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Visualizing Shape Deformations with Variation of Geometric

Spectrum

Jiaxi Hu, Hajar Hamidian, Zichun Zhong, and Jing Hua

Abstract—This paper presents a novel approach based on spectral geometry to quantify and visualize non-isometric deformations
of 3D surfaces by mapping two manifolds. The proposed method can determine multi-scale, non-isometric deformations through the
variation of Laplace-Beltrami spectrum of two shapes. Given two triangle meshes, the spectra can be varied from one to another with
a scale function defined on each vertex. The variation is expressed as a linear interpolation of eigenvalues of the two shapes. In each
iteration step, a quadratic programming problem is constructed, based on our derived spectrum variation theorem and smoothness
energy constraint, to compute the spectrum variation. The derivation of the scale function is the solution of such a problem. Therefore,
the final scale function can be solved by integral of the derivation from each step, which, in turn, quantitatively describes non-isometric
deformations between two shapes. To evaluate the method, we conduct extensive experiments on synthetic and real data. We employ
real epilepsy patient imaging data to quantify the shape variation between the left and right hippocampi in epileptic brains. In addition,
we use longitudinal Alzheimer data to compare the shape deformation of diseased and healthy hippocampus. In order to show
the accuracy and effectiveness of the proposed method, we also compare it with spatial registration-based methods, e.g., non-rigid
Iterative Closest Point (ICP) and voxel-based method. These experiments demonstrate the advantages of our method.

Index Terms—Geometry-based Technique, Spectral Analysis, Biomedical Visualization

1 INTRODUCTION

Morphometric analysis of 3D surface objects are very important in
many biomedical applications and clinical diagnoses. Its critical step
lies in shape comparison. Many different kinds of shape analyses were
presented in the literature [20, 21, 39, 6] for shape representation and
comparison. The spatial geometric properties of surface shapes, such
as curvature, geodesic distance, etc., were used to represent and differ-
entiate various shapes [7, 20]. There also exist more advanced meth-
ods for representing and differentiating shapes. For example, shape
distribution method defines shape properties based on distance, angle,
area and volume measurements between random surface points [21].
Then, the similarity between two objects can be determined by a
pseudo-metric which is calculated with distances between the distri-
butions. Geometry hashing method [39] represents a shape with some
local interest features, such as points, lines, and so on, which can then
be used for computing the shape difference. Graph-based method an-
alyzes a 3D surface object by transforming it to a graph and converts
the shape comparison into a graph problem [5, 6]. Note that the afore-
mentioned shape analysis and comparison methods are challenged by
irregular mesh samplings and complex/subtle deformations between
shapes.

Shape spectrum, inspired by Fourier transform in signal process-
ing [27], is another method to represent and differentiate shapes. This
method was applied on graphs earlier. Considering a discrete meshes
as a graph, shape spectrum is defined by a Laplacian matrix of the
vertices and their connections. Using the concept of Fourier trans-
form, the eigenvalues of the Laplacian matrix define the spectrum of
the graph, and the eigenfunctions are the orthogonal bases. Therefore,
the functions defined on graphs can be projected to the orthogonal
bases and analysed in the spectrum domain. Karni and Gotsman [14]
used this projection for smoothing and mesh comparison purposes.
Jain and Zhang [12] employed the extended version of this method
for shape registration in the spectrum domain. However, the Laplace
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spectrum approach focuses more on the connectivity of the graph
which may lead to distorted mappings [42]. Along this direction,
Reuter [27] and Lévy [17] defined a shape spectrum approach with
the Laplace-Beltrami operator on a manifold and employed the eigen-
values and eigenfunctions as a global shape descriptor [26, 28, 25].
Using the eigenvalues and eigenfunctions, Rustamov proposed a mod-
ified shape distribution method in [31]. As the geometry changes, the
spectrum will change as well. Therefore, the similarity and differ-
ence among shapes can be described using this method. However,
through the direct use of the decomposed eigenvalues and eigenfunc-
tions, these spectral methods can only describe the global difference
between shapes. They are neither able to localize the shape difference
nor can they quantify non-isometric deformations.

In this paper, we focus on spectrum alignment of general shapes
using the eigenvalue variation in order to quantify the non-isometric
deformations between surface shapes. In our approach, shapes are au-
tomatically aligned by calculating the metric scaling on both shapes.
Our method defines the surface shape deformation by the variation
of Laplace-Beltrami spectrum of the shapes and quantifies the multi-
scale deformations through the use of different sets of eigenvalues.
Compared to the traditional approaches, it can detect and localize
small non-isometric deformations in addition to global difference of
the shapes, without using any defined landmarks on the manifolds.
This is because the spectrum only depends on the intrinsic geometry
of the shape and is invariant to spatial translation, rotation, scaling and
isometric deformation. This method is computationally affordable and
suitable to map surface shapes for non-isometric deformation analysis.

1.1 Related Works

In general, there are two categories of methods for detection and cate-
gorization of 3D shape deformation: spatial registration methods and
spectral methods. Spatial registration methods usually require well-
defined features or landmarks to map two shapes [44, 36]. It becomes
even more challenging when the landmarks are difficult to define in
certain 3D shapes, such as hippocampus, heart, etc. Iterative Closest
Point (ICP) method introduced by Besl and Mckay in [1] is one of the
popular approaches in spatial registration-based methods. In this ap-
proach, the initial transformation for global matching is first estimated
and then the closest points are found by minimizing the distance be-
tween two shapes. In spite of the simplicity of the algorithm, it is
computationally costly to identify the closest points and it does not
converge very fast. The ICP method has been used in many research
areas such as multi-modality image registration [35]. They tried to
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find the most-likely correspondence between two shapes using prin-
cipal direction tree search. Han et al. [8] enhanced the ICP method
for registering the large-scale 3D environment models. They tried to
avoid the local minima to reach an optimal registration. According
to their experiments, the computational time is around 20 times more
than standard ICP. There are many other spatial registration methods
that can be applied on 3D shapes for medical applications, such as
Flirt [13] and surface parameterization-based approaches [43]. These
methods use atlases and landmarks as well.

Spectral methods, on the other hand, do not need any landmarks.
By definition, shape spectrum represents the information of intrinsic
local geometry. It is invariant to isometric deformations and different
triangulations. Also, the computing time is affordable and it can re-
veal the fine characteristics of the shape. Because of these important
advantages of Laplace-Beltrami spectrum, this method is used by lots
of studies and many shape analysis approaches such as shape recog-
nition and shape matching [24]. However, these spectral methods can
only describe the global difference between shapes by directly using
the decomposed eigenvalues and eigenfunctions. Reuter et al. in [26]
discussed that spectrum is invariant to small amount of noise but high
level noise or small non-isometic deformation can change the spec-
trum dramatically. The change of shape spectrum is less studied in
the literature. In reality, many deformations, such as heart motion,
brain surface development, and so on, break isometry. Hence, apply-
ing geometric spectrum methods for analyzing non-isometric defor-
mations is very challenging. Recent approaches [33, 34] showed the
shape spectrum can be controlled with a scale function on the Rie-
mann metric. Shi et al. discussed in [33] that the eigenvalues and
eigenfunctions change according to the Riemann metric of the man-
ifold. Since their work focused on generating a dense registration,
the eigenvalue variation was not studied. In [34], Shi et al. used
difference between the eigenfunctions of two surfaces to generate a
conformal map directly between them. To this end, they minimize
the difference between surfaces in the Laplace-Beltrami embedding
space using optimization approaches. This study focused on eigen-
function variation and the method was time costly. For instance, for
mapping two hippocampal surfaces with 1000 vertices, the procedure
took around 20 minutes. Recently, Li et al. [18] proposed generalized
local-to-global features on 3D geometric models, coupled with both
local (differential) and global (integral) geometric attributes, based
on spectral graph wavelets. There are recent advances in the field
of spectral shape analysis closely related to the proposed approach.
For instance, Kovnatsky et al. [16] showed how to modify (align)
the eigenfunctions of the Laplace-Beltrami operator in order to match
non-isometric shapes. Rodolà et al. [29] applied a Laplacian pertur-
bation analysis (variation of eigenvalues and eigenfunctions), in order
to show spectral properties of near-isometric manifolds. Ovsjanikov
et al. [23] proposed a spectral method for shape matching which is
based on finding an alignment between eigenfunctions based on a set
of linear constraints. Then, Ovsjanikov et al. [22] presented a method
for finding functional correspondence between manifolds based on the
geometric matrix completion framework [15]. In [22, 32, 41], visu-
alizing shape deformations based on a spectral representation of the
correspondence was shown. However, the key difference between the
methods mentioned above and our proposed approach lies in the fact
that our method is correspondence-free, i.e., a map between the two
objects is not required in order to align the Laplacian spectra.

There are some other methods, besides the spectral and ICP-like ap-
proaches. One of these approaches is diffeomorphism, which usually
yields global optima. For example, Windheuser et al. [38] proposed
a framework for computing an elastic orientation-preserving matching
of non-rigid 3D shapes. Some other approaches are based on minimiz-
ing metric distortion, such as [2, 30]. There also exists some recent
works [3, 9, 10] for visualization of shape deformations.

This paper presents a new method for quantifying and visualizing
the deformations between surface shapes through the variation of geo-
metric spectrum. Given two triangle meshes, the spectra can be varied
from one to another with a scale function defined on each vertex. The
variation is expressed as a linear interpolation of eigenvalues of the

two shapes. In each iteration step, a quadratic programming prob-
lem is constructed based on our derived spectrum variation theorem
and smoothness energy constraint to compute the spectrum variation.
The derivation of the scale function is the solution of such a prob-
lem. Therefore, the final scale function can be solved by integral of
the derivation from each step, which, in turn, quantitatively describes
non-isometric deformations between the two shapes. Our major con-
tributions in this work can be summarized as follows:

• We prove a theorem that the shape spectrum is a piecewise
analytic to a scale function defined on the Riemann metric of
the manifold. Our theorem holds in both continuous domains
and discrete triangle meshes and supports the variation of eigen-
values for non-isometrically deformed shapes. Therefore, it en-
ables a quantitative method for deformation analysis.

• We present a spectrum alignment algorithm for triangle
meshes, supporting non-isometric deformation analysis. In
the discrete domain, the variation of eigenvalues in terms of the
scale vector can be turned into a matrix form, which introduces
a linear system. Together with the smoothness and local bound
constraints, the linear system can be solved efficiently. After
the eigenvalues are matched, the eigenfunction distributions are
aligned as well. This means the shape spectrum can be controlled
analytically through a scale vector, hence, non-isometric analysis
is available within shape spectra.

• Our developed system verifies the spectrum variation the-
orem and demonstrates the accuracy and efficiency of
the spectral variation algorithm on visualization of non-
isometrically deformed shapes. The applications to biomedical
imaging problems show that it is a viable solution for morpho-
metric analysis and visualization in biomedical applications and
clinical diagnoses.

2 VARIATION OF THE EIGENVALUES AND EIGENFUNCTIONS

In this work, we use Laplace-Beltrami operator to compute the geo-
metric spectrum of a manifold. Let f1 ∈ C2 be a real function defined
on a Riemannian manifold M . The Laplace-Beltrami operator △ is
defined as: △f1 = ▽ · (▽f1), where ▽f1 is the gradient of f1 and ▽·
is the divergence on the Manifold M . We compute the eigenvalue of
the Laplacian equation defined as follows:

△f = −λf, (1)

where the family solution {λi} is a real nonnegative scalar and will
result in the corresponding real family functions of {fi} for i =
0, 1, 2, .... To solve the differential equations, different methods can
be employed such as finite element method (FEM) and discrete dif-
ferential operator. In [27], Reuter et al. discretized the manifold and
the Laplace-Beltrami operator by using FEM. In this paper, we use
discrete differential operator to solve this problem. In this framework,
a 2D manifold is discretized to triangle meshes of M = (V,E, F ),
where V is the set of vertices, E is the set of edges and F is the set of
faces. Assuming the neighborhood of a vertex is approximated with
the area of its Voronoi region, a discrete Laplace-Beltrami operator can
be defined with the average value over the area of the Voronoi region.
Using this concept, the Laplacian-Beltrami matrix for the vertices of a
triangle mesh can be constructed as

Lij =











−
cotαij+cot βij

2Ai
if i, j are adjacent,

∑

k

cotαik+cot βik

2Ai
if i = j,

0 otherwise,

(2)

where αij and βij are the two angles opposite to the edge in the two
triangles sharing the edges i, j and Ai is the area of Voronoi region at
vertex i. k is the index of triangles within 1-ring neighborhood of the
vertex i.
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Therefore, Equation 1 turns to:

Lv = λv, (3)

where v is n dimensional vector for each λ and represents the func-
tion value at each vertex on the mesh. This equation is a generalized
eigenvalue problem and is solved numerically by constructing a sparse
matrix W and a diagonal matrix S such that:

Wij =











−
cotαij+cot βij

2
if i, j are adjacent,

∑

k

cotαik+cot βik

2
if i = j,

0 otherwise,

and Sii = Ai. Thus, the Laplace Matrix L is decomposed as L =
S
−1

W and the generalized eigenvalue problem can be presented as:

Wv = λSv. (4)

As a result of non-isometric deformation, the eigenvalues and
eigenfunctions of the shape dramatically change. On a compact closed
manifold M with Riemann metric g, we define shape deformation as
a time variant positive scale function ω(t) : M → R+ such that
gωij = ωgij and dσω = ωdσ, where ω(t) is nonnegative and con-
tinuously differentiable. By definition, the weighted Laplace-Beltrami

operator becomes ∆gω =
1

ω
∆g . Consider the ith solution of the

weighted eigen problem, this equation can be written as:

∆gω

fi = −λifi, (5)

or rewritten as
∆g

fi = −λiωfi, (6)

where the eigenfunction fi is normalized as
∫

M

f
2
i dσ

ω = 1 for i = 0, 1, 2, . . . , (7)

and orthogonal to other eigenfunctions, such that:
∫

M

fifjdσ
ω = 0, j ̸= i. (8)

Next, we will explain and prove two theorems that guarantee the
existence of a scale function which aligns shapes with non-isometric
deformations.

Theorem 1. λi(t) is piecewise analytic and, at any regular point, the
t-derivative of λi(t) is given by:

λ̇i = −λi

∫

M

ω̇fi
2
dσ. (9)

Proof of this theorem is provided in Appendix A. This theorem can
be applied to discrete matrix as well. Assume that Ω is a nonnegative,
continuously differentiable and diagonal matrix, based on Equation 4,
a weighted generalized eigenvalue problem can be presented as fol-
lows:

Wvi = λiΩSvi, (10)

where λi and vi are ith corresponding solution. The eigenvectors can
be normalized as

< vi,vi >ΩS= 1 for i = 0, 1, 2, . . . , (11)

and orthogonal to each other, i.e.,

< vi,vj >ΩS= 0, when i ̸= j. (12)

Theorem 2. λi is piecewise analytic and, at any regular point, the
t-derivative of λi is given by:

λ̇i = −λivi
T
Ω̇Svi, (13)

Proof of this theorem is provided in Appendix B. Our theorems
show that the spectrum is smooth and analytical to non-isometric local
scale deformation. They support the variation of eigenvalues for the
alignment of non-isometrically deformed shapes, hence an automatic
registration-free method for deformation analysis.

3 ALGORITHM FOR COMPUTING SPECTRAL VARIATIONS

Based on the theorems proved in Section 2, this section will detail
a discrete algorithm for the alignment of non-isometrically deformed
shapes through the variation of eigenvalues. Consider two closed man-
ifolds, M and N , represented with discrete triangle meshes, their first
k1 nonzero eigenvalues and eigenvectors are

λMi
,vMi

, λNi
, and vNi

, for i = 1, 2, . . . , k1.

To align two shapes we use first k1 smallest eigenvalues. By increas-
ing k1, some high frequency deformations may be detected. As we
mentioned before, the deformation is not isometric, thus the first k1
eigenvalues of two manifolds are not the same. In order to align the
first k1 eigenvalues of N to those of M , a continuous scale diagonal
matrix Ω(t) is applied on N . Ω is an n by n matrix, where n is the
number of vertices on N . The element Ωii at the diagonal is a scale
factor defined on each vertex on N . According to Theorem 2, the
derivative of each eigenvalue is expressed by those of Ωii analytically.
Thus, the scale matrix Ω will introduce a variation and alignment from
N to M on eigenvalues. The following will explain the details how to
calculate the diagonal matrix Ω numerically.

3.1 Matrix Eigenvalue Variation

We assume that the eigenvalues of N vary linearly towards those of
M . This linear interpolation is represented as:

λi(t) = (1− t)λNi
+ tλMi

, t ∈ [0, 1]. (14)

At the beginning, t = 0, and λi(0) starts as λNi
, while t reaches 1,

λi(1) aligned to λMi
. At any regular time t ∈ [0, 1], the derivative is

constant value and can be calculated as:

λ̇i(t) = λMi
− λNi

, t ∈ [0, 1]. (15)

Combining Equations 15 and 13, the derivative of each λi(t) leads to
an equation of Ω as follows:

− λi(t)vi(t)
T
Ω̇Svi(t) = λMi

− λNi
, t ∈ [0, 1]. (16)

Each diagonal element Ωii represents a scale factor at vertex i on man-
ifold N . Ω(0) is an identity matrix on N , and Ω(1) aligns the first k1
nonzero eigenvalues of N to those of M . Although the time derivative
of Ω can be calculated in Equation 15 but solving this equation is not
straightforward. We need to transform the individual integration equa-
tion into a linear system. We achieve this by extracting the diagonals
as vectors vΩ and vS and then employing Hadamard product, which
is an element wise matrix product as follows:

A ◦B = C such that Aij ·Bij = Cij . (17)

Then, Equation 13 can be rewritten in a linear form as follows:

(vS ◦ vi ◦ vi)
T
· v

Ω̇
=

λNi
− λMi

λi(t)
, t ∈ [0, 1]. (18)

Note that, as the first k1 eigenvalues are going to be aligned, we can
get k1 independent equations, which lead to a linear system as follows:

A · v
Ω̇

= b, (19)

where A is a row stack of (vS ◦ vi ◦ vi)
T with k1 rows and b is the

right side of Equation 18.

Considering that practically k1 is much less than the number of
nodes in the mesh, the system is underdetermined and has no unique
solution. Thus, suitable constrains are necessary to provide an opti-
mized solution for the linear system.
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3.2 Smoothness Constraints

In this work, we focus on the global smoothness of the scale factors
distributed on N . Consider a scalar function f ∈ C2 is define on
the continuous manifold < Nc, g >. The gradient of f describes the
local change of f . A smoothness energy of f is defined with the total
squared magnitude of the gradient ∇f on Nc as:

E =

∫

Nc

∥∇f∥2dσ. (20)

Note that ∇f is a vector, and the squared magnitude is calculated as a
dot product:

∥∇f∥2= ∇f · ∇f. (21)

Then, the integral on Nc becomes

E = −

∫

Nc

f∆g
fdσ. (22)

At time t, we investigate the scale function ω(t) and dω|t. Then, we
can obtain the following smoothness energy:

E = −

∫

Nc

(ω + dω)∆g(ω + dω)dσ

= −

∫

Nc

dω∆g
dωdσ − 2

∫

Nc

ω∆g
dωdσ −

∫

Nc

ω∆g
ωdσ.

(23)

On the discrete triangle mesh N , the scale function is a vector vΩ,
which is the diagonal of matrix Ω. The integral is a matrix product as
follows:

E =< vΩ + v
Ω̇
,L · (vΩ + v

Ω̇
) >S

= (vΩ + v
Ω̇
)T · S · L · (vΩ + v

Ω̇
)

= (vΩ + v
Ω̇
)T ·W · (vΩ + v

Ω̇
)

= v
T

Ω̇
·W · v

Ω̇
+ 2vT

Ω ·W · v
Ω̇
+ v

T
Ω ·W · vΩ.

(24)

Assume that vΩ is known at each time t and v
Ω̇

is to be solved in
Equation 19. v

Ω̇
is going to minimize the quadratic smooth energy

Eq at any time,

Eq = v
T

Ω̇
·W · v

Ω̇
+ 2cT · v

Ω̇
, (25)

where c = W · vΩ. In order to preserve the physical availability,
vΩ must be bounded, i.e., the scale factor cannot be zero or negative;
and it cannot be infinite either. We denote a lower bound and an upper
bound with hl,hu > 0, where hl and hu are n dimensional constant
vector. v

Ω̇
must satisfy

hl ≤ vΩ + v
Ω̇

≤ hu. (26)

This inequality bound can be written into a matrix form:

G · v
Ω̇

≤ h, (27)

where G is stack of identity matrices as

G2n×n =

(

−In×n

In×n

)

, (28)

and h is a 2n dimensional vector as

h2n×1 =

(

vΩ − hl

hu − vΩ

)

. (29)

The linear system (Equation 19), smoothness constraint (Equation 25),
and constant bound (Equation 27) introduce a quadratic programming
problem at each time t. Assume the eigenvalues and eigenvectors are

known at each time t, the derivative of the scale matrix Ω̇ is the solu-
tion of such quadratic programming.

3.3 Linear Integration

In Section 3.2, we have shown that at each time t, the derivative of the
scale function can be calculated as a solution of a quadratic program-
ming. In the initial state, the scale function is identity which starts
from manifold N itself. The final scale matrix can be achieved by the
following integral:

Ω(1) = I+

∫

1

0

Ω̇dt. (30)

This equation aligns the first k1 nonzero eigenvalues from N to M .
This integration is discretely approximated with an iteration. We di-
vide the time interval [0, 1] into K steps which we index them as q. In
the initial state, q = 0, Ω(0) = I, λi(0) = λNi

, and vi(0) = vNi
. In

order to reduce the numerical error, we reinitialize the problem at the
beginning of each step q = 0, 1, · · · ,K. Instead of aligning λNi

to
λMi

, we align λi(q) to λMi
. λi(q) and vi(q) are re-calculated with

Equation 4 and current Ω(q). The result Ω̇(q) can be used to calculate
Ω(q + 1) as follows:

Ω(q + 1) = Ω(q) +
1

K − q
Ω̇(q). (31)

After K steps, the desired Ω(K) will be achieved and manifold M
will be aligned to manifold N . The summary of the algorithm can be
found in Algorithm 1.

Algorithm 1 Eigenvalue Alignment

Input: Closed 2D manifolds N and M , represented by triangle
meshes, and constant k1;

Output: Diagonal weight matrix Ω(q) on N , aligning first k1
nonzero eigenvalues from N to M ;
Initialize Ω(0) ← I, calculate matrices W and S on N , and
λMi

,vMi
, λNi

, and vNi
, for i = 1, 2, . . . , k1;

while q < K do
Calculate λi(q),vi(q), for i = 1, 2, . . . , k1 using Equation 4

with Ω(q);
Construct the quadratic programming problem using Equations

19, 25, and 27;
Solve the quadratic programming problem to get Ω̇(q) and cal-

culate Ω(q + 1);
q ← q + 1;

end while

4 EXPERIMENTS AND APPLICATIONS

The proposed algorithm and system are implemented using Python
and C++ on a 64-bit Linux platform. The experiments are conducted
on a computer with an Intel Core i7-3770 3.4 GHz CPU and 8 GB
RAM. We apply our algorithm on 2D manifolds, represented with tri-
angle meshes. In the experiments, we use hippocampi extracted from
brain MR images and their surface meshes have around 5000 vertices.
Besides the vertex number, there are two constants, K iteration and the
first k1 nonzero eigenvalues to be aligned. According to the algorithm
described in Section 3, each iteration is an independent quadratic pro-
gramming problem. Thus, the complexity is linear to the step number
K. k1 determines how many eigenvalues to be re-initialized at the
beginning of each step. The algorithm calculates the eigenvalues by
iterations with the complexity of O(n2) to the number of vertices and
linear to k1. The average computing time for around 5000 nodes, with
k1 = 100 and K = 10, is around 17 seconds. Note that, the larger
the K is, the more accurate the approximation is, in terms of the linear
interpolation. In practice, we found K = 10 is sufficient to get the ac-
curate result with a reasonable computational time. Ideally, including
more eigenvalues for alignment can be more accurate. However, the
numeric eigenvalue calculation is not reliable on higher indexed eigen-
values, which will bring more unsuitability. It is noted that the unsta-
ble eigenfunctions are introduced by the symmetry. This is avoided by
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applying some preprocessing with existing symmetry analysis algo-
rithms. Our experiments show that the first 100 eigenfunctions carry
sufficient geometry information and are also quite reliable. The middle
range frequencies provide sufficient geometry information for the fine
deformation. So we usually choose k1 = 100 in our experiments. De-
tails about how we choose K and k1 in our experiments are provided
in Section 4.1.1.

4.1 Experiments on Synthetic Data

4.1.1 Sensitivity Analysis

We analyze the sensitivity of our model with respect to the number
of iteration (K) and eigenvalues (k1). To this end, we employ the
Bunny model with 3000 vertices and make a bump on the back of the
bunny. Figure 1 shows the original and target bunnies. The dashed
circle shows the bump made on the back of the bunny. We conduct
an empirical study to map the original bunny to target one using 30,
50, and 80 eigenvalues and 10 iterations. The results are presented in
Figure 2 and shown that by increasing the number of eigenvalues, the
outcome is better to match the synthetic target results. We conduct
another experiment and map the original bunny to the target one us-
ing 80 eigenvalues and 1, 5, and 10 iterations, respectively. Figure 3
shows the results of this mapping. As one can conclude, the outcome
is improved from 1 iteration to 10 iterations.

Fig. 1: We made a bump on the back of the bunny. The original and
target bunnies are shown in this picture.

Fig. 2: The result of mapping the original bunny to the target one in
Figure 1 using 30, 50, and 80 eigenvalues and 10 iterations.

Fig. 3: The result of mapping the original bunny to the target one in
Figure 1 using 80 eigenvalues and 1, 5, and 10 iterations.

4.1.2 Hippocampus Data

In order to evaluate the efficiency of our method, we synthetically
generate some non-isometric deformations based on an initial shape.
In this experiment, we use a hippocampus segmented from 3D brain
MR images. The surface is then deformed manually to make a non-
isometric deformation. Our spectrum alignment is applied on the first
100 nonzero eigenvalues. Note that, no correspondence information is
used in the experiments.

In the first experiment, we synthetically generate a bump on the
original surface. Then we align the original object to the bumped one
to obtain the scale function. Figure 4a and 4b show the original and
deformed objects, respectively. Figure 4c shows the result of mapping
the original shape to the deformed one. The spectrum variation can de-
tect and localize the non-isometric deformation clearly. The red color
indicates the located dilating area. In order to see the values of scale
function, we also provide the histogram in Figure 4d. The histogram
has more positive areas than negative, which concludes to the shape
expansion when mapping from the shape in Figure 4a to the one in
Figure 4b. It is worthy to mention that we use a threshold to show
the deformed area in Figure 4c. The threshold value ε is defined as
follows:

ε = min(|min(Ω)|, |max(Ω)|). (32)

area Ai which has scale values over the threshold ε indicates the ex-
pansion as shown in Figure 4c. When area Ai having scale values less
than −ε, it indicates the shrinkage.

In the second experiment, we shrink one part of the original mani-
fold. Then, we align the original shape to the shrunk one. Figure 5a
and 5b shows the original and deformed shapes. Figure 5c shows the
results of mapping. As can be seen, the local shrunk region is detected

(a) (b) (c)

(d)

Fig. 4: The result of mapping the original 3D object to the synthetic
one. (a) shows the original object. (b) is obtained by generating a
bump on the original shape. (c) shows the result of mapping shape (a)
to the one in (b) where the expansion is determined and located. The
histogram of the scale matrix is presented in (d). The histogram has
more positive area, which mean the shape has an expansion.
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and pinpointed by our method. The blue color shows the contraction
of the area. In order to see the distribution of the computed scale func-
tion, we present its histogram in 5d. The histogram has more negative
areas, which concludes to the shape contraction when mapping from
the shape in Figure 5a to the one in Figure 5b.

In the third experiment, we scale the manifold by a factor of 0.5 and
align the original shape to the scaled one. Figure 6a shows the compar-
ison of the original and scaled objects. Figure 6b shows the result of
mapping the original shape to the scaled one. As can be seen the whole
surface is blue which means it is globally shrunk. The histogram result
from this mapping is shown in Figure 6c. The center of the histogram
is moved to -0.661 (equal to the changes of the Voronoi areas of the
two shapes) which shows the shrinkage of the whole object while there
exist almost no local spectral variations across different vertices.

These experiments clearly demonstrate that our method is able to
detect and localize non-isometric deformations as well as global de-
formations.

4.2 Applications on Real Patient Imaging Data

To evaluate our method on real imaging data, we have conducted two
studies: Epilepsy study and Alzheimer study. In both studies, hip-
pocampus, which is located in temporal lobe of brain, is affected by
these diseases.

4.2.1 Epilepsy Study and Diagnosis

Mesial temporal lobe epilepsy (mTLE) is one of the most common
types of focal epilepsy. Among mTLE structural abnormalities, hip-

(a) (b) (c)

(d)

Fig. 5: The result of mapping the original 3D object to a modified ob-
ject generated by shrinking a local area of the original data. (a) shows
the original object. (b) shows the modified object generated by shrink-
ing a local part of the original shape. (c) shows the result of mapping
the original shape in (a) to the shrunk shape in (b), where shrinkage is
localized. The histogram of the computed scale function is presented
in (d). The histogram has more negative area, which means the shrink-
age of the shape.

pocampus is one of the most frequent structures that can be affected.
As indicated in [11], epilepsy may cause shrinkage of the affected hip-
pocampus in comparison to the non-affected one. Note that, tradi-
tional voxel-based approaches can determine expansion or shrinkage
but cannot localize deformations. We apply our method on twenty
TLE patients for localizing and quantifying the shape variation be-
tween left and right hippocampi. In our data, half number of the pa-
tients are reported to have left defected hippocampus and the other half
have abnormality in the right hippocampus. To generate the 3D hip-
pocampus surface, right and left hippocampi are segmented manually
using MRIcro Tool from 3D T1 images. Right hippocampi are then
mirrored in order to have the same orientation as the left ones. For
epilepsy study, we have also applied our spectrum alignment to the
first 100 nonzero eigenvalues in order to obtain the scale function.

The abnormal deformations are accurately localized and quantified,
which are consistent with clinical findings in the patients’ medical
records. In Figure 7, column 1 and 2 show samples of left and right
hippocampi. Column 3 shows the computed scale function distribu-
tions on the left hippocampus surface when mapping from the left one
to the right. The colors denote the values of scale function in each ver-
tices. Red means dilating, blue means contraction, and white means no
distortion. According to the clinical record, Figure 7a is for a patient
case that has left abnormal hippocampus, therefore, mapping from the
left hippocampus to the right displays more expansion (indicated in
red), i.e., the left hippocampus is shrunk (diseased) compared to the
right, normal one. Figure 7b depicts another patient case that has the

(a) (b)

(c)

Fig. 6: The result of mapping the original 3D object to the object which
generated by scaling the original data by a factor of 0.5. (a) shows
the original object in comparison to the synthetically scaled one. (b)
shows the result from mapping the original shape to the scaled one.
The whole object surface is blue which means the object is globally
shrunk. The histogram of the scale matrix is presented in (c). The
histogram center has moved to -0.661 with very little eigenvalue vari-
ations across vertices.
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(a)

(b)

Fig. 7: The results of mapping the left hippocampus to right one for
two cases. (a) shows a case in which the left hippocampus is affected
by epilepsy. (b) shows a case that has right abnormal hippocampus.
The first, second, and third columns represent left hippocampus, right
hippocampus, and the result of mapping left hippocampus to right one,
respectively.

right defected hippocampus. When mapping from the left hippocam-
pus to the right, the scale distribution displayed on the left hippocam-
pus surface mainly shows the shrinkage (indicated in blue) which in-
dicates the right hippocampus is shrunk (diseased) in comparison to
the left hippocampus.

To check how the eigenfunctions vary after changing the eigenval-
ues, we select the 12th eigenvalue and show the eigenfunctions cor-
responding to this eigenvalue on the source manifold before and after
mapping to the target manifold. Figure 8 shows the 12th eigenfunction
of the original left hippocampus (first column), the original right hip-
pocampus (second column), and the spectrum-aligned left hippocam-
pus (third column). The eigenfunctions are normalized between -1
and 1. The values of eigenfunction at each vertex are expressed with
color map, where red means larger value, blue means smaller ones,
and white means zero. Comparing the eigenfunction patterns before
and after the alignment, a great improvement is obtained and the pat-
tern of the eigenfunction in the source manifold has changed in order
to well align to the target manifold.

In order to show the variation of eigenvalues of the manifolds be-
fore and after alignment, we list the 2nd to 8th eigenvalues of left
hippocampus (before and after mapping) and right hippocampus in
Table 1. The eigenvalues are normalized by the first nonzero one to
remove the scale factor. It can be seen that after applying the spec-
trum alignment algorithm, the eigenvalues of the source manifold have
changed to well align with the target ones.

4.2.2 Alzheimer Study and Diagnosis

Alzheimer disease (AD) is a brain mis-functionality that is caused by
the loss of neurons and neural volume. Hippocampus, a part of the
mesial temporal lobe memory system, is vulnerable to damage in the

Fig. 8: The 12th eigenfunction of the original left hippocampus (first
column), the original right hippocampus (second column), and the
spectrum-aligned left hippocampus (third column). The pattern of the
eigenfunction for the left hippocampus shape has been changed in or-
der to map the right one.

Table 1: The result of aligning eigenvalues from the left hippocampus
to right one using the same case as in Figure 7a.

Manifold λi/λ1, i ∈ [2, 8]

Left Hippocampus 3.87, 7.76, 11.93, 14.22, 15.88, 18.49, 20.62

Right Hippocampus 4.36, 7.75, 11.20, 12.62, 16.60, 18.35, 21.73

Aligned Left One 4.36, 7.75, 11.19, 12.62 , 16.59, 18.34, 21.73

early stage of Alzheimer. Volumetric longitudinal studies [40, 37] us-
ing MR images show hippocampal atrophy during time in comparison
to healthy cases. In many clinical studies, it was observed that the vari-
ation is more in the left hippocampus than the right one and there exists
a deformation of CA1 region in hippocampus which can be extended
to the subiculum region [19]. In this paper, we conduct experiments on
the dataset provided by the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) to show that our shape variation analysis method confirms
the aforementioned observation.

We employ ten healthy and ten AD cases aging between 74-80
which have longitudinal study for one year to track and compare the
deformation of left and right hippocampi. Our motivating data ex-
ample consists of ten healthy and ten AD patients which were down-
loaded from the hippocampal study in ADNI and were segmented us-
ing Freesurfer software [4]. The 3D object and surface meshes are
generated using the method mentioned before and the scale function
is obtained by applying our proposed method. According to our re-
sults, the AD patients’ left and right hippocampi are shrunk after one
year. The average of shrinkage for AD cases is more than health cases
in both right and left hippocampi. We also confirm that in AD pa-
tients the average of shrinkage is more in the left hippocampus than
right one. In addition to the global deformation, the local analysis us-
ing our method shows that the middle region of hippocampus, called
CA1, is affected more severely in both left and right hippocampi. Fig-
ure 9 shows the results of applying the proposed method on an AD and
healthy cases for left and right hippocampi. The baseline hippocampus
is aligned to the hippocampus after one year and the results are shown
on the source manifold. As one can see, the left and right hippocampi
in AD cases have shrinkage in the middle of the hippocampus. This
can be extend to the tail of hippocampus in some cases. Also Figure 9
shows that in the normal case the hippocampus has little change after
one year. Therefore, our results confirm the clinical observation.

4.3 Comparisons to Spatial Registration Methods

In order to further demonstrate the capabilities of our method, we com-
pare the results of our algorithm with the ones employing non-rigid It-
erative Closest Point (ICP) algorithm [1]. In the non-rigid ICP method,
we fist find the rigid transformation of the source manifold to the tar-
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(a)

(b)

(c)

Fig. 9: Longitudinal study for Alzheimer disease. Column 1 shows
the baseline hippocampus and column 2 shows the hippocampus af-
ter 1 year. Column 3 shows the deformation (scale function) results
from aligning the baseline hippocampus to the one after one year. (a)
and (b) show the left and right hippocampi results for an AD patient,
respectively. (c) shows the result for a hippocampus in a normal case.

get. Then, using the non-rigid registration method, we further register
the manifold to the target to build the point-to-point correspondence.
The displacement of each corresponding point pairs between the rigid
registered source manifold and the target manifold presents the defor-
mation distribution. In order to compare two methods, we synthet-
ically deform a shape by stretching and bending the geometry from
both top and bottom sides of the shape as shown in Figure 10. Column
1 and 2 show the original and the synthetically deformed shapes, re-
spectively. Figure 10a and 10b show different views of the shapes.
Column 3 and 4 show the results of spectrum alignment and non-
rigid ICP methods, respectively. From the results, we can see that
our method detects the expansions on both ends while the non-rigid
ICP method detects the shape deformation at the bottom end instead
of both ends.

In order to further compare two methods, we also make an expan-
sion in one part of the synthetically deformed shape as in Figure 10
and compare the results. Figure 11 shows the original and syntheti-

cally deformed shapes in column 1 and 2, respectively. The locally
deformed area is marked with a red circle. The results of the spectrum
alignment and non-rigid ICP registration method are shown in column
3 and 4. As we can see, our spectrum alignment method detects the
deformation more accurately than the non-rigid ICP method. The lo-
cal expansions, including previously deformed ends in Figure 10, are
exactly localized.

Our method can also detect the deformation of the shapes using
different number of eigenvalues. This allows us to analyze shape de-
formation using lower or higher frequency bands. Figure 12 shows the
results of spectrum alignment of a shape in 12a to one in 12b using dif-
ferent sets of eigenvalues. As we can see, subtle deformations will be
added to the results when using higher indexed number of eigenvalues.

The qualitative and quantitative comparisons of our method, non-
rigid ICP method and voxel-based method are documented in Table 2.
The voxel-based method is based on the number of the voxels in the
original 3D MR images [11]. Using this method only the global vol-
ume of the hippocampus can be detected and the running time for this
method is more than 45 seconds. Based on our experiments, the com-
puting time for our method is less than 20 seconds while ICP method
costs over 60 seconds. In order to quantitatively evaluate the capabili-
ties of these methods in localizing deformations, we use the following
metric to compute their agreement, A, as follows:

A =
D ∩G

D ∪G
, (33)

where D is the localized deformation region and G is the known
ground truth of the deformed region. The experiments demonstrate
that the average outcome for our method is about 92%; for ICP method
is about 81%; and for voxel-based method is about 85%. Therefore,
our method outperforms the non-rigid ICP method in these shapes with
few landmarks and features. Our method performs much better when
there is mixture of different types of deformations.

(a)

(b)

Fig. 10: The results of mapping the original shape to the syntheti-
cally deformed shape using our method and non-rigid ICP. Column 1
shows the original shape. Column 2 shows the synthetic data which
is bent and stretched at both ends. Column 3 and 4 show the results
of mapping the shape in column 1 to column 2 using our method and
non-rigid ICP technique, respectively. (a) and (b) show the different
views of the shape.
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(a)

(b)

Fig. 11: We manually add an expansion to the deformed shape in Fig-
ure 10 to compare our spectrum alignment method and the non-rigid
ICP results. The locally deformed area is marked with a red circle.
Column 1 shows the original shape. Column 2 shows the locally ex-
panded shape from Figure 10 (Column 2). Column 3 and 4 shows
the results of aligning column 1 to column 2 using our method and the
non-rigid ICP technique, respectively. (a) and (b) show different views
of the shapes.

(a) (b) (c) (d)

Fig. 12: The results of spectrum alignment of a shape in (a) to one in
(b) using different sets of eigenvalues. (c) and (d) show the results of
using first 20 and 80 eigenvalues.

Table 2: Comparison among our method, non-rigid ICP and voxel-
based method.

Capabilities Our Method Non-rigid ICP Voxel-based

Registration-Free �

Global Deformation � � �

Local Deformation � �

Multi-scale Deformation

Quantification �

Average accuracy: A 92% 81% 85%

Computation ≈ 20s > 60s > 45s

5 CONCLUSION AND DISCUSSION

In this paper, we have introduced a new method based on our devel-
oped spectrum variation theorems for localizing and quantifying de-
formations between surface shapes. We have proved that the eigenval-
ues of the spectrum constitute an analytic function of a scale function
defined on the Riemann metric. The deformation is an integral of the
derivative of the scale function. The theorem applies both continuous
analytic and discrete cases, therefore, warrants an algorithm to align
the shape spectra of discrete shapes represented with triangle meshes.
Given two closed triangle meshes, the spectra can be aligned from one
to another with a scale function defined on each vertex. Our extensive
experiment results have demonstrated that the proposed method can
detect the global and local deformation of shapes. Our applications to
real epilepsy and Alzheimer data have shown its potential in clinical
diagnosis. Furthermore, the comparisons to non-rigid ICP method and
voxel-based method have indicated that our method has more advan-
tages.

There are some limitations for our method. The proposed method
can be applied to map two shapes in the same class, but is not suitable
to address the deformations between two objects in different classes.
Another limitation for this method is regarding symmetric shapes like
cubic, sphere, etc. The alignment of eigenvalues of the Laplace Bel-
trami matrices for these shapes is unstable to achieve. Therefore, our
method in the current form cannot be applied to these kinds of shapes.
We plan to improve our method along these two directions in the fu-
ture.
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A PROOF OF THEOREM 1

Proof. ω is a nonnegative and continuously differentiable function,
and ∆

g is analytic. We can compute the derivative of the eigenvalue
in Equation 6, and get

∆
g
ḟi = −λ̇iωfi − λiω̇fi − λiωḟi.

Then, we multiply both sides with fi and take the integral on M to get
∫

M

fi∆
g
ḟidσ = −λ̇i

∫

M

ωfi
2
dσ − λi

∫

M

ω̇fi
2
dσ −

∫

M

ḟiλiωfidσ,

which can be simplified, based on Equations 6 and 7, as
∫

M

fi∆
g
ḟidσ = −λ̇i − λi

∫

M

ω̇fi
2
dσ +

∫

M

ḟi∆
g
fidσ.

Note that, M is a closed manifold. According to divergence theorem,
we can have

∫

M

fi∆
g
ḟidσ = −

∫

M

∇ḟi ·∇fidσ =

∫

M

ḟi∆
g
fidσ,

hence we get Equation 9.

B PROOF OF THEOREM 2

Proof. We can compute the derivative of the eigenvalue equation,
Equation 10, and get

Wv̇i = λ̇iΩSvi + λiΩ̇Svi + λiΩSv̇i,

multiply v
T
i from the left to obtain

v
T
i Wv̇i = λ̇iv

T
i ΩSvi + λiv

T
i Ω̇Svi + v

T
i λiΩSv̇i,

and simplify it, based on Equations 10 and 11, as

v
T
i Wv̇i = λ̇i + λivi

T
Ω̇Svi + vi

T
W

T
v̇i.

Finally, we obtain Equation 13 as W is symmetric.


