dependent limitations of local 
feedback,” IEEE Trans. Autom. Control, vol. 57, no. 9, pp. 2235–2249, 
2012.

[55]	Y. Zheng, P. Mason, and A. Papachristodoulou, “A chordal decompo-
sition approach to scalable design of structured feedback gains over 
directed graphs,” in Proc. IEEE 55th Conf. Decision and Control, 2016, 
pp. 6909–6914.

[56]	Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and P. A. 
Wynn, “Fast ADMM for semidefinite programs with chordal sparsity,” 
arXiv preprint arXiv:1609.06068, 2016.

[57]	G. Guo and W. Yue, “Autonomous platoon control allowing range- 
limited sensors,” IEEE Trans. Veh. Technol., vol. 61, pp. 2901–2912, 
2012.

[58]	K. Santhanakrishnan and R. Rajamani, “On spacing policies for high-
way vehicle automation,” IEEE Trans. Intell. Transp. Syst., pp. 198–
204, 2003.

[59]	C. Godsil and G. Royle, Algebraic graph theory. New York: Springer-
Verlag, 2001.

[60]	S. Di Cairano, H. Tseng, D. Bernardini, and A. Bemporad, “Vehicle yaw 
stability control by coordinated active front steering and differential 
braking in the tire sideslip angles domain,” IEEE Trans. Control Syst. 
Technol., vol. 21, no. 4, pp. 1236–1248, 2013.

[61]	 P. Shakouri and A. Ordys, “Nonlinear model predictive control ap-
proach in design of adaptive cruise control with automated switch-
ing to cruise control,” Control Eng. Pract., vol. 26, pp. 160–177, 2014.

[62]	S. Li, K. Li, R. Rajamani, and J. Wang, “Model predictive multi-ob-
jective vehicular adaptive cruise control,” IEEE Trans. Control Syst. 
Technol., vol. 19, no. 3, pp. 556–566, 2011.

[63]	G. Guo and S. Wen, “Communication scheduling and control of a pla-
toon of vehicles in VANETs,” IEEE Trans. Intell. Transp. Syst., vol. 17, 
no. 6, pp. 1551–1563, 2016.

[64]	A. Ferrara and C. Vecchio, “Second order sliding mode control of vehi-
cles with distributed collision avoidance capabilities,” Mechatronics, 
vol. 19, no. 4, pp. 471–477, 2009.

[65]	P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE 
Trans. Autom. Control, vol. 38, no. 2, pp. 195–207, 1993.

[66]	J. K. Hedrick, M. Tomizuka, and P. Varaiya, “Control issues in auto-
mated highway systems,” IEEE Control Syst., vol. 14, no. 6, pp. 21–32, 
1994.

[67]	J. Lygeros, D. N. Godbole, and S. Sastry, “Verified hybrid controllers 
for automated vehicles,” IEEE Trans. Autom. Control, vol. 43, no. 4, pp. 
522–539, 1998.

�


