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Abstract—In this paper, we analyze downlink non-orthogonal
multiple access (NOMA) networks with limited feedback. Our
goal is to derive appropriate transmission rates for rate adap-
tation based on distributed channel feedback information from
two receivers. We propose an efficient quantizer with variahble-
length encoding that approaches the best performance of the case
where perfect channel state information is available everywhere.
We prove that in the typical application with two receivers, the
loss in the minimum rate decays at least exponentially with the
minimum feedback rate. Numerical simulations are presented to
demonstrate the efficiency of our proposed gquantizer and the
accuracy of the analytical results.
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I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has received sig-
nificant attention recently for its superior spectral efficiency
[1]. It is a promising candidate for mobile communication
networks, and has been included in LTE Release 13 for the
scenario of two-user downlink transmission under the name of
multi-user superposition transmission [2]. The key idea of NO-
MA is to multiplex multiple users with superposition coding
at different power levels, and utilize successive interference
cancellation (SIC) at receivers with better channel conditions.
Specifically, for NOMA with two receivers, the messages to be
sent are superposed with different power allocation coefficients
at the BS side. At the receivers’ side, the weaker receiver
decodes its intended message by treating the other’s as noise,
while the sironger receiver first decodes the message of the
weaker receiver, and then decodes its own by removing the
other message from the received signal. In this way, the weaker
receiver benefits from larger power, and the stronger receiver
is able to decode its own message with no interference. Hence,
the overall performance of NOMA is enhanced, compared with
traditional orthogonal multiple access schemes. It is shown in
[3] that the rate region of NOMA is the same as the capacity
region of Gaussian broadcast channels with two receivers,
but with an additional constraint that the sironger receiver is
assigned less power than the weaker one.

There has been a lot of work on NOMA. In [1] and [3].
the authors evaluated the benefits of downlink NOMA from
the system and information theoretic perspectives, respectively.
NOMA with multiple antennas was studied in [4]. A lot
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of effort has been put into the power allocation design in
NOMA. For example, the authors in [5] analyzed the necessary
conditions for NOMA with two users to beat the performance
of time-division-multiple-access (TDMA), and derived closed-
form expressions for the expected data rates and outage
probabilities. Transmit power minimization subject to rate
constraints was discussed in [6].

However, all the mentioned papers have assumed a perfect
knowledge of the distributed channel state information (CSI)
at the BS and all the geographically-distributed receivers,
which is difficult to realize in practice. Therefore, we consider
the limited feedback scenario wherein each receiver only has
access to its own local CSL, from the BS to itself, and then
broadcasts its feedback information to the BS and other re-
ceivers [7], [8]. Under such settings, interesting problems arise,
for example: How to design a simple but efficient quantizer
for NOMA? What are the performance losses compared with
the full-CSI case? In [9], the authors proposed a one-bit
feedback scheme for ordering users in downlink Massive-
MIMO-NOMA systems, and derived the achieved outage
probability. In [10], the authors derived the outage probability
of NOMA based on one-bit feedback of channel quality from
each receiver, and performed power allocation to minimize
the outage probability. Additionally, the problems of transmit
power minimization and user faimess maximization based on
statistical CSI subject to outage constraints were studied in
[11]. In [12], the authors derived the outage probability and
sum rate with fixed power allocation by assuming imperfect
and statistical CSL

In this paper, we focus on the limited feedback design
for the typical scenario of downlink NOMA, where a BS
communicates with two receivers simultaneously [2]. Based
on distributed feedback and in the interest of user fairness,
we wish to have the minimum rate of the receivers be as
large as possible. To dynamically adjust the transmission rates
for better channel utilization, we propose a uniform quantizer
which assigns each value to its left boundary point and em-
ploys variable-length encoding (VLE). Then, power allocation
is calculated based on the channel feedback. We calculate
the transmission rates that can be supported by the current
channel states, and analyze the rate loss compared with the
full-CSI scenario. The derived upper bound on rate loss shows
that it decreases at least exponentially with the minimum
feedback rate. The primary goal of this paper is to study
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BS

Fig. 1: Downlink NOMA networks. The solid and dashed lines
represent the signal and feedback links, respectively.

the impacts of quantization on the performance of NOMA,
and provide meaningful insights for practical limited feedback
design. Numerical simulations are provided to demonsirate the
efficiency of our proposed quantizer and the accuracy of the
analytical results.

Notations: The sets of real and natural numbers are rep-
resented by ® and @, respectively. For any x € §, |x] is
the largest integer that is less than or equal to x. Pr{-} and
E[-] represent the probability and expectation, respectively. For
a random variable (rv.) X, fy(-) is its probability density
function (p.d.f.). CM(p,A) represents a circularly symmetric
complex Gaussian rv. with mean pu and variance A.

II. PROBLEM FORMULATION
A Sysrem Model

Consider the downlink transmission in Fig. 1, where a BS
is to transmit a superposition of two symbols to two receivers
over the same resource block. Both BS and receivers are e-
quipped with only a single antenna. According to the multiuser
superposition transmission scheme [2], the transmitted signal
is formed as

x=+vP5 +v'{szsz,

where s5; is the information bearing symbol for Receiver i
with E[s;] =0 and E [|.'r,-|2 =1 for each channel state (the
expectation is over all transmitied symbols); F is the average
transmit power associated with 5;. Let P = P, + P be the total
transmit power, and o = 1;! be the power allocation coefficient,
then, =P and B =(1—a)P with 0 <o < 1.

Denote by h; ~ CN(D,A;) the channel coefficient from the
BS to Receiver i. Without loss of generality, assume A; > As.
The received signals at Receivers 1 and 2 are respectively

given by

1 =hvPisi+hivBss+ny,  y2=hoy/Pisi+ by /sy +ng,
where n; ~ CN(0,1) represents the background noise. Let
H; = |h;|*, then, the p.d.f. of H; is Ju;(x) = £ 1’_ for x = 0.!
We assume a quasi-static channel model, in which the channels
vary independently from one block to another, while remain-
ing constant within each block. Either receiver is assumed

!The results in this paper can be trivially generalized to other distributions
of Hy and Hs.

to perfectly estimate its local CSI (ie., H;), and send the
associated quantized local CSI to the other receiver and BS in a
broadcast manner via error-free and delay-free feedback links
[13], [14]). In some scenario where the two receivers are far
away from each other such that they cannot “talk™ directly, the
BS can play the role of relaying, i.e., forwarding the feedback
information received from one receiver to the other.

When H, = H», with SIC, Receiver 1 first decodes 52, and
then decodes 5, after emoving 5, from its received signal ¥;;
Receiver 2 directly decodes s, by treating 5, as noise [15],
[16]. Specifically, the rate for Receiver 2 to decode 52 by
treating 5, as noise is

PH3(1—a)
aH,P+1 )’

which is not larger than the rate for Receiver 1 to decode 5o,
given as ry_,; = log, (l +ﬂ'-"r-'_—")-). If 5, is transmitted at

rafo) = logy (1 +

aH | F+1
the rate of r(a), Receiver 1 can decode s; successfully with
an arbitrarily small probability of error [17]. After removing
hy /P55, from y,, Receiver 1 achieves a data rate for 5, as

(o) =1log; (1+aPH;).

On the other hand, when H, < H>, Receiver 2 first decodes 5.
removes fi,+/F) 5, from y,, and then decodes 5., while Receiver
1 decodes 5, directly by treating 5, as noise.

B. Maximum Minimum Rate

Our goal is to maximize the minimum of r)(a) and ra(a)
to ensure fairness between receivers [8], [18]. When perfect
CSI is available at the BS and receivers, the optimal power
allocation coefficient a* can be found by solving the optimiza-
tion problem rpa; = (max min{ry(a),r2(x)}. the solution of

which is given in the Tollowing theorem.

Theorem 1. When H, > H, the solwion of
E-EIE?-JE[] min{ry(a),r2(x)} is given by
2H.

o - M

V (H +Ho)? + AHH2P + (H, +Hy)

Proaf: Notice that with « increasing from 0 to 1, rj(a)
increases from 0 to log; (1 4+ PH,) and ro(c) decreases from
log; (1+ PH>) to 0. Since log; (1+ PH,) = log; (1 + PHz), the
maximum minimum rate is reached when ry(a*) = r2(a*),
from which a* in (1) is derived. [ |

The expression of a* when H; < H; can be obtained
straightforwardly. It is worth noting that both messages attain
the same rate at optimality, ie., r(a*) = r2(a*) = rmx.
Moreover, it can be verified that the rate pair (r) (a*),r2 (a*))
is on the rate region boundaries of both NOMA and Gaussian
broadcast channels with two receivers [3].

It is also worth pointing out that «* in (1) satisfies the
requirement for power allocation considered in [5] and [19]:
the achieved individual rate should exceed that in the TDMA
scheme, ie., rila*) = %logzl[l + PH;) for i = 1, 2. Therefore,
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the maximum minimum rate we consider in this paper achieves

higher rates in addition to better fairness between receivers.
With perfect CSI, the decoding order is determined based

on whether i, = H; holds. The maximum minimum rate is

lo 14+ H P
B Ez( (B P48\ HEP - (Hy 4 H)

Fmax =

): H] EHE:

+ 2H HaP
ﬁ,l"lf-‘f] +Hy ) +4H THL P+ (Hy +Hy)

]Dgz (l ), Hy < H;.

C. Limited Feedback

In the limited-feedback scenario, for an arbitrary quantizer

q: % — %, Receiver i maps H; to g(H;), and feeds the
index of g(H;) back to the BS and the other receiver, as
shown in Fig.l. The index of g(H;) is decoded and the
value of g(H;) is recovered. The decoding order will be
contingent on whether gq(H,) = g(H:). For instance, when
g(Hy) = g(H;), Receiver 1 is considered “stronger”, while
Receiver 2 is “weaker”. In this case, the power allocation
coefficient is computed hasgg[ﬁo? (1) by weating g (H;) as H;,
H —_ 2
o U g PP () ()
For rate adaptation, we shall design appropniate rates ry
and ry 4 for the messages 5, and 5; based on limited feedback
from the two receivers, such that r, 4 and 2 ; can be supported
and NOMA can be performed. The corresponding rate loss
will be

Fioss = Fmax — M0 {71 g, 72,4} .

In the subsequent sections, we will propose an efficient
quantizer and investigate the performance loss brought by
limited feedback.

ITII. LiMITED FEEDBACK FOR MINIMUM RATE

In this section, we first describe the proposed gquantizer
when the minimum rate is the concern, then, we show the
relationship between the rate loss and the feedback rates.

A Proposed Quantizer
We consider a uniform quantizer g, : & — %, given by?

_J|5] xA, x<TA,
ar(x) = { TA, x=TA,

where the bin size A and the maximum number of bins T € &
are adjustable parameters. As shown in Fig. 2, g.(x) quantizes
x to the left boundary of the interval where x is. For any
xE[nA,(n+1)A) when 0 <n <T —1, we have g-(x) =nA
and x — A < g,(x) <x; for any x € [TA,), gr(x) =TA and
gr(x) <x.

B. Rate Adaptation and Loss

When g, (-) is employed, Receiver 2 is viewed as the “weak”
receiver if g, (H,) = gr (H, ). Then, according to (1), the power

%In g, “g" stands for quantizer, and the subscript “r” represents rate.

ir Tﬂl ¥l qrlxa)  x
| | | / | l =
0 A 24 3A TA

Fig. 2: A uniform quantizer for minimum rate.

allocation coefficient o, is calculated as

2gr(Ha)
o [ar(Hy ) +ge ()] +4g0 (H g2 (Ha )P+ gr (BN gr (B

gr (H1) > 0,4, (H2) >0,

0, gr (Hy) =0 or g, (Hy) = 0.
Note that o, satisfies

log, (1+Pxay x g (Hi)) =
I.+ ‘i'l:HE]x“_m?r}
‘i'rl:-H'-E]‘f'p

logz( - when a, # 0. To exploit the

channels as much as possible, we let the rates for 5, and 5,
be

oy, =

g =l0gy (1+Pxay x g (H)),

P (Ha)(1—
Figr = ]ﬂgz (] + mﬁ) .

Lemma 1. When g, (H,) = g, (Ha), the rates ry 5, and ra 4, in
(2) can be achieved.

Proaf: Based on the channel coding theorem [17], if we
can show the channel capacities for 5 and s; under the settings
of NOMA are no smaller than ry g4 and rig4., the rates ry,,
and ry ;. can be achieved with a probability of error that can
be made arbitrarily small.

When g, (H) =0 or g, (Hz) =0, it is trivial to verify that
Fig and rag, can be supporied. When g, (Hy) > g, (Ha) > 0,
the channel capacity for Receiver 2 freating 5, as noise

s rp = |0g2 (] +M_ = IDEZ?] +%{H2}X(|—Eg_?]) _

g %y + 3 g, =g (Ha 45
F1q,.. Since log, l+%$_?"l is an increasing function of x
T
and g.(Hz) < H>. At Receiver 1, the channel capacity of s,

(I+Mﬁ)—)2

Gy xHitp
‘IriH]]x{]_Eai} ‘Ir“ﬁ]x{]_&i}
log, (l+ oigr scgr{Hy )+ 7 ) 2 log, (] * tgr gr{Hz )+ 7 ) ~ g
because H) > gr(H)) > g-(Hz). Hence, 5 can be decoded
at Receiver 1 with an arbitrarily small error and removed
from y,. After that, the channel capacity of 5, is r =
loga (1 +Pxay xH) = log; (1 +P oy xgr(H)) =rig.
Therefore, the rates ry 4 and ra 4 can be achieved for both
5 and 54. |
To sum up, it is the key fact of g,(x) < x that ensures the
rates ry g and ra g can be supported. When g-(H:) = gr(Hz).
the rate loss is

(2)

with treating s; as noise is r_,; = log,

Mloss = Fmax —Min{ry g .r24 }.

Lemma 2. The average rate loss of the quantizer g,(-) is
upper-bounded by:

E [Nioss] < log, (1 +Co xmeax{-‘:_%,ﬁ}), (3)
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where Cy is a positive constant that is independent of P.T and
A

The proof of Lemma 2 is provided in [20]. We mainly focus
on showing how the average rate loss changes with the bin
size A. It is beyond the scope of this paper to find the tightest
bounds, i.e., the smallest value for (. ™

It is observed from (3) that when ¢ * = A, the maximum
number of bins, T, can degrade I‘hf: rate. To eliminate this

effac:t we choose T such that e l = A, which yields T =
A Zlog g, L 3 With an appropriate value for T, we can make the
ratf: ]uss decrease at least linearly with respect to A.

Corollary 1. When T = J—Al]ng ﬂl, the average rate loss of the
quantizer g.(-) is upper-bounded by:

Elfioss) loga (1+Cox PxA) <Oy xPxA, 4)

where Cy and C, are positive constants that are independent
af P and A.

. Feedback Rate

Rather than the naive fixed-length encoding (FLE) for feed-
back that requires [log,(T +1)] bits per receiver per channel
state, we consider the more efficient variable-length encoding
(VLE) [14], [21].* An example of VLE that can be applied
here is by = {0}, by = {1}, by = {00}, b3 = {01} and so on, se-
quentially for all codewords in the set {0,1,00,01,10,11,...},
where by is the binary string to be fed back when g, (x) = nA.
The length of by, is |logz(n+2)|. The following theorem
derives an upper bound on the rate loss with respect to the
feedback rate of Receiver i (denoted by Rrvigi).

Theorem 2. When variable-length encoding is applied to the
quantizer g, (-), the rate loss decays at least exponentially as:

E [rioss) < log, (1 +Cy x Px 2™ {Revies =“r.'~fu~'-.2})
<G Pxd mh‘{ﬂ-,\'[l-‘._hﬂ-,\’[l-i,zh (5)

where C, and Cy are positive constants that are independent
ﬂfp and Rr:‘l,,l'LE‘I'.

Proaf: The feedback rate of Receiver i is derived as
T-1

Roviei= Y |loga(n+2) J/

n=0

fH.- (H;)dH;
+ ltogy(T+2)] [ fn(Hi)aH

22 (n+1)4
< ¥ llogs(n+2)] [, futHan,

Hji
(i1 ¢ %
<Y logy(n+2) f £ " aH;
Pl — .115
<loga(n+1)+1

3 Approaching the performance in the full-CSI case generally mquires a
small value for A. We mainly consider the case where A < 1 in this paper.

“For example, when A= 0.01 and &, =1, T = 4L log L ~ 460.5. When
FLE is adopted, the feedback rate per receiver will be [log, (T +-1)] = 9 bits
per channel state. As shown in Section IV, VLE costs far fewer bits.

<L

(ﬂ+|}-ﬁg!_;:-
D N

(l—e %)x]ngz{n+1]

.1-'|h l':

= _mA
—e )E % xloga(n+1)

I.-"\

I
.;=-|r=- ,-—-\

- mA
E "% xlogy(n+1).

With the help of [14, Eg.(22)]: P, rePrlog(n) <
T[2+lug +3—)] by letting g = &

= E g_% ®
n=I

. we have

Ee_"? x log,(n+1) log,(n+1)

eﬁ = 1 2 1
% < — -1
log? E e % xlog(n) < 1: Lﬂﬂz +log; (1 - %)l

Then, R, yig; is upper-bounded by’

2 1
RrVLE,i_]Dg2+]+]UEQ (l+%): (6)
or equivalently (when Rpyvig; is sufficiently large),
A A < i — = Oy x 27TAVIEL,
zﬂ-\ru,i—l—-h—;r -1 zﬂ-yu-;i—z—ﬁg
7
Substituting (7) into (4) proves the theorem. [ |

IV. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, we perform numerical simulations to validate
the effectiveness of our proposed quantizer for rate adaptation.
In all subsequent simulations for two receivers, we assume the
channel variances are A; = 1 and 4, = (.5, Results for other
values of A; and A; will exhibit similar observations.

In Fig. 3, we simulated the minimum rates of the full-
CSI case, g,(-) and the TDMA scheme (where each receiver
occupies half of the time to transmit). We observe that
the proposed quantizer with NOMA outperforms the TDMA
scheme when A = (.01 and 0.05. The rate loss between the
full-CSI case and gq.(-) with A = {]EI] is almost negligible.
The corresponding values for T = —l]ng— and the feedback
rates for both receivers (bits/per channel state) are listed in
Table I Compared with FLE which costs [log,(T + 1)] bits
per receiver per channel state, VLE can save almost half of
the feedback bits.

In Fig. 4, we plot the rate losses of g,(-) for different values
of A and the feedback rates Rryvig1 and Rpyig 2. It shows that
the rate loss of g.(-) decreases at least linearly with respect
to A and exponentially with min{R.vig1,Rrvie2}, which

3 Although it is intractable to derive a closed-form expression for Ry
meuppe:rhmmdmfﬂ};wcwuhsagmdesunmunltwman}'fmdha:l:hﬂs
will be consumed.
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Fig. 3: Simulated minimum rates of NOMA.
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Fig. 4: Simulated rate losses versus (a) A and (b)

[13]
min{R,vig1,Rryvie2} for P=10 dB.

[14]
TABLE I: Feedback rate for either receiver.

A T | [logy(T +1)] | Receiver 1 | Receiver 2 [15]
0.01 | 461 9 53 4.6
0.05 | &0 [ 36 27 [18]

[17]
validates the accuracy of our derived upper bounds in {4) and
(5). In addition, Fig. 4(a) shows that A needs to be less than 1)
0.15 such that g,(-) can obtain a higher rate compared with
the TDMA scheme.

[19]

V. CONCLUSIONS AND FUTURE WORK 201
We have introduced an efficient quantizer for rate adaptation  [21]
of minimum rate in NOMA with two receivers. We have
proved that the loss in rate decreases at least exponentially
with the minimum feedback rate. The limited feedback design
for the MIMO-NOMA networks will be an interesting future
research direction.
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