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Abstract

Database Management Systems (DBMS) are routinely used to store and process sensitive enterprise data. However,
it is not possible to secure data by relying on the access control and security mechanisms (e.g., audit logs) of such
systems alone - users may abuse their privileges (no matter whether granted or gained illegally) or circumvent security
mechanisms to maliciously alter and access data. Thus, in addition to taking preventive measures, the major goal of
database security is to 1) detect breaches and 2) to gather evidence about attacks for devising counter measures. We
present an approach that evaluates the integrity of a live database, identifying and reporting evidence for log tampering.
Our approach is based on forensic analysis of database storage and detection of inconsistencies between database logs
and physical storage state (disk and RAM). We apply our approach to multiple DBMS to demonstrate its effectiveness in
discovering malicious operations and providing detailed information about the data that was illegally accessed/modified.
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1. Introduction

Database Management Systems (DBMSes) are com-
monly used to store sensitive data and, accordingly, signif-
icant effort has been invested into securing DBMSes with
access control policies. However, once a user has gained
elevated privileges in the DBMS (either legitimately or
through an attack), the security scheme put into effect can
be bypassed, and therefore, can no longer assure that data
is protected according to policy. A well-known fact from
security research and practice is that it is virtually impos-
sible to create security measures that are unbreakable. For
example, access control restrictions 1) may be incomplete,
allowing users to execute commands that they should not
be able to execute and 2) users may illegally gain privi-
leges by using security holes in DB or OS code or through
other means, e.g., social engineering. Thus, in addition to
deploying preventive measures such as access control, it is
necessary to be able to 1) detect security breaches when
they occur in a timely fashion and 2) in event of a de-
tected attack collect evidence about the attack in order to
devise counter-measures and assess the extent of the dam-
age, e.g., what information was leaked or perturbed. This
information can then be used to prepare for legal action
or to learn how to prevent future attacks of the same sort.

When malicious operations occur, whether by an in-
sider or by an outside attacker that breached security, an
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Audit Log File Database Storage
T1, INSERT INTO Record Dleh Page Type: Table
VALUES (‘Peter’, 2005, ‘murder’); P28 | Structure: Record
T2, UPDATE Record v/ | Peter, 2005, murder
SET Crime = DUV’ v’ | Bob, 2012, DUI
WHERE Name = ‘Bob’; x | Malice, 2016, fraud

Figure 1: Illustrates that the active records for Peter and Bob can
be explained by audit log events, whereas the deleted record Malice
can not be explained by any audit log events.

audit log containing a history of SQL queries may provide
the most critical evidence for investigators [1]. The au-
dit log can be used to determine whether data has been
compromised and what records may have been accessed.
DBMSes offer built-in logging functionality but can not
necessarily guarantee that these logs are accurate and have
not been tampered with. Notably, federal regulations,
such as the Sarbanes-Oxley Act [2] and the Health Insur-
ance Portability and Accountability Act [3], require main-
taining an audit trail, yet the privileged user can skirt
these regulations by manipulating the logs. In such cases,
companies maintaining these systems are, technically, in
violation of these regulations. Hence, assurance that secu-
rity controls have been put into place properly cannot rest
merely on the existence of logging capabilities or the repre-
sentations of a trusted DBA. Internal controls are needed
in order to assure log integrity.

Example 1. Malice is the database administrator for a
government agency that keeps criminal records for citi-
zens (an example instance is shown in Figure 1). Mal-
ice recently got convicted of fraud and decided to abuse
her privileges and delete her criminal record by running
DELETE FROM Record WHERE name = ‘Malice’. However, she
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is aware that database operations are subjected to regular
audits to detect tampering with the highly sensitive data
stored by the agency. To cover her tracks, Malice deac-
tivates the audit log before Tunning the DELETE operation
and afterwards activates the log again. Thus, there is no
log trace of her illegal manipulation in the database. How-
ever, database storage on disk will still contain evidence of
the deleted row (until several storage artifacts caused by the
deleted are physically overwritten). Our approach detects
traces of deleted and outdated record versions and matches
them against the audit log to detect such attacks and pro-
vide evidence for how the database was manipulated. Using
our approach, we would detect the deleted row and since it
does not correspond to any operation in the audit log we
would flag it as a potential evidence of tampering.

In Section 3 we showcase, for several databases, how an
attacker like Malice can ensure that her operations are not
being included in the audit log. Given that it is possible
for a privileged attacker to erase log evidence and avoid
detection, the challenge is to detect such tampering and
collect additional evidence about the nature of the mali-
cious operations (e.g., recover rows deleted by a malicious
operation). It may not be immediately clear that this re-
covery of evidence is possible at all. However, any opera-
tion leaves footprints in database storage on disk (writes)
or in RAM (both reads and writes). For instance, DBM-
Ses mark a deleted row rather than overwrite it. Thus,
if we recover such evidence directly from storage then, at
least for some amount of time until the deleted value is
overwritten by future inserts, we would be able to detect
that there exists a discrepancy between the content of the
audit log and database storage.

Given that evidence of operations exists in database
storage, the next logical question to ask is whether Malice
can remove this evidence by modifying database files di-
rectly. While a user with sufficient OS privileges may be
able to modify database files, it is extremely challenging
to tamper with database storage directly without caus-
ing failures (e.g., DBMS crashes). Direct manipulation of
DBMS files will uncover the tampering attempt because:
1) in addition to the actual record data on a page, the
database system maintains additional references to that
record (e.g., in index structures and page headers). Delet-
ing a record from a page without modifying auxiliary struc-
tures accordingly will leave the database in an inconsistent
state and will lead to crashes; 2) databases have built-in
mechanisms to detect errors in storage, e.g., checksums of
disk pages. A tampering attempt has to correctly account
for all of these mechanisms; 3) incorrect storage for a value
can corrupt a database file. To directly modify a value, an
attacker needs to know how the DBMS stores datatypes.

Because it is not only hard but, at times, next to im-
possible to spoof database storage, it follows that database
storage can provide us with valuable evidence of attacks.
We use an existing forensic tool called DICE [4] to recon-
struct database storage. However, we are still left with the
problem of matching recovered artifacts to queries in audit

log — doing so requires a thorough analysis of how database
storage behaves. Our approach automatically detects po-
tential attacks by matching extracted storage entries and
reporting any artifacts that cannot be explained by logged
operations (summarized in Figure 2). Our method is de-
signed to be both general (i.e., applicable to any relational
database) and independent (i.e., entirely outside of DBMS
control). Our system DBDetective inspects database stor-
age and RAM snapshots and compares what it finds to
the audit log; the analysis of this data is then done out of
core without affecting database operations. DBDetective
can operate on a single snapshot from disk or RAM (i.e.,
multiple snapshots are not required), but additional snap-
shots provide extra evidence and improve detection qual-
ity. Data that has changed between two snapshots need
be matched only against audit log entries of commands
that were executed during the time span between these
snapshots. Thus, more frequent snapshots increase the
detection accuracy because it is less likely to match a row
against an incorrect operation and the probability that
deleted rows are still present is higher. Moreover, fre-
quency of snapshots increase the performance of detection
because a smaller number of recovered rows have to be
matched against a smaller number of operations. We can
reduce storage requirements by only storing deltas between
snapshots in the same fashion as incremental backups are
used to avoid the storage overhead of full backups.

Our focus is on identifying the likelihood of database
tampering, as well as pointing out specific inconsistencies
found in database storage. Determining the identity of the
party responsible for database tampering is beyond the
scope of this paper. Due to the volatile nature of database
storage, it is not possible to guarantee that all attacks
will be discovered. We will discuss how false negatives or
positives can occur for particular types of tampering in
Sections 4 and 5. It may sound unsatisfactory that we
are not able to detect all attacks. However, these types
of attack bypass the database audit log and thus have no
chance of being detected natively.

In this paper, we demonstrate techniques to detect and
identify database operations that were masked by the per-
petrator through use of our system DBDetective. For each
of the major DBMSes we evaluated, we assumed that the
DBMS has enabled an audit log to capture SQL commands
that are relevant to an investigation. We further assumed
an attacker who found a way to prevent logging of executed
malicious commands by: a) deactivating audit policies and
temporarily suspending logging or b) altering the existing
audit log (both discussed in Section 3).

By applying forensic analysis techniques to database
storage or buffer cache and matching evidence uncovered
by these techniques against the audit log, we can:

e Detect multiple types of database access and manip-
ulation that do not appear in the DBMS audit log.

e Classify unattributed record modifications as an ob-
fuscated INSERT, DELETE, or UPDATE command.
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Figure 2: Architecture of the DBDetective.

e Detect cached data from (read-only) SELECT queries
that cannot be derived from activity in the audit log.

The rest of the paper is organized as follows: Section 2
covers related work. Section 3 discusses DBMS logging
mechanisms and how operations can be hidden from logs
by an attacker. Section 4 details how table modifications
that are missing from the log files can be identified in stor-
age. Section 5 discusses how read-only (SELECT) queries
hidden from the logs can be detected based on memory
snapshots. We evaluate our system in Section 6.

2. Related Work

2.1. Database Forensics

Database page carving [4] is a method for reconstruct-
ing the contents of a relational database without relying
on file system or DBMS metadata. Database carving is
similar to traditional file carving [5, 6] in that data, in-
cluding deleted data, can be reconstructed from images or
RAM snapshots without the use of a live system. The work
in [7] presented a comparative study of the page structure
of multiple DBMSes. Subsequent work [8] described how
long forensic evidence resides within a database even af-
ter being deleted and defragmented. While a multitude of
built-in and 3" party recovery tools (e.g., [9, 10, 11]) can
extract database storage, none of these tools are helpful
for independent audit purposes because they only recover
“active” data. A forensic database tool (just like a foren-
sic file system tool) should also reconstruct unallocated
pieces of data, including deleted rows, auxiliary structures
(indexes) or buffer cache space.

For our storage analysis we rely on DICE tool created
by Wagner et al. [8]. DICE accepts a snapshot of disk or
RAM and produces text output listing all reconstructed
content. We contacted Wagner et al. to acquire a copy for
the experimental evaluation presented here.

2.2. Database Auditing and Security

Peha used one-way hash functions to verify an audit
log and detect tampering [12]. They relied on an external,
trusted notary to keep track of every transaction. Snod-
grass et al. also used a one-way hash function to validate
audit logs [13]. Alternatively, their hash function uses the
record itself and a last modification timestamp, avoiding
the external notary. Pavlou et al. expanded this work

by determining when audit log tampering occurred [14].
While this mechanism ensures an accurate audit log with
high probability by sending the secure hashes to a nota-
rization service, it is ultimately useless if logging has been
disabled by a privileged user. Our approach detects log
tampering even if logs files have been disabled.

Sinha et al. used hash chains to verify log integrity in
an offline environment [15]. In this situation, communica-
tion with a central server is not required to ensure log au-
thenticity. Crosby et al. proposed a data structure called a
history tree to reduce the log size produced by hash chains
in an offline environment [16]. Rather than detecting log
tampering, Schneier and Kelsey made log files impossible
to read and impossible to modify [17]. Under this frame-
work, an attacker does not know if his activity has been
logged, or which log entries are related to his activity.

An event log can be generated using triggers, and the
idea of a SELECT trigger was explored for the purpose of
logging [18]. This would allow all table access to be logged
— but a malicious user could also utilize triggers to remove
traces of her activity or simply bypass a SELECT trigger by
creating a temporary view to access the data.

ManageEngine’s EventLog Analyzer [19] provides au-
dit log reports and alerts for Oracle and SQL Server based
on actions, such as user activity, record modification, schema
alteration, and read-only queries. However, the Eventlog
Analyzer creates these reports based on native DBMS logs.
Like other forensic tools, this tool is vulnerable to a priv-
ileged user who has the ability to alter or disable logs.

Network-based monitoring methods have received sig-
nificant attention in audit logging research because they
can provide independence and generality by residing out-
side of the DBMS. IBM Security Guardium Express Activ-
ity Monitor for Databases [20] monitors incoming packets
for suspicious activity. If malicious activity is suspected,
this tool can block database access for that command or
user. Liu et al. [21] monitored DBAs and other users with
privileged access. Their method identifies and logs net-
work packets containing SQL statements.

The benefit of monitoring activity over the network
and, therefore, beyond the reach of DBA’s, is the level of
independence achieved by these tools. On the other hand,
relying on network activity ignores local connections to
the DBMS and requires intimate understanding of SQL
commands (i.e., an obfuscated command could fool the
system). By contrast, our approach detects both local and



network activity because SQL is ultimately run against the
database instance affecting database storage state.

3. Reliability of Database Logs

An attacker can alter two types of logs to interfere with
an investigation: write-ahead logs (WAL) and audit logs
(event history records). WALs record database modifi-
cations at a low level in order to support ACID guaran-
tees, providing a history of recent table modifications. Au-
dit logs record configured user database actions, including
SQL operations and other user activity.

WALs. WALs cannot normally be disabled or easily modi-
fied, and require a special-purpose tool to be read (e.g., Or-
acle LogMiner or PostgreSQL pg_xlogdump). Some DBM-
Ses allow WALS to be disabled for specific operations, such
as bulk load or structure rebuild. Thus inserting records
without leaving a log trace can be done through this fea-
ture. Since the WAL file format is not human-readable,
and requires specific tools for parsing, this would seem
to protect it from tampering. However, DBMSes (includ-
ing Oracle, MySQL, PostgreSQL, and SQL Server) allow
the administrator to switch to a new WAL file and delete
old WAL files. Therefore, executing a WAL switch and
deleting the original WAL can effectively allow a user to
perform transactions without leaving a WAL record. For
example, an administrator could switch from log file A to
log file B, perform the malicious SQL operation(s), switch
back to log file A (or a new log file C), and delete log file
B. For example, to implement this operation in Oracle:
1) ALTER DATABASE ADD LOGFILE (‘path/logB.rdo’)

2) ALTER SYSTEM SWITCH LOGFILE

3) Run the malicious SQL operation(s)

4) ALTER SYSTEM SWITCH LOGFILE

5) ALTER DATABASE DROP LOGFILE MEMBER ‘path/logB.rdo’

Audit Logs. Audit logs store executed SQL commands based
on logging policies that are configured by database admin-
istrators. Therefore, an administrator can disable logging
or modify individual log records as they see fit. For ex-
ample, records in the Oracle sys.aud$ table can be modi-
fied with SQL commands, and records in the PostgreSQL
pg-audit log and MySQL general query log are stored as
human-readable text files. Table 1 summarizes how to
modify the audit log for three major DBMSes.

DBMS Command

Oracle SQL commands against sys.aud$
PostgreSQL | Edit files in the pg_log directory

MySQL Edit the general_log file

Table 1: Commands to edit the audit log.

4. Detecting Hidden Record Modifications

When a table record is inserted or modified, a cascade
of storage changes occurs in the database. In addition

to the affected record’s data itself, page metadata may be
updated (e.g., a delete mark is set) and page(s) of an index
storing the record may change (e.g., to reflect the deletion
of a record). Each of the accessed pages would be brought
into RAM if it is not already cached. Row identifiers and
structure identifiers can be used to tie all of these changes
together. Furthermore, DBAs can also disable logging for
bulk modifications (for performance considerations); this
privilege can be exploited to hide malicious modifications.
In this section, we describe how we detect inconsistencies
between modified records and logged commands.

4.1. Deleted Records

Deleted records are not physically erased but rather
marked as “deleted” in the page; the storage occupied by
the deleted row becomes unallocated space, and eventually
will be overwritten by a new row. Unlike audit log records,
these alterations to database storage cannot be bypassed
or controlled — thus if a reconstructed deleted record does
not match the WHERE-clause condition of any delete state-
ment in the audit log, then a log record is missing.

DICE returns the status of each row as either “deleted”
or “active.” Reconstructed deleted rows and the audit log
are used in Algorithm 1 to determine if a deleted row can
be matched with at least one DELETE command. Here we
use cond(d) to denote the condition of delete d. The con-
ditions of delete operations may overlap, potentially cre-
ating false-negative matches (i.e., a delete’s condition may
match a row that was already deleted by another DELETE).
However, we are interested in identifying deleted rows in
storage that do not match any delete operation in the log.
A false-negative match presents a problem if it hides a
missing match with a delete that the attacker attempted
to hide. Only if all reconstructed deleted rows that the at-
tacker attempted to hide have false-negative matches will
the attack go unnoticed, because a single unaccounted for
deleted record is sufficient to detect suspicious activity.

Algorithm 1 Accounting for Deleted Records in Log Files
: Deletes <— DELETE statements in audit log
DelRows < deleted records reconstructed by DICE
Unaccounted <— Deleted Rows
for each d € Deletes do

for each r € DelRows do

if r = cond(d) then
Unaccounted < Unaccounted — {r}

return Unaccounted

Figure 3 gives an example for detecting unaccounted
deleted rows. DICE reconstructed three deleted rows from
the Customer table: (1,Christine,Chicago), (3,Christopher,
Seattle), and (4, Thomas,Austin). The log file contains two
operations: DELETE FROM Customer WHERE City = ‘Chicago’
(T1) and DELETE FROM Customer WHERE Name LIKE ‘Chris%’
(T2). In Algorithm 1, DeletedRows was set to the three re-
constructed deleted rows. Algorithm 1 returned (4, Thomas,
Austin), indicating that this deleted record could not be



attributed to any of the deletes. We cannot decide which
operation caused deletion of (1,Christine,Chicago) row (T1
or T2), but that is not necessary for our purpose of finding
that record #4 is an unattributed delete.

Log File DICE Output
T1, DELETE FROM Customer Del. | Page Type: Table
WHERE City = ‘Chicago’; ¥ Flag | Structure: Customer

x 1, Christine, Chicago
T2, DELETE FROM Customer 4.
WHERE Name LIKE ‘Chris%’; = v

X
[ ﬂg UNATTRIBUTED]/ x
DELETE v

Figure 3: Detecting unattributed deleted records.

2, George, New York

3, Christopher, Seattle

4, Thomas, Austin

5, Mary, Boston

4.2. Inserted Records

New inserted rows are either appended to the end of
the last page (or a new page if the last page is full) of a
table or overwrite free space created by previously deleted
rows. A new row has to be smaller than or equal to the
old deleted row to overwrite its previous storage location;
some databases (Oracle and PostgreSQL) explicitly delay
the overwriting unallocated page space. When an inserted
row is smaller than the deleted row, only a part of the
deleted row is overwritten leaving traces of the old row
behind. If an “active” new table row does not match any
of the insert operations from the audit log, then this row
is a sign of suspicious activity. These “active” records are
used in Algorithm 2 to determine if a reconstructed row
can be attributed to an insert from the audit log.

Algorithm 2 Accounting for Inserted Data in Log Files

Inserted Rows <+ rows created by INSERT log entries
Rows < reconstructed active rows
Unaccounted <+ Rows
for each r € Rows do
if r € InsertedRows then
Unaccounted + Unaccounted — {r}

return Unaccounted

Figure 4 shows an example for detecting an INSERT op-
eration that does not match any commands in the audit
log. The log contains six operations. As rows are inserted
from T1 to T4, they are appended to the end of the ta-
ble. At T5, (3,Lamp) was deleted followed by an insert
of (5,Bookcase) at T6. Since row (5,Bookcase) is larger
than the deleted row (3,Lamp), it is appended to the end
of the table. DICE reconstructed five active records, in-
cluding (0,Dog) and (2,Monkey). Rows was initialized to
the five reconstructed active rows for Algorithm 2. Al-
gorithm 2 thus returned (0,Dog) and (2,Monkey) because
these records could not be matched to logged inserts (only
the latter is an INSERT as we will see in Section 4.3). The
character p found with (0,Dog) was not part of the record,

indicating that this record overwrote a previously deleted
row. Since (0,Dog) is one character smaller than (3,Lamp)
and the last character from (3,Lamp) was found, it was
likely that (0,Dog) overwrote the deleted record (3,Lamp).
We describe how to confirm this in Section 4.4.

Unattributed Insert

DICE Output

UNATTRIBUTED
E Unattributed Update & UPDATE Page Type: Table
Structure: Furniture
UNATTRIBUTED 4 v | 1, Chair
A INSERT
Log File R x W
i “Chair’); *” 7 77
T1, INSERT INTO Furniture VALUES (1, ,Cha”, ); v [0, Dogp_ /A
T2, INSERT INTO Furniture VALUES (2, ‘Desk’);
T3, INSERT INTO Furniture VALUES (3, ‘Lamp’); | .} v’ | 4, Dresser
P 7 I
T4, INSERT INTO Furmttllre VALUES (4, ‘Dresser’); v | 5, Bookcase
T5, DELETE FROM Furniture | =
WHERE Name LIKE ‘Lamp’; - v" |52, Monkey:
T6, INSERT INTO Furniture VALUES (5,'Bookcase’);] =t

Figure 4: Detecting unattributed inserted and updated records.

4.8. Updated Records

An UPDATE operation is essentially a DELETE operation
followed by an INSERT operation. To account for updated
rows, we use unmarked deleted rows returned by Algo-
rithm 1 and unmarked inserted rows returned by Algo-
rithm 2 as the input for Algorithm 3. If a deleted row
can be matched to the WHERE clause of an update, then
this deleted row operation is marked as present in the log.
Next, if an unmarked inserted row can be matched to the
value from the SET clause, and the inserted row matches all
values in the deleted row except for the SET clause value,
then this inserted row operation is present in the log. Cur-
rently, our implementation is limited to simple SET clause
expressions of the form A = c for an attribute A and con-
stant c. In the algorithm, we use cond(u) for an update u
to denote the update’s WHERE clause condition and set(u) to
denote the its set clause. Furthermore, we use APPLY(r,s)
to denote evaluating SET-clause s over row r.

Algorithm 3 Accounting for Updated Data in Log Files

1: Deleted + unmarked deleted rows from Alg. 1
2: Inserted + unmarked inserted rows from Alg. 2
3: Updates <+ set of updates from the audit log

4: for all r4.; € Deleted do

5: if Ju € Updates : rqe; = cond(u) then

6: Deleted + Deleted — {rqe; }

7: for all r;,s € Inserted do

8: if APPLY (7ger, set(u)) = rins then

9: Inserted <+ Inserted — {rins}

10: return Deleted, Inserted

Figure 4 also shows an example of how we detect an
UPDATE operation not present in the log. Algorithm 1 re-
turned the row (2,Desk), and Algorithm 2 returned the row
(0,Dog) and (2,Monkey). Using these sets of records, Al-
gorithm 3 returned (2,Desk) as the list of deleted records,
and (0,Dog) and (2,Monkey) as the list of inserted records.
Additionally, Algorithm 3 recognized the shared value, 2,



for the first column in (2,Desk) and (2,Monkey). While this
does not confirm an UPDATE operation by itself, it is reason-
able to conclude that (2,Desk) was updated to (2,Monkey).

4.4. Indexes

In some cases, records from table pages are insufficient
to draw reliable conclusions about record modification.
For example, in Figure 4 we did not have enough informa-
tion to confirm that (3,Lamp) was overwritten by (0,Dog).
Reconstructed index pages provide additional information
because deleted index values have a significantly longer
lifetime compared to deleted records themselves [8]. Using
the pointer associated with deleted (but still recoverable)
index entry allows us to determine values previously stored
at a particular location within a page.

Figure 5 demonstrates how old index values supply ev-
idence of a deleted record that was overwritten by new val-
ues. The index stores the furniture table ID and a pointer
to the row address. Using index pointers, we can be cer-
tain that the overwritten row once stored record with ID of
3. This allows us to extrapolate a partial deleted record,
(3, 7), that we can include in Algorithms 1 and 3. If a
secondary index on the second column (furniture name) is
available, we could also extrapolate Lamp from the index.

Page Type: Index
Structure: F_ID

Page Type: Table

Value 3 is gone .
Structure: Furniture

from furniture

table but Value | Pointer v'| 1, Chair
.re(rjnains in the 0 Ptr3 v | 2, Desk
index S
~o 1 Ptrl
w2 Ptr2 51| O Poee

-

3 1 Ptr3 | [~ v’ | 4, Dresser

| | v'| 5, Bookcase

Figure 5: Matching index values to table records.

5. Detecting Inconsistencies for Read-Only Queries

DBMSes use a component called buffer manager to
cache pages from disk into memory. Data is read into the
buffer pool in units of pages, that can be reconstructed
by DICE. In this section, we describe how artifacts carved
from the buffer pool can be matched to read-only queries
in the audit log. A database query may use one of two
possible way of accessing a table: a full table scan (FTS)
or an index scan (IS). An FTS reads all table pages, while
an IS uses an index structure (e.g., B-Tree) to retrieve a
list of pointers referencing particular table pages (or rows)
to be read based on a search key. All accessed index pages
and some of the table pages (depending on access type)
are placed in the buffer pool by the DBMS.

5.1. Full Table Scan

When a query uses an FTS, only a small part of a
large table will be cached. A small table (relative to the
buffer pool size) may be cached in its entirety. Every
database stores a unique page identifier within the page

header which allows us to efficiently match cached pages
to their counterpart on disk. The particular number of
pages cached by a FTS can be derived from the size of the
table, although it is not always proportional (e.g., a larger
table may result in fewer cached pages). Thus, after FTS
is executed, typically pages from the physical end of table
storage would be in the cache (i.e., a few pages including
the one where new inserts would be appended). In Section
6.3 we analyze caching behaviour for multiple DBMSes.

Figure 6 provides an example of an FTS over the Em-
ployee table. We can identify pages that belong to Em-
ployee by the structure identifier 131, which is stored in
the page header. DICE can return just the page structure
identifiers (without parsing page content) at a much faster
speed. Both Q2 and Q4 access Employee via an FTS. Each
time the Employee table is scanned, the same four pages
(identifiers: 97, 98, 99, and 100) from the table are loaded
into the buffer pool. Therefore, when four pages with the
page identifiers 97, 98, 99, and 100 and a structure iden-
tifier of 131 are found in memory, a FTS on the Employee
table can be assumed.

5.2. Index Access

DMBSes use IS to optimize performance for queries
that access data based on the key attributes of an in-
dex. Caching of index pages identifies what attribute was
queried (a query posed conditions over this attribute) and
provides a rough estimate of what value range was selected
for an indexed attribute (since values stored in index pages
are ordered). Cached index pages are more precise in de-
termining what the query accessed because cached table
pages contain the entire table row (regardless of which
columns were accessed), but index pages contain only the
relevant columns. A sequence of index pages in the buffer
pool that does not correspond to any logged query can
present evidence of hidden access. Algorithm 4 describes
how to use the minimum and maximum values of index
pages to determine if a cached index page can be attributed
to logged query. Again, cond(q) denotes the conditions
used by query ¢ (OR’ed together).

Algorithm 4 Accounting for Index-Access Queries

1: IndexPages < set of all cached index pages

2: Queries < queries from the audit log

3: for each i € IndexPages do

4; if 3¢ € Queries: Ir € i : r = cond(q) then
5 IndexPages + IndexPages — {i}

6

: return IndexPages

Figure 6 shows examples of index accesses on the Cus-
tomer table. The Customer table’s structure identifier is
124, and the secondary index on the C_City column has a
structure identifier of 126. Q1 filters on the city Dallas,
and it caches the index page with identifier 2. This page
has a minimum value of Chicago and a maximum value of
Detroit. Q3 filter on the city Jackson, and it caches the



Q2 (FTS)
SELECT E_Name, E_Salary
FROM Employee

Q1 (Index Access)
SELECT *
FROM Customer
WHERE C_Clity = ‘Dallas’

SELECT C_Name

FROM Customer

WHERE C_City = Jackson’
1

Q3 (Index Access) Q4 (FTS)
SELECT *
FROM Employee

WHERE E_Name LIKE ‘%ne’
'

PID:2 | PID:24 | PID:97 | PID:98 [ PID:99 [ PID:100f PID:4 | PID:15 | PID:53 | PID:97 | PID:98 | PID:99 | PID: 100
Hsm: 126H SID: 124 [ESID: 13108RSID: 1315k8SID: 131 %sm: 13185SID: 1263 SID: 124 | SID: 124 FESID: 13156%SID: 131 Esm: 1313SID: 131
T
Memory

Table Customer Dis k

Index Customer City
PID: 1 PID: 2 PID: 3 PID: ... PID: Page Identifier TITTTTTTTIT = =
SID: 124 | SID: 124 | SID: 124 | SID: 124 SID: Structure Identifier PID: 1 PID:2 | PID:3  EPID:4 I PID: .

SID: 126 |||SID: 126|| SID: 126 [ESID: 1263 SID: 126
Table Employee ILIIIIHIIIII ars

- N e ~
: : -7 N ‘ RN

PID: 1 PID: 2 PID: ... EaPID: 97 wEiPID: 98 wEaPID: 99 HEPID: 100 < AN e ~
SID: 131 | SID: 131 | SID: 131 E3ID: 1315E5S1D: 131:5sID: 13158 Chicago, ... Detroit | | Houston, ..., Lincoln

Figure 6: Read-only query matching between disk and buffer cache.

index page with the page identifier of 4. This page has a
minimum value of Houston and a maximum value of Lin-
coln. If a query in the audit log filters on a values within
the minimum and maximum range of values for an index
page, then that page can be attributed to that query.

5.3. Data Lifetime in Memory

As new data is read into cache, old data is evicted (us-
ing a buffer replacement strategy such as LRU) providing
us with an approximate timeline of recent accesses. A ma-
licious user can not directly control the buffer pool; regard-
less of one’s permission level, there are no direct APIs to
control buffer pool behavior. Assuming that the attacker
cannot do something as conspicuous as powering down the
computer, the only available command is to flush the cache
(only available in Oracle, SQL Server and MySQL). Inter-
estingly, flushing buffer cache will mark pages as unallo-
cated instead of physically evicting any data from RAM.

6. Experiments

Our experiments use three databases (Oracle, Post-
greSQL, and MySQL) that we consider representative (both
open- and closed-source, all three very widely used) due
to space limitations. We have used data and queries from
TPCC [22, 23] and SSBM [24] benchmarks. These bench-
marks were used because they were designed to measure
the performance of DBMSes.

Our experiments were carried out on servers with an
Intel X3470 2.93 GHz processor and 8GB of RAM running
Windows Server 2008 R2 Enterprise SP1 or CentOS 6.5.
Windows OS memory snapshots were generated using a
tool called User Mode Process Dumper (version 8.1). We
used regular SATA magnetic drives for storage and pro-
cessing. Linux OS memory snapshots were generated by
reading the process’ memory under /proc/$pid/mem.

0.1. Experiment 1: DBDetective Performance Evaluation

The objective of this experiment is to explore the costs
associated with using DBDetective and the estimated re-
action time to detect tampering. In Part-A of this ex-
periment, we provide cost estimates to perform memory
snapshots. In Part-B, we test the carving process per-
formance against database files. In Part-C, we test the
carving speed against memory snapshots.

Part A. To estimate the cost to perform memory snap-
shots, we copied a 2.5GB snapshot from an Oracle database
process to a magnetic disk. This operation took approxi-
mately 31 sec. In practice, the snapshot cost is dominated
by the cost of writing the result to disk but and can be
sped up significantly by shipping data to a remote machine
or using a faster drive (e.g., PCle). As long as snapshots
are taken as often as the entire buffer pool is replaced by
query activity, we expect to detect most activity.

Part B. To obtain a performance estimate for file carving,
we ran DICE tool against five Oracle database files ranging
in size from 1MB to 3GB. All Oracle files contained 8KB
database pages. We observed that DICE parsed the files at
an average rate of 1.1 MB/s and continued to scale linearly
with respect to the file size (using SATA magnetic disk).

Part C. Finally, we tested the performance of the carving
tool against memory snapshots of Oracle buffer cache. We
collected a 2.5GB snapshot taken from the Oracle database
process and an 8GB snapshot of the entire RAM content.
Each of the snapshot required detecting and parsing the
contents of roughly 80,000 pages (600MB). The 2.5GB
snapshot was carved at a rate of 4.2 MB/s, and the 8GB
snapshot was carved at a rate of 13.2 MB/s. We can thus
conclude that the runtime of page parsing depends solely
on the number of database pages rather than raw file size.



6.2. Record Modification Detection

6.2.1. Experiment 2: Deleted Record Detection

The objective of this experiment is to identify deleted
rows from storage that could not be matched to commands
in the log files. We also evaluate the situation where a row
deleted by a malicious query was overwritten or was at-
tributed to a non-malicious query (a false-negative match).

Part A. For this experiment we use MySQL. By default,
MySQL creates an index-organized table (IOT) when a
primary key is declared for a table. MySQL uses the pri-
mary key as the row identifier, and all rows are physically
ordered within index (leaf) pages by the row identifier.
If no primary key is declared, MySQL will synthesize a
unique row identifier for each row. MySQL stores the row
identifier as the pointer in the index value-pointer pairs.
We initially started with the Item table (100K records)
from the TPCC benchmark. We created a primary key on
the I_ID column, a secondary index on the |_Name column,
and a secondary index on the I_IM_ID column. Next, we
issued two delete commands:
(Delete 1) DELETE FROM Item WHERE I_Name LIKE ‘w2GY%’
(Delete 2) DELETE FROM Item WHERE I_IM_ID = 8563.

Delete 1 represents malicious activity, and was there-
fore removed from the log. Delete 1 deleted records with
the I_ID values of 92328 and 95136. Delete 2 is in the log
and was responsible for deletion of 10 records. We used
DICE to reconstruct deleted rows from Item in storage: and
12 deleted rows were reconstructed.

Algorithm 1 returned one record with the I_ID value of
92328. 11 of the deleted records were matched with the
logged Delete 2 command: the 10 records it deleted and
the record with 1_ID 95136. Even though the 11*" record
was caused by Delete 1, it resulted in false-negative match
to Delete 2 because it happened to have a I_IM_ID value
of 8563. However, false-negatives are only problematic if
they prevent all maliciously deleted records to be detected.

Part B. Realistically, investigators may not be able to per-
form forensic analysis at the most opportune time. We
next consider what determination can be made if the trace
of the maliciously deleted record has been overwritten.

To instrument an overwrite of a deleted record in an
10T, a record with the same primary key value had to be
inserted. We inserted the record (92328,100,DBCarverl,0.0,
This is a trickl). The original deleted record with the I_.ID
value of 92328 was permanently overwritten. However, the
secondary indexes on |_Name and I_IM_ID columns retain
traces of this record until something causes an index re-
build. The pointers stored with index values are the row
identifiers (or primary key) for table records.

We found that the row identifier 92328 had two en-
tries in the |_Name index: the value for the current (new)
record, w2GSyVRavpUbCr2bEzqOb for the old record, and
two entries in the [_IM_ID index: the value for the current
record and 4763 for the overwritten record. This allowed

us to extrapolate a partial deleted record as an input to
Algorithm 1: (92328,4763,w2GSyVRavpUbCr2bEzqOb,?,7?).
Since Algorithm 1 could not match the partial record to
any of the logged commands, it also provides evidence of
the missing log record.

6.2.2. FExperiment 3: Updated Record Detection

The objective of this experiment is to identify the by-
product of an UPDATE operation in persistent storage that
can not be matched to commands in the log. Similar to
Experiment 6.2.1-B, we evaluated records that were over-
written by an in-place UPDATE.

Part A. We again use MySQL and the Item table with
100K rows and indexes defined as in previous experiments.
Records in ltem include (53732, 1004, Name_Vals3732, 14.55,
Data_Vals3732) where Name_Valsg7ss is
Us65fCVCCfrOMDT6bpDDE and Data_Valssrse is
mpDSxHpz0ftrSI2aP0rXpZhdYSakGeqrSqel6abp2cE4Q.
All of INSERT commands creating the table were logged.
Next, we issued an update,
UPDATE Item SET I_Name = ‘DBCarver’ WHERE I_ID = 53732
to simulate malicious activity, and removed this operation
from the log. We then passed the database files containing
the Item table and the |_Name secondary index to DICE.
Algorithm 2 returned the record (53732, 1004, DB-
Carver, 14.55, Data_Valss732) since it does not match any
logged INSERT command. DICE did not return deleted rows
because when the row was updated, the new version of the
row physically overwrote the old version. Two pieces of
evidence help classify the row 53732 as an overwrite of a
deleted row: table pages and the pages for the index on
I_Name. In the table page, the new row used less storage
space than the old overwritten row. Therefore, part of the
old row was still present — 13 characters from the last col-
umn were reconstructed:
mpDSxHpzBfrSI2aP0rXpZhd¥SakGegrSqel6abp2cE4Q
These 13 characters could be distinguished from new row
because new row metadata specifies where the current row
ends. This behavior is illustrated in Figure 4. In the sec-
ondary index page, the pointer (or row identifier) 53732
had two entries, both with the new value (DBCarver) and
the old value (Name_Vals3732). Since the value DBCarver
was present in the current active record, we could as-
sert that DBCarver overwrote Name_Vals3735. This allowed
us to extrapolate a partial pre-update record, (53732, ?,
Name_Valss7s2, 7, 7) despite the fact that it was destroyed.

Part B. Having detected unmatched active record (53732,
1004, DBCarver, 14.55, Data_Vals3732), and a partially re-
constructed deleted record, (53732, 7, Name_Valsz732, 7, 7),
we can link them as evidence of an update in Algorithm
3. First, we use Algorithm 1, which returned our partially
deleted record as not a non-match. We next added our
partially deleted record 53732 to Deleted and our active
record to Inserted in Algorithm 3.



Algorithm 3 returned (53732, 1004, DBCarver, 14.55,
Data_Vals3732) as an active record and (53732, ?, Name_-
Valsszse, 7, 7) as a deleted record. Since they share
the 53732 primary key value, it is reasonable to conclude
that these records should match with an UPDATE command,
rather than both a DELETE and INSERT. Technically, this be-
havior could be caused by a hidden combination of DELETE
and INSERT — either way, we uncovered a maliciously hid-
den modification. We can also determine that the third
column was changed from Name_Vals3732 to DBCarver.

6.2.3. Experiment 4: Modified Record Detection

We now explore the objectives of Experiments 1 and 2
in an Oracle setting. In Part A of this experiment, we iden-
tify the by-products of DELETE and UPDATE commands in
storage that do not match any logged operations. In Part
B, we simulated a scenario in which deleted records are
overwritten. We then determined what malicious DELETE
and INSERT commands could still be detected. In Part C,
we used available indexes and results from Part B to match
UPDATE operations.

Unlike MySQL, Oracle does not create an IOT by de-
fault when a primary key is declared (IOTs must be cre-
ated explicitly). Instead, a regular B-Tree index is created
on the primary key. Without IOT, unique row identifier
are not stored with each row. Instead, Oracle uses physi-
cal row identifiers consisting of a structure identifier, page
identifier, and row’s position within the page.

Part A. We use the TPCC NewOrders (NO_O_ID, NO_D_ID,
NO_W_ID) table with 9K rows. We declared a primary
key on the NO_O_ID column and a secondary index on the
NO_D_ID column. Next, we issued the following queries to
simulate malicious activity:
(Command 1) DELETE FROM New_Orders
WHERE NO_O_ID = 2500 AND NO_D_ID =1
(Command 2) UPDATE New_Orders SET NO_D_ID = 777
WHERE NO_O_ID = 2700 AND NO_D_ID = 1.

We removed both Command 1 and Command 2 from
the log. We then passed the database files containing the
NewOrders table and both indexes to DICE.

We reconstructed the deleted record (2500, 1, 1) caused
by Command 1. A copy of the indexed values for this
record were reconstructed from the primary and secondary
index. DICE also reconstructed the active record (2700,
777, 1) — Command 2 caused an in-place update and over-
wrote the old version, (2700, 1, 1). However, the old
NO_D_ID value is still present in the index, and could be
mapped back to the overwritten row.

Part B. To continue this experiment, we simulated normal
database activity to observe what causes commands from
6.2.3-A to be no longer immediately detectable. This was
done by repeatedly deleting 10 records using the NO_O_ID
column, and inserting 20 records. We passed the database
files containing the NewOrders table and indexes to DICE

after each set of operations. We passed the carved output
to Algorithms 1 and 2 after each set of operations.

After the first and second sequence of 30 commands,
Algorithm 1 returned (2500, 1, 1), and Algorithm 2 re-
turned (2700, 777, 1). This meant that we had detected
a DELETE command and an INSERT command missing from
the log file. After the third set of commands, Algorithm 1
did not return any records because (2500, 1, 1) was over-
written by an inserted record, and Algorithm 2 returned
(2700, 777, 1). Now, only an INSERT command was only
detected as missing from the log file.

Part C. While we detected missing operations during our
simulation, we wanted to see if indexes can serve as an ex-
tra source of evidence of malicious activity. The uniden-
tified DELETE command was no longer detected after the
third set of database activity commands, and the unidenti-
fied INSERT command could have actually been an in-place
update that we demonstrated in Experiment 6.2.2.

The third set of database activity commands overwrote
the deleted record of interest, seemingly avoiding detec-
tion. However, we found multiple values for the pointer
to this record in both the primary key index and the sec-
ondary index. We then reconstructed a partial deleted
record using the index values that weren’t found in the
current record: (2500, 1, 7). Algorithm 1 did not asso-
ciate this partial record with any DELETE command in the
log file since all of the DELETE commands were on the pri-
mary key. Therefore, we had found evidence of a DELETE
operation not recorded in the log files.

Throughout all of the database activity, we detected
that the record (2700, 777, 1) was part of an INSERT com-
mand removed from the log files. However, more conclu-
sions could be derived from the index values.We found the
one value for the pointer in the primary key index, but we
found two values for the same pointer in the secondary in-
dex. This indicated that the record was likely updated by
a previous command. Given the one value in the primary
key index and the two values in the secondary index, we
could reconstruct the partial deleted record: (2700, 1, ?).
Finally, Algorithm 3 identified the commonality, 2700, be-
tween the unattributed active record, (2700, 777, 1), and
the partial deleted record, (2700, 1, 7). Based on this re-
sult, it was reasonable to assume that the record with the
NO_O_ID value of 2700 was involved in a hidden UPDATE
command.

6.3. Read-Only Query Detection

6.3.1. Experiment 5: Full Table Scan Detection

Part A. The objective of this experiment is to demon-
strate full table scan (FTS) detection. FTSes leave a con-
sistent pattern of pages in the buffer cache for each table
they access which can be detected in RAM.

We used a PostgreSQL DBMS with 8KB pages and a
buffer cache of 128MB (or 16,000 pages). We evaluated
FTS for two tables: the Item table (1284 pages) from the
TPCC benchmark and the LineOrder table (77K pages)



from the SSBM. To do this, we ran three queries that all
used an FTS. The first query accessed ltem, and the second
and third queries accessed LineOrder.

In Snapshot 1, we observed 32 pages from the ltem ta-
ble. These 32 pages that DICE reconstructed represented
the 32 highest page identifiers for ltem table (i.e., the last
32 pages in the physical database file), just as described in
Figure 6. We verified that this is the case by inputting the
Item database file into DICE. We did not observe any other
cached table pages or cached index pages related to the
[tem table in the buffer cache. In Snapshot 2, DICE recon-
structed the same 32 pages from Item and an additional
32 pages from LineOrder. The by-product from scanning
Item was still detectable in memory, although it is unal-
located space from DBMS’s perspective. Similar to the
Item FTS, the 32 pages cached for LineOrder had the high-
est page identifiers from the database file where LineOrder
was stored. For Snapshot 3, DICE returned 32 pages from
Item and 64 pages from LineOrder. The Item pages were
the same pages from Snapshots 1 and 2. The new set of
32 pages from LineOrder had the exact same page identi-
fiers, found at a different location in the memory snapshot.
Each FTS access demonstrated a consistent caching pat-
tern in PostgreSQL, 32 pages for every table, producing
a new set of pages at a location in memory adjacent to
the previous pattern thereby creating a crude timeline of
queries in buffer cache. Note that other DBMSes exhibit
their own (consistent) caching pattern for an FTS. For ex-
ample, the exact number of pages cached for a table in
Oracle is not constant, but relies on a predictable pattern
for each table.

Part B. To demonstrate that FTS caching depends on
buffer cache size, we increased buffer cache to 256MB in
PostgreSQL and performed the same sequence of queries.
As aresult, we observed that the FTS(Item) query switched
to caching the whole table (all 1284 pages). However, the
FTS(LineOrder) query cached 32 pages each in the exact
same pattern as before. In general, DBMSes use an in-
ternal heuristic threshold to decide when a whole table is
“small enough” to be fully read into the buffer cache.

6.53.2. Experiment 6: Index Access Detection

The objective of this experiment is to demonstrate in-
dex access detection. When a table is accessed using an
index, both the index pages and table pages are cached
in memory. The ordered values stored in the index pages
(leaves and intermediate nodes) provide a rough estimate
of the range of values accessed by a query.

For this experiment, we used a PostgreSQL DBMS
with 8KB pages and a buffer cache of 128MB (or 16,000
pages). We created the ltem table with a secondary index
on the |_NAME column. Next, we issued two queries that
used an index access for the Item table:

(Query 1) SELECT * FROM Item
WHERE I_Name BETWEEN ‘aa’ AND ‘ab’
(Query 2) SELECT * FROM Item
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WHERE I_Name BETWEEN ‘ba’ AND ‘bb’.

Query 1 selected 105 rows (0.08 selectivity) and Query
2 selected 109 rows (0.08 selectivity). After each query, we
captured a cache snapshot that we passed to DICE.

DICE reconstructed 102 table pages and 2 leaf index
pages from the memory snapshot after Query 1. Since
Query 1 used a secondary index (the table is not orga-
nized on this column), almost every accessed row cached
a new table page. DICE reconstructed 94 new table pages
and 2 new index leaf pages from the memory snapshot af-
ter Query 2, while the pages cached by Query 1 remained
in memory. Similar to Query 1, Query 2 cached a page
for almost every row selected. Since the indexes stored or-
dered values, they provided an estimate of how the table
was accessed. Table 2 summarizes the detailed breakdown
of index page contents returned by DICE. Table 2 shows
that a value range between ‘a6j3’ and ‘AaBD’ must have
been read to cache index page 1, a value between ‘AaBd’
and ‘acbU’ was accessed to cache index page 2, a value be-
tween ‘b76G’ and ‘bAGT’ must have been to read to cache
index page 3, and a value between ‘BaGW’ and ‘bcDi’ was
accessed to cache index page 4. These index value ranges
matched to Query 1 and Query 2 in Algorithm 4.

Snapshot | Index Page | Min Val | Max Val
1 1 a6j3 ... AaBD ...
1 2 AaBD ... achU ...
2 3 b76G ... | bAGT ...
2 4 BaGW ... beDi ...

Table 2: Index page contents found in memory.

7. Conclusions and Future Work

Audit logs and other build-in DBMS security mecha-
nisms are designed to detect or prevent malicious opera-
tions executed by an attacker. An inherent weakness of
such mechanisms is that attackers with sufficient privi-
leges can bypass them to hide their tracks. We present
and thoroughly evaluate DBDetective, an approach for
detecting database operations that were hidden by an at-
tacker by removing them from the audit log and collecting
evidence about what data was accessed and modified by
an attacker. Our approach relies on forensic inspection of
database storage and correlates this information with en-
tries from an audit log to uncover evidence of malicious
operations. Importantly, database storage is nearly im-
possible to spoof and, thus, is a much more reliable source
of tampering evidence than, e.g., audit logs.

Given that storage snapshots provide incomplete in-
formation, we will explore probabilistic matching that de-
termines the likelihood of a storage artifact being caused
by the operations in the audit log, exploit additional con-
straints based on temporal ordering of operations, simu-
late partial histories of SQL commands from an audit log
for more precise matching, and dynamically adapt the fre-
quency of taking snapshots based on detected anomalies.
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