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Abstract

A solution to Maxwell’s equations in the three-dimensional frequency domain is used to calculate

rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium va-

por in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the

sample are simulated in 2DFT spectra calculated for the homogeneous Bloch lineshape model. Spec-

tral features that appear at optical densities of up to 3 are investigated. As optical density increases,

absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and

ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to

the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total

dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting

time and the excited state lifetime through coherent transient effects. Experiment-specific conditions

are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo–time

domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam over-

lap reduces the linewidth along the ωτ axis but also reduces signal intensity. A pseudo–time domain

filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced

2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing

spectra cannot take advantage of an excitation–detection transformation that can eliminate propagation

distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum

of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279–6287] is quantitatively com-

pared, in linewidth, in depth of peak splitting, and in coherent transient peak twisting, to a simulation

with optical density higher than that reported.
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Introduction

Optical two-dimensional Fourier-transform (2DFT) spectroscopy1–6 is a powerful technique for studying

electronic coupling across a wide range of systems, from atomic vapors to biological pigment complexes.
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The extra dimension in 2DFT spectroscopy separates homogeneous from inhomogeneous lineshape broad-

ening and highlights coupling between electronic transitions. However, in order to take advantage of this

additional information, one must avoid or account for distortions of the signal caused by the absorptive

and dispersive nature of the sample.7–14 Avoidance relegates experimental work to sample optical den-

sities (OD) less than 0.1 where such distortions are typically below 10%,13 allowing 2DFT spectra to

be modeled at the 10% level by ignoring spatial pulse propagation effects at the cost of reduced signal

size. In contrast, nonlinear optical signals are typically maximized at optical densities near 0.7,7 where

propagation effects are significant and must be accounted for.8–16 For linear optics, neglect of propagation

distortions corresponds to a restriction that the exponential in Beer’s law can be described by a Taylor

series expansion that is truncated after the zeroth and first order terms. Because the signal-to-noise ratio

of linear absorption spectra are typically optimized at optical densities between 0.3 and 0.717,18 where

the first-order Taylor series is a poor approximation to the exponential, transmittance spectra are almost

always converted to an extinction coefficient using the Beer-Lambert law19 before modeling. The opti-

cal density or absorbance A = − log10 [I/I0] = εCL properly accounts for the exponential attenuation

of light as it propagates, connecting the macroscopic measurement of the intensity of transmitted light

to the microscopic molar decadic extinction coefficient (ε), the number density or concentration (C) of

chromophores, and the path length (L). The corresponding conversion of 2DFT spectra is not generally so

simple, but becomes straightforward in circumstances where 2DFT spectra simplify to changes in trans-

mittance.3 This paper is about calculating the 2DFT spectra of macroscopic samples even when there is

no known procedure for converting the 2DFT spectra to a microscopic nonlinear response. These calcu-

lated 2DFT spectra for macroscopic samples are a nonlinear analog of linear transmittance spectra and

can be directly compared to experimental 2DFT spectra. Aside from the benefits of maximizing accuracy

and signal strength by treating propagation distortions, it is not always possible or practical to control

the sample optical density (for example in weakly nonlinear or highly concentrated samples) and the ex-

perimental separation of local field and interaction effects (which modify both the linear and nonlinear

responses)7,13,20–26 from propagation effects (in which the underlying linear and nonlinear responses do

not change)7–14 might be accomplished in gases and solutions by independently varying concentration and

optical density.13 Yetzbacher et al. discussed how propagation and detection distortions are influenced by

beam crossing angle, beam spot size, signal bandwidth, sample thickness, and sample optical density.13
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Specifically, the treatment of propagation distortions and their dependence on optical density and beam

overlap is the focus of this work.

Ideally, 2DFT spectroscopy is a measurement of the microscopic nonlinear response of a material.2–4

From this standpoint, propagation effects are ‘distortions’ of the radiated signal field that change the re-

lationship between the true microscopic nonlinear response and the measured signal field. 2DFT spectra

generated by four-wave mixing processes depend on three time intervals, resulting in propagation distor-

tions that are inherently three-dimensional in time or, equivalently, three-dimensional in frequency. Thus,

propagation distortions must generally be modeled three-dimensionally, either in the 3D time domain or

in the 3D frequency domain.11,12

For sufficiently weak excitation fields, propagation distortions in nonlinear optics result from linear

reshaping of the excitation pulses and emitted signal field as they propagate through an optically thick

medium.3,11,12,15 For weak, resonant pulses shorter than the polarization decay time of a low optical den-

sity medium, each input field propagates almost without distortion, but is trailed by a re-radiated field

that is π out of phase with the input field and decays with the polarization decay time (the trailing linear

free-induction decay or FID).27,28 As the optical density increases, multiple absorption–re-radiation cycles

increasingly distort the input field and FID. In some work, this effect on the signal has been termed cas-

caded free-induction decay four-wave mixing29 because it arises from linear cascading of the input fields;

such cascading is fully included in the treatment of propagation distortions here. At optical densities

greater than 0.5, these linear propagation distortions are prominent in 2DFT spectra and can even domi-

nate the overall appearance of the lineshape. While it can be advantageous to increase the signal strength

by increasing the optical density of the sample, this strategy also strengthens propagation distortions. By

including propagation distortions in modeling 2DFT spectra, even highly distorted experimental spectra

could be modeled to extract the fundamental dynamics. This ability, which is the nonlinear analog of con-

verting calculated linear extinction coefficients to calculated linear transmittance spectra, would enable

the interpretation of 2DFT spectra measured at the optical density where signal is strongest, expanding the

range of samples available to 2DFT spectroscopy.

Numerical solutions of the electromagnetic wave equation in one spatial dimension have been used

to model spatial propagation, both for intense single pulses30,31 and for nonlinear signals generated by

multiple collinear pulses.7,9,10,32 Olson et al. 7 used such calculations to distinguish optical density effects
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from chromophore interaction effects. Propagation of individual pulses has also been studied using nonlin-

ear finite difference time domain (NL-FDTD) approaches to the solution of Maxwell’s equations in three

spatial dimensions,33,34 which treat the boundary conditions as well as intense pulse interactions such

as self-focusing. The generality of NL-FDTD methods comes at the computational cost of propagating

pulses as an explicit function of both the propagation and transverse dimensions, requiring a 3D spatial

grid with sub-wavelength steps (λ/100 to λ/10) in addition to a time grid.33 Pseudospectral time domain

methods can increase the maximum allowable spatial step size to as large as λ/2,35 reducing the number

of spatial grid points necessary for a given propagation length.

The 3DFT method12 used here to generate and spatially propagate the third-order nonlinear signal is

based on an exact, three-dimensional solution of Maxwell’s equations and is valid for noncollinear pulses

in the weak field limit. This algorithm calculates the complex-valued 3D frequency domain spectrum, Ŝ3D,

from which 2DFT spectra at a range of waiting times can be extracted. It successfully reproduces optical

density effects on the integrated two-pulse photon echo signal decay rate11 and beam geometry distortions

of relative cross-peak amplitudes in 2DFT infrared spectra.14 2DFT spectra calculated using the 3DFT

method at waiting times long compared to dipole dephasing dynamics connect to expressions for absolute

pump–probe signal size15,16 and to experimentally-tested expressions for product 2D peak shapes.3

The 3DFT algorithm uses the nonlinear impulse response36,37 (the time-dependent nonlinear polariza-

tion excited by three weak, delta-function pulses) as an essential input for the calculation of the signal field

radiated by a macroscopic sample. For complicated systems, quantum mechanical time domain propaga-

tion of a model system or ensemble of model systems is needed to calculate this response.38–41 Several

approaches to efficiently calculate the response for a single time delay triple have been developed42,43

and could be incorporated into the algorithm used here. An advantage of the 3DFT algorithm is that the

third-order nonlinear response is only calculated once for each point on a 3D grid11 and does not need

to be evaluated at delay-dependent time intervals as in convolution algorithms used to incorporate pulse

duration effects.44–46 While calculating the third-order nonlinear polarization in the time domain usually

involves a 3D convolution of the third-order nonlinear susceptibility with the three excitation pulses [re-

quiring O(N2) operations where N is the total number of points in the 3D grid], this can be accomplished

in the frequency domain by simple multiplication following a 3D fast Fourier transform (FFT) of the third-

order nonlinear susceptibility [O(N log2 N )].47 Alternative methods48–50 that include interaction with the
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pulse fields in repetitive (e.g. phase cycled) calculations of the quantum dynamics have also been used to

calculate the nonlinear polarization for finite pulses and generate a computational savings over time do-

main convolution. These methods optimize the calculation of the polarization for a single time delay triple

at one point inside the sample. In contrast, the 3DFT approach is optimized for simultaneous calculation

of the entire 3D spectrum, which includes the complete set of 2D spectra (multiplex advantage). Further,

propagation distortions can be applied to the 3D signal by a single multiplication in the 3D frequency do-

main, as opposed to the stepwise pulse propagation and recalculation of the nonlinear polarization for the

distorted pulses at each depth within the sample used in the time domain methods.7,9,10,33–35 Altogether,

this results in reduced computation time. The disadvantage is that 3D FFT algorithms typically require

more random access memory (RAM) than a 3D convolution, but 3D FFT grids of 10243 points that can

match available experimental resolution are now possible on personal computers. For grids of even larger

size which do not fit in RAM, slower methods allow the 3D Fourier transform to be evaluated in sections.47

There are four essential assumptions implicit in the 3D Fourier transform (3DFT) theory and calcula-

tions presented here. First, the signal is assumed to be generated by the perturbative third-order nonlinear

response of the sample (and it is further assumed that this response is independent of the excitation pulse

wave vectors; this excludes signal decay via motion of excited atoms51 or excitation diffusion,52 which

are slow on femtosecond timescales). Second, it is assumed that the excitation pulses and the radiated

signal field all propagate through the sample according to linear optics. [This can be checked for the ex-

citation pulses by measuring their free-induction decay3,12 (FID) which, unlike absorption measurements,

is sensitive to both absorptive and refractive nonlinearity.] Third, the theory assumes that the spectrum

and phase of the excitation pulses are uniform across the transverse spatial profile of the pulse (e.g. the

beam profile cannot have spatial chirp). Fourth, it is assumed that the excitation beams (a, b, and c) have

complete transverse spatial overlap throughout the cell, from the entrance window to the exit window. An

approximate treatment of the distortions caused by beams that have no transverse overlap in some portion

of the cell is presented below.

The theory excludes nonlinear cascading.53,54 In nonlinear cascading, a nonlinear signal is generated

from one chromophore, propagates to a second chromophore, and acts as an input field in generating an

effectively higher-order nonlinear signal from the second chromophore (the prototype nonlinear cascade

uses one second-order nonlinear crystal to generate the second harmonic and another for mixing the funda-
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mental and second harmonic to generate the third harmonic). The only nonlinear cascade contributing to

a third-order signal involves two cascaded second-order nonlinear signals; in an isotropic sample, second-

order nonlinear signals can be generated only at interfaces.55 Second-order nonlinear cascades are ruled

out by the experimental geometry, which has no beam overlap at the rear interface. As mentioned above,

linear cascading is fully included in the treatment of propagation distortions here.

In rubidium (Rb) atoms, the D2 (52S1/2→ 52P3/2) electronic transition is isolated from other transitions

and obeys a ∆MJ = 0 selection rule for linearly polarized light, suggesting treatment as an effective two-

level system on timescales shorter than that required for hyperfine interactions to manifest [hyperfine

splittings for the D2 transition are less than 6.8 GHz in 87Rb (3.0 GHz in 85Rb)56]. Rubidium vapor is

an interesting system for studying the validity of a theoretical model for propagation distortions since

its optical density can be easily varied over an order of magnitude at constant path length by adjusting

the temperature of a rubidium reservoir.57 Over this range of atomic density, local field effects can be

estimated using eq 27 of ref 13; the calculated magnitude of the field experienced by each atom differs

from the macroscopic field by less than 0.07%, so that the linear and nonlinear polarizability of non-

interacting Rb atoms in Ar buffer gas should dictate the macroscopic linear and nonlinear susceptibility to

a similar level of accuracy. The price to be paid is that the linewidth, which is dominated by non-resonant

pressure broadening from the argon (Ar) buffer gas, increases with temperature due to the increase in

relative intermolecular speed from heating the gas at constant volume. However, this effect is expected

to be modest over the temperature range (363–433 K) modeled here: the predicted linewidth at 433 K is

approximately 10% greater than that at 363 K.59 For low partial vapor pressures (∼1 mTorr) of alkali metal

in noble gases at total pressures of ∼1500 Torr, the line broadening in absorption is almost Lorentzian,

dominated by pressure broadening from collisions with the noble gas buffer. For the potassium D1 and D2

lines, four-wave mixing studies at buffer gas pressures of ∼1500 Torr with ∼200 fs pulses suggest that the

homogeneous optical Bloch model (uncorrelated collisions) underlying a Lorentzian lineshape accounts

for the nonlinear response with an 8 ps dephasing timescale.60 If the line broadening is dominated by

isolated binary collisions with a buffer gas, as in ref 57, the Bloch model is expected to be appropriate for

Rb vapor. In contrast, correlated collisions typically necessitate models that include frequency memory.37

In summary, prior work suggests that the Rb D2 transition dynamics can be characterized by an optical

Bloch model, and that as temperature is varied, the changes in its 2DFT spectra should be dominated by
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optical density effects.

The homogeneous optical Bloch model includes two phenomenological dipole dephasing processes,

each characterized by a single time constant: the population lifetime, T1, and the pure dephasing time,

T∗2 . Assuming that only the excited state population is affected by the population lifetime T1, the resulting

microscopic dipole decay rate is Γ = 1/T∗2 + 1/(2T1).61 The macroscopic polarization can also decay

through inhomogeneous processes, but this is not included here because the Doppler and hyperfine widths

are negligible compared to the homogeneous width. Since propagation distortions alter the macroscopic

polarization and, consequently, the radiated signal field, the 2DFT spectrum of an optically thick sample

will not reflect the chromophore’s true microscopic dynamics. Therefore, caution must be exercised when

interpreting the Bloch model rates since the 2DFT spectrum of an optically dense sample can be much

wider than that of a thin sample,13 suggesting values of T2 that are shorter than the true microscopic

values. An expression describing the apparent shortening of T2 in impulsively excited photon echoes for

the homogeneous Bloch model is given by eq 3 of ref 11. These propagation distortions depend on T1.

Based on the known photophysics of the Rb D2 line, complications that go beyond the two-level Bloch

model—but that are still compatible with Bloch model 2DFT spectra—should be expected from at least

two sources. First, the 27 ns radiative lifetime of the 2P3/2 excited state exceeds the 13 ns interval between

pulse sequences at a 76 MHz repetition rate (Ar does not quench Rb D line fluorescence62–65 and known

impurities of N2, H2O, and less than 0.0005% O2 in 99.995% pure industrial grade Ar suggest a maximum

quenching rate64,66 of 6 × 106 s−1). This means that approximately one-third of the 2D signal may derive

from prior pulse sequences. Second, collisions can transfer the Rb atoms out of the optically excited MJ

states (the measured cross sections67,68 predict a ∼20 ps timescale for loss of rotational alignment). For

all-parallel polarized pulses, the nonlinear response (hence 2DFT spectra) can be decomposed into a sum

of a population response (which should decay with the population lifetime of ∼27 ns) and an alignment

response (which should decay with the alignment lifetime of ∼20 ps).69–71 Both alignment and population

nonlinear responses have the same total dephasing time T2
72 which arises primarily from Ar collisions

causing either a change in phase or a change in alignment, with a much smaller contribution from the

radiative lifetime. As a result, the 2DFT spectra at the nominal experimental waiting time of T = 200 fs

are expected to be the weighted sum of three parts: (1) a population 2DFT spectrum with T = 200 fs,

population lifetime T1 = 27 ns, and T2 ≈ 12 ps; (2) a population 2DFT spectrum with T > 13 ns from
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prior pulses; and (3) an alignment 2DFT spectrum with T = 200 fs, alignment lifetime T1 ≈ 20 ps, and

T2 ≈ 12 ps.76 In addition, hyperfine relaxation is slow so that parallel polarized optical pumping77 can

generate a steady-state modification of the response.56 Unlike the two effects mentioned above, hyperfine

pumping effects increase the order of the nonlinear response beyond third order; however, in steady-state,

it can be regarded as modifying the third-order nonlinear response discussed above. In the absence of

propagation distortions, the three Bloch model 2DFT spectra expected to contribute to the total 2DFT

spectrum are identical for nominal waiting times T greater than the pulse duration.

This paper follows a paper detailing experimental work by Li et al. 57 on propagation distortions in

2DFT spectra of rubidium vapor. We present a theoretical and computational treatment of novel distor-

tions observed in the experimental 2DFT spectra. However, quantitative modeling of the experimental

lineshapes was not attempted for two reasons. First, the asymmetry between ωτ and ωt linewidths in the

low-OD experimental spectra is not recovered by the Bloch model or the Kubo stochastic model11 (in

the slow-, intermediate-, and fast-modulation limits). Second, the linewidth and peak OD of experimental

linear absorption spectra are inconsistent with predicted linear absorption spectra at each experimental Rb

reservoir temperature under the assumption that the Rb vapor density is given by the vapor pressure of Rb

at the experimentally measured reservoir temperature. In addition, the linewidth and peak OD implied by

the experimental 2DFT spectra do not agree with either the experimental or the predicted linear absorption

spectra. Repetitive excitation might contribute to the latter discrepancies through steady-state modifica-

tions on the effective linear and nonlinear responses. In the face of these disagreements, the linewidth was

set constant for all simulated 2DFT spectra in order to focus on qualitative OD-dependent features present

in the experimental 2DFT spectra. The above disagreements will be addressed further in the Discussion

section.

Theory

Propagation Distortions

A complete mathematical framework for describing propagation and detection distortions on 2DFT spectra

in the 3D frequency domain has been developed.12–14 This discussion highlights the essentials necessary
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to understand the distortions that are the focus of this work and presents an improved approximation for

the incoherent limit of the propagation function. First, in order to discuss the propagation of pulses in a

sample, we will define the time domain optical electric field of the excitation pulses,

E(r, t) =
1

2π

∞∫
−∞

Ê(r, ω) exp (−iωt) dω (1)

where r is spatial position, t is time, and ω is the angular frequency. Ê(r, ω) is the frequency domain

complex-valued electric field,

Ê(r, ω) =
1

(2π)3

$
Ê(k̂(ω), ω) exp

[
ik̂(ω) · r

]
d3k̂ (2)

where Ê(k̂(ω), ω) is a “wave” which, when integrated over k̂, is equal to the frequency domain complex-

valued electric field at the center of the sample entrance plane (r = 0). The spatial variation of the “wave”

simply factors out into exp[ik̂(ω) · r], where k̂(ω) is the complex-valued wave vector, which incorporates

attenuation of the electric field when propagating through absorbing media. Representing the pulses as

waves is convenient in that it mathematically separates propagation effects from the input pulse fields,

allowing the propagation effects to be collected and dealt with separately. Throughout this paper, vectors

and matrices are in bold face type while complex-valued quantities are marked with a circumflex (or

“hat”). For normal incidence, the wave vector is k̂(ω) = ez n̂(ω)ω/c where ez is the unit vector normal to

the window–sample interface and c is the speed of light in vacuum. n̂(ω) = n(ω) + iκ(ω) =
√
ε̂ (ω)/ε0 is

the complex-valued refractive index, ε̂ (ω) is the complex-valued permittivity (dielectric constant), and ε0

is the permittivity of vacuum (MKS units). Attenuation of the field is contained in the imaginary part of

the wave vector, Im[‖k̂(ω)‖] = κ(ω)ω/c, which is related to the napierian (i.e. base e) field attenuation

coefficient,78 α(ω) = κ(ω)ω/c = A(ω) ln(10)/2L, where A(ω) is the decadic absorbance78 (optical

density) and L is the sample length normal to the window–sample interfaces.13 α and A are linked by

T = I/I0 = e−2αL = 10−A where T is the transmittance of the sample. The usage of α here for the field

attenuation coefficient is not to be confused with the intensity attenuation coefficient (napierian absorption

coefficient), which is also denoted by α in some cases.78

For a weak absorber (i.e. κ2 � n2), the wave vector can be expressed in a more general form that is
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valid for oblique incidence as well as normal incidence:

k̂(ω) ≈ (ω/c)
[
n(ω) u + iκ(ω) ez/

(
u · ez

)]
(3)

where u is the unit vector along the direction of propagation (which can be calculated using the ordinary

real-valued Snell’s Law [see eqs A6 and A7 of ref 12]). The real and imaginary parts of a complex-valued

wave vector are normal to planes of constant phase and amplitude respectively and, therefore, point in

different directions (see Figure 18-6 of ref 79) except for normally incident light (i.e. u = ez). The factor

of 1/(u · ez) modifies κ to account for the additional path length when beams are not at normal incidence

to the window–sample interface. This is necessary because Im[k̂(ω)] is parallel to the window–sample

interface normal, not the propagation vector. Propagation from the sample cell entrance at r to the sample

cell exit at r + u ` multiplies the wave by exp[iω(n + iκ)`/c], where ` = L/(u · ez) is the path length

through the sample for a beam propagating along u.

Given the following three additional assumptions, the propagation matrix for the 3D frequency do-

main signal field12 can be simplified to a scalar:13 (1) well-collimated beams, (2) transverse electric (TE)

polarized beams, and (3) an isotropic nonlinear susceptibility. Accordingly, vector and matrix notation

are dropped for the fields and susceptibility. We further assume that the sample and windows have the

same linear optical properties so that no linear reflections are generated by the window–sample interfaces

(see Appendix C of ref 12). 3D inverse Fourier transformation of the time domain third-order nonlinear

response (eq B3 of ref 12) yields the 3D frequency domain nonlinear susceptibility, χ̂(3), which is multi-

plied by the three excitation waves (a, b, and c) to form the nonlinear polarization wave inside the sample,

P̂ (3). Further multiplication by the propagation function, Π(3)
exit, gives the radiated signal wave referenced

to the sample exit, Êt ; multiplication by the directional filter function, Φ(3), isolates the particular phase-

matched signal field that is selected for interference detection with respect to the detection wave, Êd . The

detection wave may represent an actual reference pulse propagating through the sample in the direction

of the signal, but may also represent an artificial wave that incorporates both the actual reference (which

may be routed around the sample) and measured differences between the actual reference and a chosen

ideal reference (for example, the reference-tracer phase difference of refs 80, 1, and 3 or the amplitude

distortion from propagating through an absorptive sample treated in ref 13). The result is the transmitted
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3D frequency domain signal,

Ŝ3D ≈ Êt Ê
∗
d Φ

(3)

≈
iωt

2ε0c

[
Π

(3)
exit P̂

(3)
]
Ê∗d Φ

(3)

≈
iωt

2ε0c

[
Π

(3)
exit

(
χ̂(3) Êa Êb Êc

)]
Ê∗d Φ

(3)

(4)

where Êa,b,c,d represent the excitation (a, b, c) and detection (d) pulse waves and ωt = ωc + ωb − ωa

is the frequency of the transmitted signal wave. In eq 4, the arguments of the waves follow the signs

of the frequencies in ωt : Êa (−ωa), Êb(ωb), Êc(ωc), and Ê∗d (ωt ).12 (For waves, changing the sign of

the frequency argument has the same effect as complex conjugation.) The mathematical form of the

directional filter is given by eq 56 of ref 12. For this experiment, Φ(3) is over 50 times wider than the

experimental 2DFT spectrum and has no significant effect beyond selecting only two conjugate octants

of the 3D frequency domain signal, which physically reflects detection of signal from only one phase-

matched direction. Within the rotating-wave approximation, the directional filter is implemented here by

calculating the nonlinear response using only diagrams that give a phase-matched signal for the detected

beam. Given the three assumptions listed above, the propagation function takes the form (eq 9 of ref 13)

Π
(3)
exit(k̂

0
a, k̂

0
b, k̂

0
c, L) =

ωt(
k̂0

s · ez
)

c

exp
[
i
(
∆k̂0 · ez

)
L

]
− 1

i
(
∆k̂0 · ez

) exp
[
i
(
k̂0

s · ez
)

L
] (5)

where k̂0
a,b,c,s are the complex-valued frequency-dependent central wave vectors of the excitation pulses

(a, b, c) and the signal (s) inside the sample, ωt is the frequency of the transmitted signal wave, and

∆k̂0 = k̂0
p − k̂0

s is the complex-valued 3D phase mismatch between the nonlinear polarization and signal

waves, with central wave vectors k̂0
p and k̂0

s respectively. A superscript “0” indicates use of the central

wave vector approximation. The true wave vector distribution of each beam includes the angular spread

of wave vectors needed for the focused beam diameter. In the central wave vector approximation, the

propagation function is evaluated at each beam’s central wave vector. This approximation requires well

collimated beams and is implicit in the use of a directional filter, which accounts for the wave vector

distribution.12 In the limit of (∆k̂0 · ez)L � 1 and small beam crossing angles, the propagation function
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approaches the normal incidence result, Π(3)
exit ≈ [L/n̂(ωt )] exp[i(k̂0

s · ez)L]. The proportionality to L

physically represents perfectly phase-matched growth of signal over the length of the sample and the

exponential represents linear propagation. For a sample much thinner than a wavelength of light, the

normal-incidence propagation function further simplifies to Π(3)
exit ≈ L/n̂(ωt ).

In the rectangular BOXCARS geometry, three parallel excitation beams are arranged such that each

intersects the corner of a rectangle. The beams are focused into the sample, producing a signal beam which

intersects the fourth corner of the rectangle (see Figure 1 of ref 13) if all four frequencies are the same.

The nonlinear polarization wave has central wave vector

k̂0
p(ωt ) = k̂0

a (−ωa) + k̂0
b(ωb) + k̂0

c (ωc) (6)

determined by the three excitation pulse wave vectors.12 k̂0
p is a function of all three input frequencies;

this dependence is suppressed here for compactness. The imaginary part of k̂0
a (−ωa) correctly incorpo-

rates attenuation of forward propagating pulse a [−k̂0
a (ωa) = k̂0

a (−ωa)∗ attenuates backward propagation

and would incorrectly amplify forward propagation]. Maxwell’s equations require12 that the signal wave

vector obeys the boundary condition

k̂0
s · ex,y = k̂0

p · ex,y (7)

with

k̂0
γ (ω) · k̂0

γ (ω) =
(
ω2/c2

)
n̂2(ω) (8)

for all four beams (γ = a, b, c, s). k̂0
s is also a function of all three input frequencies. Equation 8, which

applies to linearly propagating electromagnetic waves, need not hold for the nonlinear polarization wave

vector: for unequal input frequencies, the real parts of the signal and polarization wave vectors can differ

in both magnitude and direction (see Figure 1 of ref 13); for equal input frequencies, the imaginary part of

the polarization wave vector is 3 times greater than the imaginary part of the signal wave vector, reflecting

attenuation of all three excitation beams.

The 3D nonlinear susceptibility, χ̂(3), is multiplied by the propagation function (eq 5), the excitation

pulse waves (Êa,b,c), the detection pulse wave (Ê∗d), and the directional filter to produce the distorted 3D
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frequency domain signal,

Ŝ3D(ωa,−ωb,−ωc) ≈ Π(3)
exit(k̂

0
a, k̂

0
b, k̂

0
c, L)

·
iωt

2ε0c
χ̂(3) (−ωa, ωb, ωc)

· Êa (−ωa) Êb(ωb) Êc(ωc)

· Ê∗d (k̂d, ωt )Φ(3) (ωa,−ωb,−ωc)

(9)

The distorted 3D frequency domain signal is triple Fourier transformed into the 3D time domain. Given

that ta ≤ 0, tb ≤ 0, and tc = 0 are the experimentally controlled arrival times of pulses a, b, and c,

respectively, we define the time intervals T ≡ min(|ta |, |tb |) and τ ≡ tb − ta. The time domain 2D signal,

S2D(t, τ; T ), at fixed waiting time T is extracted from the 3D time domain signal according to

S2D(t, τ; T ) = S3D(t + τ + T, t + T, t) θ(τ)

+ S3D(t + T, t − τ + T, t) θ(−τ)
(10)

where θ(τ) is the Heaviside unit step function. The time domain 2D signal from eq 10 is inverse Fourier

transformed (along τ and t) back to the frequency domain to produce the complex-valued 2DFT spectrum,

Ŝ2D(ωt, ωτ; T ) =
1

ωt e(ωt )

∞∫
−∞

∞∫
−∞

S2D(t, τ; T )

· exp (iωττ) exp (iωtt) dτdt

(11)

where e(ωt ) is the detection pulse field envelope, which represents the frequency envelope of the detection

field, and ωt and ωτ are conjugate to t and τ, respectively. Division by ωt removes the radiative distortion

that is introduced by the factor of ωt on the second line of eq 9. The form of the detection envelope in

eq 11 depends on the detection geometry utilized and will be specified for each representation discussed

below.

To calculate the complex-valued rephasing 2D spectrum, only the positive-τ part of the time domain
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2D signal is inverse Fourier transformed:

RŜ2D(ωt, ωτ; T ) =
1

ωt e(ωt )

∞"
−∞

S2D(t, τ; T ) θ(τ)

· exp (iωττ) exp (iωtt) dτdt

(12)

Multiplication by the Heaviside unit step function (see p. 61 of ref 81), θ(τ), in eq 12 selects the positive-

τ rephasing pulse ordering, where pulse a comes before pulse b, by multiplying S2D(t, τ < 0,T ) by 0,

S2D(t, τ = 0,T ) by 1/2, and S2D(t, τ > 0,T ) by 1; this is equivalent to neglecting the second term in

eq 10. The factor of 1/2 at τ = 0 is essential to prevent baseline offset in a discrete Fourier transform.81

In this paper, all rephasing spectra will be indicated by “R”. Most of the 2DFT spectra depicted here are

calculated according to eq 12 to allow for direct comparison to the experimental work by Li et al. 57

Since it is instructive to compare distorted and undistorted 2DFT spectra, we define the ideal (undis-

torted) 2DFT spectrum, Ŝ ideal
2D , which is calculated using eq 11 where the propagation function is taken to

be

Π
ideal
exit (L) =

ωt L(
k0

sv · ez
)

c
=

L(
us · ez

) (13)

where k0
sv is the real-valued signal central wave vector in vacuum and us is the unit propagation vector of

the signal beam. This “ideal” propagation function is valid for samples with no absorptive or refractive

effects (i.e. n̂ = 1) and neglects the effect of phase mismatch, which even in vacuum only vanishes for

collinear beams or zero sample length.13 Vacuum phase mismatch is negligible in the experiment of Li

et al.,57 making eq 13 a good approximation for this work. Since all of the representations of the 2DFT

spectrum discussed in the next section are equivalent in the limit of optically thin samples, the ideal 2DFT

spectrum requires no indication of representation and is directly comparable to distorted spectra in any

representation.
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Representations of the 2DFT Spectrum

Experimental Distinctions

In order to address the form of the detection field, the experimental detection geometry must be discussed.

In 2DFT spectroscopy, the amplitude and phase of the signal field is retrieved by interference with a

detection field. Since the 3D signal (eq 4) is dependent on the detection field, it must be well characterized

to extract the signal field from the spectral interferograms. The detection field is used to establish the zero

of spectral phase, which also specifies the time axis for the signal field relative to the excitation pulses.

The three representations of 2DFT spectra used here (attenuated, FID-referenced, and time-referenced)

have been discussed in more detail elsewhere.13,14

Experimentally, either the tracer beam (“ref II”57) or the reference beam (“ref I”57) can be used for

interferometric detection of the signal field. The amplitude and phase of the detection field directly influ-

ence the amplitude and phase of the 2DFT spectrum extracted from experimental interferograms and can

be used to approximately remove certain propagation distortions. The cost of changing representations

is that the 2DFT spectrum may no longer be an accurate representation of the signal field that exits the

sample. In the BOXCARS geometry, the tracer beam occupies one corner of the rectangle formed on the

focusing lens by it and the three excitation beams and copropagates with the signal through the sample and

on to the detector.3,80 Since the tracer copropagates with the signal, it accrues the same linear absorptive

and dispersive distortions as the signal through the sample and common path optics. However, the tracer

can influence or be influenced by nonlinear interactions with the excitation pulses. The reference beam

bypasses the sample, but later rejoins and copropagates with the signal beam to the detector. In bypassing

the sample, the reference beam avoids all sample-induced distortions. However, this also means that it en-

counters a different set of optics and travels a different length, taking on phase and attenuation that is not

common to the signal. The tracer can be used without the excitation pulses to characterize the time origin

and phase of the reference beam relative to the excitation pulses at the sample.3,80 For a more detailed

description of the experimental geometry, see Figure 2 of ref 57.
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Attenuated

In the attenuated representation of the 2DFT spectrum, the tracer beam, which propagates along the same

path as the signal through the sample, serves directly as the detection field.13 In this case, assuming a

weakly absorbing sample, the complex-valued wave vector of the detection beam is given by

k̂0
d (ωt ) =

ωt

c

[
n(ωt ) ud + i

κ(ωt )(
ud · ez

) ez

]
(14)

where ud is the unit propagation vector of the detection beam, which—for the BOXCARS geometry—is

collinear with the central wave vector of the tracer beam. In the square BOXCARS geometry, with the

detection beam aligned such that ud = uc + ub − ua, Maxwell’s equations guarantee that the components

of the wave vector parallel to the window–sample interface are the same for k̂0
s and k̂0

d (hence k̂0
s = k̂0

d

and us = ud when all four frequencies are the same). Thus, all effects for the parallel components of k̂0
s

and k̂0
d automatically cancel (recall that the imaginary part of a wave vector attenuates the wave along an

axis normal to the window–sample interface). At the sample exit plane (z = L), the detection wave has

the form

Êd (ωt ) = Ê0
d (ωt ) exp

{
i

[
k̂0

d (ωt ) · ez
]

L
}

(15)

where Ê0
d (ωt ) is the detection wave at the sample entrance (r = 0) for zero delay. Since the tracer

and signal take the same path through the sample, the tracer beam experiences approximately the same

attenuation and dispersion as the signal [k̂0
d (ωt ) ≈ k̂0

s (−ωa, ωb, ωc)]. This approximation is valid within a

3D signal frequency-bandwidth inversely proportional to the excitation beam crossing angles, is good

when the signal beam is well-collimated, and is an equality for collinear excitation beams at normal

incidence. Replacing k̂0
d with k̂0

s yields

Êd (ωt ) ≈ Ê0
d (ωt ) exp

{
i

[
k̂0

s (−ωa, ωb, ωc) · ez
]

L
}

(16)
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for the detection wave at the sample exit plane. For small angles of incidence or when κ2 � n2, this

further simplifies to

Êd (ωt ) ≈ Ê0
d (ωt ) exp

{
ωt

c

[
i
(
ud · ez

)
n(ωt ) −

κ(ωt )(
ud · ez

) ]
L
}

(17)

To calculate the attenuated rephasing 2DFT spectrum [RŜ −2D(ωt, ωτ; T )] from eq 12, eq 16 is used as

the detection wave in eq 9, taking e(ωt ) = 1 for the detection pulse field envelope. Using e(ωt ) = 1

ignores the effect of the detection field’s spectrum on the amplitude of the signal field recovered from

spectral interferograms. As a result, the real part of the attenuated 2DFT spectrum, when integrated over

ωτ, becomes equal to the spectrally resolved pump-probe signal when directional filtering distortions are

negligible.13

The substitution of k̂0
s for k̂0

d in the exponential term of eq 16 is useful in that it results in cancellation

of the imaginary part of the final exponential term in the propagation function (eq 5) when both equations

are combined to form the 3D signal (eq 4). In contrast, the real parts have the same sign and, consequently,

add. Physically, this signifies that while there is cancellation of phase evolution between the signal and

tracer (i.e. no relative phase), the attenuation of the signal and detection fields is additive, resulting in

stronger absorptive distortions in the 2DFT spectrum. The spectra measured using the “reference through

the sample” in the work by Li et al. 57 are fundamentally attenuated rephasing 2D spectra. However,

the spectra depicted in Figures 4 and 5 of ref 57 have been processed with a time domain filter and are

no longer in the RŜ −2D representation. The effect of this filter is discussed in the section “Pseudo–Time

Domain Filtering” below.

FID-referenced

While the tracer can be used as the detection field for interferometric detection, attenuation and dispersion

of the tracer in an absorptive sample can introduce distortions into the measured 2DFT spectrum. In

addition, if the tracer falls within the time window of the sample nonlinear response, it has the potential

to interact with the sample in such a way as to alter the radiated signal field or be altered by nonlinear

interaction with the sample. To avoid such attenuation and nonlinear interaction, the tracer can be used

to characterize the reference and then can be blocked during the experiment, using the reference beam
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directly for interference detection.80 In this case, the tracer must be used to characterize the phase accrued

by the signal in traversing the sample. Under the same approximations as eq 16, this detection geometry

results in the detection wave

Êd (ωt ) ≈ Ê0
d (ωt ) exp

{
i Re

[
k̂0

s (−ωa, ωb, ωc) · ez
]

L
}

(18)

which can be used in eq 9 to calculate the FID-referenced rephasing 2DFT spectrum, RŜ 0
2D(ωt, ωτ; T ),

from eq 12 given that e(ωt ) = |Ê0
d (ωt ) |. For small angles of incidence or when κ2 � n2, this further

simplifies to

Êd (ωt ) ≈ Ê0
d (ωt ) exp

[
iωt

(
ud · ez

)
n(ωt ) L/c

]
(19)

The FID-referenced representation differs from the attenuated representation only in that the attenuation

of the detection field is removed. Both Ŝ −2D and Ŝ 0
2D have the FID phase removed, resulting in a physically

meaningful separation of the 2DFT spectrum into absorptive (real) and dispersive (imaginary) parts.13

However, this comes at the expense of losing a causal time origin such that the 2DFT spectrum of an

optically thick sample contains signal that appears to arrive before pulse c.

Fundamentally, the spectra denoted by “reference around the sample” in the work by Li et al.,57 such

as those in Figure 3 of ref 57, are measurements of the FID-referenced rephasing 2D spectrum. How-

ever, since only the amplitude (absolute value) of the experimental spectra is shown in ref 57, the phase

evolution contained in the exponential term in eq 18 is hidden.

An approximation to RŜ 0
2D can be calculated by transforming the attenuated 2DFT spectrum RŜ −2D

(where the tracer is used as the detection wave) to account for detection wave attenuation. This procedure

results in

RŜ 0
2D(ωt, ωτ; T ) ≈ RŜ −2D(ωt, ωτ; T )

·
���Ê

0
d (ωt )

��� exp
{
Im

[
k̂0

d (ωt ) · ez
]

L
}

≈ RŜ −2D(ωt, ωτ; T )

·
���Ê

0
d (ωt )

��� exp [ωt κ(ωt )`/c]

(20)

where ` = L/
(
ud · ez

)
is the path length through the sample cell for the detection beam and
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RŜ −2D(ωt, ωτ; T ) is the attenuated rephasing 2D spectrum as described in the previous section. This is

an approximation insofar as it substitutes the attenuation of the signal along the complex-valued central

wave vector of the detection beam in the sample, k̂0
d (ωt ), for the true signal attenuation in k̂0

s given by

eqs 6–8, which involves a range of wave vectors that are dependent on all three excitation frequencies.

Time-referenced

Neglecting the effects of signal field propagation, the time-referenced 2D spectrum is a direct reflection of

the underlying bulk nonlinear polarization of the sample. This representation is calculated using

Êt
d (ωt ) = Ê0

d (ωt ) exp
{
i

[
k0

sv (−ωa, ωb, ωc) · ez
]

L
}

(21)

as the form of the detection wave where k0
sv is the signal central wave vector in vacuum. The time-

referenced rephasing 2D spectrum, RŜ t
2D(ωt, ωτ; T ), is calculated from eq 12 by using eq 21 as the detec-

tion wave in eq 9 given that e(ωt ) = |Ê0
d (ωt ) |.

RŜ t
2D can be calculated in an approximate way starting from RŜ 0

2D:

RŜ t
2D(ωt, ωτ; T ) ≈ RŜ 0

2D(ωt, ωτ; T )

· exp
{
i Re

[
k̂0

d (ωt ) − k0
dv (ωt )

]
· ez L

} (22)

where k0
dv is the real-valued central wave vector of the detection beam in vacuum and k̂0

d is the complex-

valued central wave vector of the detection beam in the sample. The exponential in eq 22 approximates the

FID phase due to the sample by using the central wave vector of the detection beam, which depends on only

one frequency, instead of the wave vector of the signal, which depends on all three excitation frequencies.

This approximation, just as with eqs 16 and 18, is valid for a well-collimated signal beam and becomes

exact for collinear excitation beams at normal incidence. Time-referenced 2DFT spectra have delays from

the refractive index of the sample because they are time-referenced to when pulse c would emerge from

the sample if it propagated through vacuum. The time-referenced and FID-referenced representations only

differ in the phase of the detection field and, consequently, the phase of the 2DFT spectrum. Therefore,

the absolute value 2DFT spectra in these representations are identical: |RŜ t
2D | = |RŜ 0

2D |. However, the
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phase differences between time-referenced and FID-referenced 2DFT spectra cause them to be affected

differently by time domain filters.

Transformation of 2DFT Spectra

As demonstrated by Yetzbacher et al.,13 it is possible to transform calculated and experimental 2DFT

spectra in such a way as to approximately remove the distortions caused by attenuation of excitation and

signal fields. The result is the excitation–detection transformed 2D spectrum,

Ŝ ++
2D (ωt, ωτ; T ) =

2 Im
[
k̂0
τ (ωτ) · ez

]
L

1 − exp
{
−2 Im

[
k̂0
τ (ωτ) · ez

]
L

}

· exp
{
Im

[
k̂0

d (ωt ) · ez
]

L
}

· Ŝ 0
2D(ωt, ωτ; T )

≈
2ωτκ(ωτ)`/c

1 − exp [−2ωτκ(ωτ)`/c]

· exp [ωt κ(ωt )`/c]

· Ŝ 0
2D(ωt, ωτ; T )

(23)

where k̂τ is the wave vector of the initial excitation pulse (k̂a or k̂b). The second expression in eq 23 arises

from approximating k̂0(ω) using the approximation of eq 3, which is valid as long as either κ2 � n2 or the

angle of incidence is small (i.e. u ≈ ez). In the rectangular BOXCARS geometry, 2α and 2β are defined

as the external crossing angles (in vacuum or air) between beams a and c (as well as b and d) and beams

a and b (as well as c and d), respectively. In this geometry, the path length through the sample is given by

` = L/γ where γ = u · ez = (1 − sin2 α − sin2 β)1/2 and is equal for all beams (a, b, c, and d), permitting

use of the same ` in eq 23 for propagation along both the excitation dimension (ωτ) and the detection

dimension (ωt). Equation 23 neglects vacuum phase mismatch so that us ≈ ud . A reformulation of eq 23
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in terms of the absorbance of the sample is given by

Ŝ ++
2D (ωt, ωτ; T ) ≈

A(ωτ) ln(10)/γ
1 − 10−A(ωτ )/γ

· 10A(ωt )/(2γ)

· Ŝ 0
2D(ωt, ωτ; T )

(24)

where A(ω) is the decadic absorbance at normal incidence. In the limit of no coherence (i.e. ωt = ωc and

ωa = ωb), eqs 23 and 24 recover the ideal 2DFT spectrum, Ŝ ideal
2D .

Analytic Bloch Model 2DFT Spectrum

An analytic form is known for the impulsive correlation (waiting time T = 0) and relaxation (T > 0) 2DFT

peak shapes of the homogeneous optical Bloch model:82

Ŝ ideal
2D (ωt, ωτ,T ) ∝

a(−ωτ)a(ωt ) − ia(−ωτ)d(ωt )

+
1
2
δ(T )

[
a(−ωτ)a(ωt ) + d(−ωτ)d(ωt )

− ia(−ωτ)d(ωt ) + id(−ωτ)a(ωt )
]

+ a(ωτ)a(−ωt ) + ia(ωτ)d(−ωt )

+
1
2
δ(T )

[
a(ωτ)a(−ωt ) + d(ωτ)d(−ωt )

+ ia(ωτ)d(−ωt ) − id(ωτ)a(−ωt )
]

(25)

where

a(ω) =
Γ2(

ωeg − ω
)2

+ Γ2
(26)

and

d(ω) =

(
ωeg − ω

)
Γ(

ωeg − ω
)2

+ Γ2
(27)

are Lorentzian absorptive and dispersive lineshape functions, respectively, with central transition fre-

quency ωeg and width defined by Γ, the Bloch microscopic dipole decay rate. Γ is equal to the half-width
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half-maximum (HWHM) of a Lorentzian absorptive lineshape and is the inverse of the dipole decay (or

dephasing) time: Γ = 1/T2. Equations 26 and 27 differ from eq 18 of Gallagher Faeder and Jonas 82 in

that they have been peak normalized through multiplication by Γ. Here, “impulsive” is used to signify that

pulses a, b, and c have δ-function time domain profiles. Although the analytic 2DFT peak shape in eq 25

is a sum of product lineshapes that have no correlation between the two dimensions ωτ and ωt , the 2DFT

peak shape does exhibit correlation at T = 0. This analytic form is useful in that it can be compared to

numerical calculations to confirm that they accurately reproduce the spectral lineshape in the Bloch limit,

which serves as a basis for understanding more complex coherent phenomena that occur as a function of

T with the introduction of propagation distortions.

The absolute value of the impulsive rephasing 2DFT peak shape was experimentally measured by

Li et al..57 For the homogeneous optical Bloch model, the one dimensional absolute value lineshape is

(a2 + d2)1/2 = a1/2, and the absolute value rephasing 2DFT peak shape for positive T is given by

���RŜ ideal
2D (ωt, ωτ,T )��� ∝

√
a(ωτ) a(ωt )

∝



Γ2(
ωeg + ωτ

)2
+ Γ2

·
Γ2(

ωeg − ωt
)2

+ Γ2



1/2 (28)

with FWHM = 2
√

3 Γ in both the ωt and ωτ dimensions (a
√

3 increase in linewidth for both dimen-

sions compared to the real 2DFT relaxation spectrum). As will be shown below, the distortions of 2D

peak shapes in absolute value rephasing spectra are more complicated than those for 2D peak shapes in

relaxation spectra.

Incoherent 2D Propagation Function

The incoherent limit of the propagation function depends on only two frequencies and serves as an exact

baseline for identifying coherent transient propagation effects. Multiplying the propagation function in

eq 5 by the complex conjugate of the propagation factor for the detection field, exp[i Re(k̂0
s · ez)L]∗, as
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indicated by eqs 4 and 18, yields

Π
(3)
exit(k̂

0
a, k̂

0
b, k̂

0
c, L) exp

[
−i Re

(
k̂0

s · ez
)

L
]

=
ωt(

k̂0
s · ez

)
c

exp
[
i
(
∆k̂0 · ez

)
L

]
− 1

i
(
∆k̂0 · ez

) exp
[
− Im

(
k̂0

s · ez
)

L
] (29)

This form of the propagation function is specific to FID-referenced 2DFT spectra. Incorporating eqs 44

and 47 of ref 12 for k̂0
s and ∆k̂0 plus the three assumptions listed below, the 3D propagation function in

eq 29 can be simplified to a 2D function of ωτ and ωt . First, the signal is assumed to be generated in

the incoherent limit where ωa = ωb ≡ ωτ and ωc = ωt . Second, it is assumed that the sample is weakly

absorbing (κ2 � n2) such that the approximate form of the wave vector in eq 3 is valid. Third, n̂zs and n̂z

are approximated as equal, which assumes that |4(ωτ/ωt )(1 − ωτ/ωt ) sin2 β | � 1 (i.e. the limit of small

fractional bandwidth ∆ω/ω and small angles of incidence). Under these conditions, eq 29 simplifies to

Π
0
2D(ωt, ωτ, L) =

1
n̂zs (ωt )

exp
[(
−2ωτκz (ωτ)/c

)
L
]
− 1(

−2ωτκz (ωτ)/c
)

· exp
[
− Im

(
ωt n̂z (ωt )/c

)
L
]

(30)

The factor of 1/n̂zs (ω) arises from the boundary conditions for Maxwell’s equations at the sample–window

interfaces.12 Substituting κz (ω) = κ(ω)`/L as implied by eqs 41 and 42 of ref 12, we arrive at the

incoherent propagation function appropriate for FID-referenced 2DFT spectra,

Π
0
2D(ωt, ωτ, L) =

L
n̂zs (ωt )

exp [−2ωτκ(ωτ)`/c] − 1
−2ωτκ(ωτ)`/c

· exp [−ωt κ(ωt )`/c]

(31)

All factors besides L/n̂zs (ω) represent absorptive propagation distortions and tend to unity as the sample

length tends to zero.83 n̂zs (ω) physically represents the effective complex-valued refractive index for the z-

component of propagation of the signal field and is applicable to pulses with arbitrary angles of incidence

α and β (see eq 41 of ref 12). The imaginary component of the complex-valued refractive index can be
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expressed in the convenient form

κ(ω) =
c
ωeg

αmax a(ω) (32)

where αmax = α(ωeg) is the peak attenuation coefficient. a(ω) is the absorptive lineshape function which,

for the homogeneous Bloch model, is given by eq 26. The propagation function in eq 31 is almost the

inverse of the excitation–detection transformation in eq 23, but differs by a factor of L/n̂zs (ωt ) which can

contribute a phase shift from the sample–window interfaces when κ is not negligible compared to n. In

the incoherent limit, the FID-referenced 2DFT spectrum becomes

Ŝ 0
2D(ωt, ωτ; T ) ≈ Ŝ ideal

2D (ωt, ωτ,T )

·
Π0

2D(ωt, ωτ, L)

Πideal
exit (L)

(33)

where Πideal
exit (L) = ` in the rectangular BOXCARS geometry.

To calculate the attenuated 2DFT spectrum starting from eq 25, the factor of

exp{− Im[k̂0
s (−ωa, ωb, ωc) · ez]L} ≈ exp[−ωt κ(ωt )`/c] in eq 16 is incorporated into the propaga-

tion function, resulting in a form that is specific to the attenuated 2DFT spectrum:

Π
−
2D(ωt, ωτ, L) =

L
n̂zs (ωt )

exp [−2ωτκ(ωτ)`/c] − 1
−2ωτκ(ωτ)`/c

· exp [−2ωt κ(ωt )`/c]

(34)

The modified propagation function in eq 34, when applied to the analytic 2DFT signal calculated using

eq 25, yields

Ŝ −2D(ωt, ωτ; T ) ≈ Ŝ ideal
2D (ωt, ωτ,T )

·
Π−2D(ωt, ωτ, L)

Πideal
exit (L)

(35)

The analytic expressions in eqs 33 and 35 are useful for comparison to numerical calculations of Ŝ 0
2D

and Ŝ −2D respectively, which should match the analytic results for the limit in which both T � T2 and

2T1 � T2. While likely more stringent than necessary, these two conditions are sufficient to guarantee
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that Ŝ2D(ωt, ωτ; T ) ∝
∫ ∞
−∞

Ŝ2D(ωt, ωτ; T ) dT . By the projection–slice theorem,81,84 this proportionality to

the waiting-time–averaged 2DFT spectrum guarantees that a 2DFT spectrum has ωT = |ωa − ωb | = 0,

implying ωa = ωb and, consequently, ωc = ωt . In this circumstance, the analytic form of the propagation

function in eqs 31 and 34 must be valid for any relaxation model. These two conditions imply both that

the waiting time must be long enough that all dynamics in T are finished (T � T2) and that the lifetime

is sufficiently long that incoherent population relaxation completely dominates the time-averaged 2DFT

spectrum (2T1 � T2).

Computation

Methods

The program used to calculate 2DFT spectra was written in Fortran 95/2003 and compiled using the

Intel Visual Fortran Compiler Professional 11.1.070.85 This program was executed on a computer with

a 3.2 GHz Core i7 processor and 24 GB of random access memory (RAM) running 64-bit Windows 7

Professional. The calculations utilized a grid size of 10243, where each grid point is a complex, double-

precision number, requiring a total of ∼17 GB of RAM and ∼8 min of execution time. Complex, double-

precision Fourier transforms were accomplished using the DFFT3B, DFFT3F, DFFT2B, and DFFT2F

subroutines of the International Mathematics and Statistics Library (IMSL) Fortran Numerical Library

version 6.0.86

Approximations

While the effects of finite-bandwidth excitation pulses are easily handled in the 3DFT approach, excita-

tion pulses have been approximated as delta-function pulses. This is a good approximation for this study

since the bandwidth of the excitation pulses (∆ωFW H M/2πc ≈ 126 cm−1) is 250 times greater than the

linewidth of the D2 transition (∆ωFW H M/2πc ≈ 0.5 cm−1). The effects of this approximation are even

smaller than the effects of neglecting the directional filtering distortions discussed previously. Over the

frequency range shown, the maximum fractional error in the linear susceptibility from the rotating-wave

approximation28 is less than 10−4, so rotating-wave errors in the 2DFT spectrum are expected to be neg-
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ligible. The expressions for testing the validity of the 3DFT approach developed by Yetzbacher et al. 13

indicate that the conditions of the experiment by Li et al. 57 satisfy the essential assumptions implicit in

the 3DFT theory with one exception: significant error arises from the assumption that excitation beams

have complete transverse overlap, as will be discussed below.

Estimation of Convergence

To characterize the error associated with using a discrete and finite-size grid in these calculations, four

types of convergence tests were performed. First, the effect of using a grid with a finite time range was

explored by comparing two Ŝ −2D absolute value 2DFT spectra calculated using different grid sizes (5123 vs

10243) with identical time domain sampling intervals. The two compared spectra have the same frequency

range because they have the same time step size, but have frequency step sizes differing by a factor of 2

due to their different time ranges. This type of comparison is used to expose problems associated with

finite frequency resolution and, equivalently, a finite time range. The percent difference between 2DFT

spectra calculated on the two grid sizes is determined by subtracting the absolute value spectra at common

(ωτ, ωt ) grid points and then dividing by the global maximum of the 2DFT spectrum. For all calculations

reported here, the difference between these absolute value spectra at any point is less than 1.5% of the

maximum. This error appears as ringing along the 2D diagonal.

Second, the effect of using a grid of discrete time points was tested by comparing two Ŝ −2D absolute

value 2DFT spectra, one on a 10243 grid and the other on a 5123 grid with double the time step size.

Since both spectra have the same time range, they have an identical frequency step size. However, the

spectra have different time step sizes, resulting in different frequency ranges. This comparison is meant

to uncover errors related to the finite frequency range and, equivalently, the finite time resolution of the

calculation. In order to compare the two spectra, the spectrum calculated using a 10243 grid is cropped to

the same frequency range as the spectrum calculated on a 5123 grid. For all calculations reported here, the

difference between these absolute value spectra at any point is less than 4.5% of the maximum. Consistent

with eq 25, this error arises from the imaginary (refractive) peak shape at the edge of the grid as discussed

in Comparison to Analytic Theory.

Third, the deviation caused by using a long excited state population lifetime (T1 = 30 ns in most
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simulations) compared to the time range of the 3DFT grid (∼0.87 ns in most simulations) has been char-

acterized. To adequately resolve sharp features in the core of the 2D peak shape, which are dominated by

fast dephasing dynamics (.20 ps for the D2 transition of Rb under the conditions of interest here57) and

propagation distortions, a grid step size of 850 fs was used in most of the simulations. To quantify the effect

of time domain truncation of slow excited state population relation dynamics, a 2DFT spectrum simulated

directly at T1 = 30 ns was compared to a 2DFT spectrum that was point-by-point linearly extrapolated, as a

function of 1/T1, from T1 = 120 ps and T1 = 240 ps to T1 = 30 ns. In both cases, the spectra were absolute

value time-referenced rephasing 2DFT spectra (|RŜ t
2D |) with ODmax = 1.14; grid time step, 850 fs; grid

size, 10243; dephasing rate, Γ/2πc = 0.265 cm−1; center frequency, ωeg/2πc = 12816.7 cm−1; mixing

time, T = 850 fs; sample thickness, L = 500 µm; and crossing angles, α = β = 4.84°. The maximum

absolute deviation between the 2DFT spectrum extrapolated to T1 = 30 ns from untruncated time domain

data and that calculated directly at T1 = 30 ns is less than 0.5% of the maximum.

Fourth, the effect of using a longer waiting time (T = 850 fs in most simulations) than that of the

experiment (T = 200 fs) was determined. Since the nonlinear polarization is calculated on a 3D grid

of evenly spaced time/frequency points, choice of waiting times is restricted to integer multiples of the

grid time step size. To quantify the difference between simulations at the experimental waiting time

versus a longer waiting time, 2DFT spectra simulated at T = 200 fs and a grid time step of 200 fs were

compared to 2DFT spectra simulated at T = 850 fs and a grid time step of 850 fs. In both cases, the

spectra were absolute value time-referenced rephasing 2DFT spectra (|RŜ t
2D |) with ODmax = 1.14; grid

size, 10243; dephasing rate, Γ/2πc = 0.265 cm−1; excited state lifetime, T1 = 30 ns; center frequency,

ωeg/2πc = 12816.7 cm−1; sample thickness, L = 500 µm; and crossing angles, α = β = 4.84°. The

maximum absolute deviation between these 2DFT spectra is less than 3.6%. This difference is largely

the result of the two 2DFT spectra having dissimilar frequency ranges and is consequently isolated to the

wings of the 2D peak shape. Deviations within the core of the peak are less than 1.5% of the maximum.

Comparison to Analytic Theory

The convergence tests above quantify precision deficiencies of the second most converged calculation.

Comparisons to analytic theory are used to assess the absolute accuracy of the most converged calcula-

28



 

 
(a)

−10

0

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

−10

0

10

(c)

(ωt −ωeg)/2πc (cm−1)

(ω
τ
+

ω
eg
)/
2
π
c
(c
m

−
1 )

×10

−10 0 10

−10

0

10

Figure 1: Absolute value 2DFT relaxation spectra for Bloch model in the Ŝ −2D representation (a) calcu-
lated using the analytic form of the 2DFT spectrum from eq 25 in eq 35 and (b) calculated numerically
using eq 16 in eqs 9–11. The scaled difference between spectra in (a) and (b), calculated according
to |(a) − (b) | × 10, is presented in (c). Peak optical density, ODmax = 1; grid time step, 850 fs; grid
size, 10243; dephasing rate, Γ/2πc = 0.265 cm−1; excite state lifetime, T1 = 30 ns; center frequency,
ωeg/2πc = 12816.7 cm−1; waiting time, T = 100.3 ps; sample thickness, L = 500 µm; and crossing
angles, α = β = 4.84°. There are 19 contours, evenly spaced every 5% from 5% to 95%, in (a) and (b) but
only 8 contours, spaced every 0.5%, in (c). The dotted line indicates the diagonal: ωt = −ωτ. For ease of
comparison, the limits for both frequency axes correspond exactly to those of Figure 4 in ref 57.
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tions in specific limits. The analytic form of the impulsive Bloch 2DFT spectrum in eq 25 can be used to

calculate spectra for comparison to spectra calculated using the 3DFT method with OD = 0. This com-

parison can serve as a test that the 3DFT calculation accurately reproduces the peak shape of the Bloch

2DFT spectrum when propagation distortions are absent.

Analytic 2DFT spectra that include propagation distortions have also been derived above for checking

numerical results. The 2D form of the propagation function presented in eq 34 is valid in the limit that

T � T2 and 2T1 � T2. The 2D propagation function (eq 34) can be multiplied by the analytic impulsive

Bloch 2DFT spectrum (eq 25) to produce an analytic Ŝ −2D spectrum (eq 35) for comparison to Ŝ −2D spectra

calculated numerically using the 3DFT method. The results of this comparison are shown in Figure 1 for

ODmax = 1. In contrast to the single peak of the ideal absolute value 2DFT relaxation spectrum calculated

from eq 25, both spectra have a vertical gash from absorption at ωt = ωeg, which generates peak splitting.

The primary difference between the analytic Ŝ −2D spectrum in Figure 1a and the numerical Ŝ −2D spectrum

in Figure 1b is that the wings of the lineshape in the ωt dimension of the numerical spectrum are lower

than those of the analytic spectrum. This effect becomes more pronounced with increasing |ωt −ωeg | and

reaches a value of 4.2% at the edge of the plot.

Given that the majority of the spectral amplitude in the wings of a Bloch lineshape is in the imaginary

part, which contains information regarding refractive effects that are dominated by short-time dynamics,

most of the disagreement between the analytic and numerical spectra in Figure 1 is confined to the imagi-

nary part of the spectrum. The real parts of the numerical and analytic Ŝ −2D spectra differ by less than 0.7%

for ODmax = 1.

The differences in Figure 1 are an artifact of the Fourier-transform since they occur near the edges of

the 2DFT grid where the signal amplitudes must be equal due to the cyclic nature of the conjugate axis in

the FFT algorithm (see Figure 11.4 of ref 81). Since the FFT of a real-valued time domain signal obeys

Ŝ(−ω) = Ŝ∗(ω), the imaginary part of the frequency domain spectrum has odd symmetry and, therefore,

must tend towards zero at the edge of the frequency domain grid. The magnitude of this artifact will be

negligible in the limit that the frequency range of the 3DFT grid is much greater than the linewidth of the

spectrum.

Motivated by the disagreement between experiment and simulation with regard to the magnitude of

absorptive distortions at a given optical density, a comparison between 2D propagation function “spectra”
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Figure 2: The 2D propagation function, |Π−2D(ωt, ωτ, L)/` |, for the Ŝ −2D representation. Panel (a) is cal-
culated with the Bloch model from the ratio of absolute value numerical 2DFT spectra given by eq 36.
The absolute value of the difference between the numerical propagation function in (a) and the abso-
lute value of the analytic form given by eq 34 is multiplied by 100 in panel (b). Peak optical density,
ODmax = 1; grid time step, 850 fs; grid size, 10243; dephasing rate, Γ/2πc = 0.265 cm−1; dephasing
time, T2 (= 1/Γ) = 20 ps; excited state lifetime, T1 = 30 ns; center frequency, ωeg/2πc = 12816.7 cm−1;
waiting time, T = 100.3 ps; sample thickness, L = 500 µm; and crossing angles, α = β = 4.84°. There
are 100 color levels, meaning that each color represents a 1% range. There are 9 contours in panel (a),
evenly spaced every 10% from 10% to 90%. The dotted line indicates the diagonal: ωt = −ωτ.
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calculated by the 3DFT method and those calculated from a simple analytic expression was undertaken

to verify, at least in the incoherent limit, that the 3DFT method correctly accounts for the magnitude of

signal attenuation. When 2T1 � T2 and T � T2, signal generation is restricted to cases where ωa = ωb.

In this limit, the ratio Ŝ −2D/Ŝ ideal
2D approaches the incoherent propagation function:

lim
ωa→ωb

Ŝ −2D(ωt, ωτ; T )

Ŝ ideal
2D (ωt, ωτ; T )

=
Π−2D(ωt, ωτ, L)

Πideal
exit (L)

=
Π−2D(ωt, ωτ, L)

`

(36)

In the incoherent limit, the ratio of complex valued 2DFT spectra in eq 36 becomes equal to the ratio of

absolute value 2DFT spectra if the phase introduced by n̂zs can be neglected over the entire frequency

range in eq 34. Figure 2a shows the 2D version of the propagation function calculated using the ratio of

absolute value numerical 2DFT spectra indicated by the left-hand side of eq 36, where Ŝ ideal
2D (ωt, ωτ; T )

is calculated as Ŝ 0
2D(ωt, ωτ; T ) with ODmax = 0 (see eq 13). A plot of the ratio of absolute value analytic

propagation functions indicated by the right-hand side of eq 36 is almost visually identical to Figure 2a.

Figure 2b depicts the difference (multiplied by a factor of 100) between the numerical 2D propagation

function (ratio of absolute value 2DFT spectra indicated by the left-hand side of eq 36) and the analytic

2D propagation function in the incoherent limit, Π−2D/` (ratio of absolute value 2D propagation functions

indicated by the right-hand side of eq 36), where Π−2D is calculated using eq 34. Given that T1 = 1500T2,

a converged accuracy limit for this comparison is likely set by the use of T ≈ 5T2 in Figure 2a.

For frequencies where the distorted 2DFT signal (| Ŝ −2D |) is above the 5% level, the difference shown

in Figure 2b never exceeds 0.07%. At the extremes of the diagonal, a ringing artifact of the discrete

Fourier-transform is visible with an amplitude of up to ∼0.6%. Ringing, which is more pronounced along

the diagonal than the antidiagonal in Figure 2c, only appears in the numerical 2D propagation function

(eq 36) and only at frequencies far from resonance, where the artifact is non-negligible compared to the

amplitude of the signal. The difference has a local minimum along each dimension at |ω | = ωeg. The

approximate incoherent propagation function in eq 60 of ref 12 generates larger, numerically significant,

disagreements of 0.3% for signals above the 5% level; the improved agreement here depends upon the

better approximation of eq 31 for the incoherent propagation function.

Equation 36 can simplified for the case −ωτ = ωt = ωeg given that n̂zs = n̂z under these conditions.
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This yields the attenuation at peak center for Ŝ −2D 2DFT spectra in the incoherent limit,

���Π
−
2D(ωeg, ωeg, L)���

���Π
ideal
exit (L)���

=
γ

���n̂z (ωeg)���

1 − 10−A(ωeg )/γ

ln(10) A(ωeg)/γ
10−A(ωeg )/γ (37)

where A(ωeg) = ODmax is the decadic absorbance (optical density) of the sample at normal incidence

and γ = (1 − sin2 α − sin2 β)1/2 accounts for the additional path length at oblique incidence (see eq 24).

When at least one of −ωτ = ωt (i.e. ωa = ωb = ωc) or β = 0 is true, using n̂z in place of n̂zs is exact,

as is the case in eq 37. The single-point attenuation in eq 37 can be readily calculated by hand to check

a more complicated 3DFT code. For an optical density of 1, the ratio | Ŝ −2D |/|Ŝ
ideal
2D | = |Π−2D |/|Π

ideal
exit | at

the peak center in Figure 2b (0.03828 ± 0.00003) is only 0.11% higher than the attenuation predicted by

eq 37 using the same parameters (0.03824), a discrepancy attributable to ringing. Inverting the numerical

ratio of |Π−2D |/|Π
ideal
exit | = 0.03828 using eq 37 with n̂z (ωeg) = 0.9929 + 0.0003i and γ = 0.9929 yields

ODmax = 0.9997± 0.0003 (which agrees within error with ODmax = 1). The attenuation factors appearing

in eqs 36 and 37 have been experimentally tested to 10% accuracy in frequency-integrated pump–probe

experiments for peak optical densities of up to 1 (see the absorption coefficient–dependent terms in eqs 24

and 26 of ref 15).

Calculations by the 3DFT method quantitatively reproduce the Bloch lineshape of an undistorted 2DFT

spectrum.13 The comparison in Figure 1 shows that the 3DFT method reproduces propagation distorted

2DFT spectra in the incoherent limit (waiting time T much greater than the dephasing time T2), with the

largest numerical errors in the far wings due to the finite grid. The comparison in Figure 2 between the

incoherent 2D propagation function calculated by the 3DFT program (where grid errors largely cancel due

to the ratio in eq 36) and that calculated using the analytic expression in eq 34 demonstrates quantitative

agreement, matching in signal attenuation over the entire range of relevant frequencies at a peak optical

density of 1. This agreement with experimentally tested expressions confirms that the 3DFT program

properly accounts for the magnitude of propagation distortions given the sample’s optical density. This

rules out many possible errors in the program’s code as causes of disagreement between experiment and

simulation. This comparison does not ensure the accuracy of coherent propagation effects at waiting times

that are not long compared to the total dephasing time (i.e. T 4 T2).
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Results

Line broadening coefficients reported from frequency domain experiments58,87–91 at Ar buffer gas pres-

sures from 0 atm to 100 atm indicate that at the buffer gas and Rb vapor pressures deduced from the

experimental temperatures,57 line broadening is dominated by non-resonant, binary Rb–buffer collisions.

This, along with the experimental observation of a Lorentzian absorption lineshape57 and Bloch model

simulations of prior time-resolved experiments31,60 on alkali metal vapors, motivated use of an optical

Bloch model that describes the lineshape of the Rb D2 transition with a single, homogeneous broadening

timescale, T2. This timescale enters the Bloch model as the dipole decay rate (or total dephasing rate)

Γ = 1/T2 in the exponential decay of dipole oscillations µ(t) = µ0 sin(ωegt) exp(−Γt). On the other hand,

in studies of the potassium vapor at atomic densities 3 to 5 orders of magnitude higher than the present

work, a stochastic model is used to treat frequency memory in resonance broadened lineshapes.92–94 A

total dephasing time T2 = 20 ps, corresponding to a dipole decay rate of Γ = 50 rad/ns and a Lorentzian

absorption lineshape91 with FWHM = Γ/(πc) = 0.53 cm−1, was used for the calculations presented here.

All plots of 2DFT spectra presented here have been peak normalized. This normalization means that com-

parison of different spectra based on apparent integrated intensity or peak height is not possible since these

properties are not indicated by the plots even though the underlying calculations contain such information.

When varying the optical density of simulated 2DFT spectra, only the strength of the linear response, the

source of certain propagation distortions, is modified. The nonlinear response is held constant, meaning

that changes in optical density do not affect the strength of signal generation within the sample. Experi-

mentally, this would require a sample in which the nonlinear response comes from a different chromophore

than the linear response so that they could be varied independently.

The time-referenced 2DFT rephasing spectra in Figure 3 illustrate the effects of increasing OD and

can be compared to the experimental spectra in Figure 3 of ref 57, but have one difference: T = 500 fs in

the calculation vs. T = 200 fs in the experiment. To ease comparison, the limits for both frequency axes

in Figure 3 (and in most 2DFT spectra presented here) exactly match those of Figure 4 in ref 57, as can

be readily seen from the absolute cyclic frequencies marked at the top of Figure 3. The undistorted 2DFT

spectrum in Figure 3a exhibits a star-shaped 2D Lorentzian lineshape which is symmetric in width between

the ωτ and ωt dimensions, both of which directly reflect the underlying dipole decay rate (see eq 28). This
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Figure 3: Absolute value rephasing 2DFT
spectra (RŜ t

2D representation) for Bloch model
with peak optical densities of (a) 0, (b) 0.14,
(c) 0.59, and (d) 1.14. grid time step, 500 fs;
grid size, 10243; dephasing rate, Γ/2πc =

0.265 cm−1; excited state lifetime, T1 = 30 ns;
center frequency, ωeg/2πc = 12816.7 cm−1;
waiting time, T = 500 fs; sample thickness,
L = 500 µm; and crossing angles, α = β =

4.84°. There are 19 contours, evenly spaced
every 5% from 5% to 95%. The dotted line in-
dicates the diagonal: ωt = −ωτ. The inset in
(d) is an expanded view of the peak center. The
cyclic frequency axis markers and labels at the
top show that the limits for both frequency axes
are the same as those of Figure 4 in ref 57.
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symmetry is a property of absolute value rephasing 2DFT spectra and is not observed in absolute value

2DFT relaxation spectra, which include both positive and negative τ values and are naturally narrower

in ωτ. While increasing the optical density in the subsequent spectra of Figure 3 causes the lineshape

to broaden in both dimensions, the width in ωt increases at a greater rate than that in ωτ. The resulting

lineshape asymmetry, barely visible at a peak optical density of 0.14, is pronounced by the time the optical

density reaches 0.59. Although the ODmax = 0.14 spectrum is arguably in agreement with the undistorted

spectrum, by ODmax = 0.59 this is clearly not the case as the lineshape in Figure 3c has been broadened

considerably and also shows signs of peak splitting due to an absorptive distortion at ωt ≈ ωeg. The

ODmax = 1.14 spectrum is broader still and its peak is split in the ωt dimension down to the 70% contour.

Looking closely at the line center in the inset of Figure 3d, there is a subtle clockwise twisting of the

lineshape, whereby the two halves of the split peak have rotated towards the diagonal and are no longer

displaced from each other just along ωt , but also slightly along ωτ. This may arise from an effect known

as “phase-twist”4,14 which, for an undistorted homogeneous optical Bloch lineshape, occurs only at T = 0

and is the result of mixing between the absorptive and dispersive components of the lineshape.82

Lifetime and Waiting Time Dependence of Propagation Distortions

The 2D lineshape of an optically thin sample with Bloch model dynamics has no waiting time (T) depen-

dence outside of pulse overlap due to the lack of frequency memory. However, samples with finite optical

density distort their excitation pulses, spreading them out in time in a frequency-dependent way, such that

time intervals between field–matter interactions within the sample (and even their time-ordering) are not

necessarily the same as for the excitation pulses at the sample entrance, introducing distortions of the 2D

lineshape that are dependent on both the waiting time (T) and the excited state lifetime (T1). These coher-

ent transient effects are most pronounced when T and T1 are on the order of T2 such that a non-negligible

component of the linear free-induction decay from pulses a and b persists through the waiting period until

the arrival of pulse c. These additional coherent transient propagation distortions can be shown to vanish

so that only incoherent propagation distortions remain at long T (i.e. T � T2) in the limit that 2T1 � T2,

at which point lifetime dephasing is no longer competitive with pure dephasing.

An unintuitive consequence of this phenomenon is that the signal at off-resonant frequencies can be
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Figure 4: Absolute value rephasing 2DFT spectra (RŜ t
2D representation) for Bloch model with waiting

times a) T = 0.85 ps, b) T = 8.5 ps, and c) T = 85 ps. Peak optical density, ODmax = 1; grid time
step, 850 fs; grid size, 10243; dephasing rate, Γ/2πc = 0.265 cm−1; dephasing time, T2 (= 1/Γ) = 20 ps;
excited state lifetime, T1 = 240 ps; center frequency, ωeg/2πc = 12816.7 cm−1; sample thickness, L =

500 µm; and crossing angles, α = β = 4.84°. There are 19 contours, evenly spaced every 5% from 5% to
95%. The dotted line indicates the diagonal: ωt = −ωτ. Dotted grid lines mark 0.5 cm−1 increments.
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Figure 5: Absolute value rephasing 2DFT spectra (RŜ t
2D representation) for Bloch model with excited

state lifetimes a) T1 = 30 ps, b) T1 = 60 ps, and c) T1 = 240 ps, all at waiting time T = 0.85 ps. Peak
optical density, ODmax = 1; grid time step, 850 fs; grid size, 10243; dephasing rate, Γ/2πc = 0.265 cm−1;
dephasing time, T2 (= 1/Γ) = 20 ps; center frequency, ωeg/2πc = 12816.7 cm−1; sample thickness, L =

500 µm; and crossing angles, α = β = 4.84°. There are 19 contours, evenly spaced every 5% from 5% to
95%. The dotted line indicates the diagonal: ωt = −ωτ. Dotted grid lines mark 0.5 cm−1 increments.
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absolutely larger for a sample with a larger linear attenuation compared to a sample with a smaller linear

attenuation but the same nonlinear response. As long as the excited state lifetime and the waiting time

are of similar magnitudes, the wings of a distorted 2DFT spectrum can be enhanced compared to an

undistorted 2DFT spectrum.

Figure 4 illustrates the waiting time (T) dependence of the absolute value rephasing 2DFT spectra for

an optically thick sample at a fixed value of T1. Three distinct effects can be noted. First, the diagonal

twisting of the split peak decreases with increasing T . This is expected since phase-twist occurs during

pulse overlap (i.e. from T = 0 until T � T2). Second, the lineshape subtly narrows along the ωt dimension

with increasing T , a signature which is most apparent in the lower contours. Third, and perhaps most

interesting, the depth of the absorptive distortion at ωt ≈ ωeg decreases as T increases. Going from

T = 0.85 ps to T = 85 ps, the valley at ωt ≈ ωeg becomes shallower by about one 5% contour. This

suggests that the severity of absorptive distortions at line center might be reduced by measuring 2DFT

spectra at longer T where the trailing FID from pulses a and b is no longer present.

The excited state lifetime (T1) dependence of 2DFT spectra at T � T2 is presented in Figure 5. The

same three effects observed in Figure 4 are also seen here. However, the scaling of these features with T1 is

the inverse of the scaling with T ; as T1 increases, the ωt width increases slightly, peak twisting increases,

and the absorptive distortion at ωt ≈ ωeg deepens. Enhancement of the peak splitting is more pronounced

for variation of T1 in Figure 5, where the splitting deepens by 3 contour levels, than for variation of T in

Figure 4, where the splitting loses 1 contour level of depth.

Varying Beam Overlap Through Sample

The decision to include the effects of varying beam overlap was influenced by two observations in compar-

ing the calculations to the experimental spectra57 at OD > 0.5. First, the aspect ratio of the 2D lineshape

in the experimental spectra, represented by the ratio of widths ∆ωt/∆ωτ, was larger than what could be

produced in the calculation by varying OD and Γ. Second, the larger depth of the absorptive distortion

along the line ωt ≈ ωeg compared to that along the line ωτ ≈ −ωeg in the experimental spectra was indica-

tive of disproportionate attenuation in theωt dimension compared to theωτ dimension. Although Figure 2

shows that the propagation function already has such an asymmetry, the experimental spectra57 have an
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Figure 6: Depiction of beam overlap varying through the sample. Black vertical lines represent the en-

trance (left) and exit (right) windows. Laser beams are denoted by red parallelograms and only two beams

are shown for simplicity. The experimental beam overlap varies continuously between perfect overlap and

no overlap as a function of propagation depth into the sample. To gain insight into the qualitative effects to

be expected from varying beam overlap, the sample is crudely divided into a region of perfect overlap (A)

followed by a region of no overlap (B). In Region A (between the entrance window and the blue dashed

line), where excitation beams are well overlapped, the nonlinear signal is generated and propagated over

the length Lnl . In Region B (between the blue dashed line and the exit window), the nonlinear signal gen-

erated in Region A is propagated according to the linear optical properties of the sample over the length

Llsp without any further nonlinear signal generation.

even larger difference between the two dimensions.

Varying beam overlap will occur to some extent in any 2DFT experiment involving non-collinear

excitation beams with a finite focal spot size and sample path length. If the focal points of the excitation

beams spatially coincide, then the beams will completely overlap only in the plane parallel to the windows

that contains the focal point. Assuming that the beams cross at the center of the sample cell and that the

sample cell length is much shorter than the Rayleigh range,27 the beam overlap for Gaussian beams with

waist w0 crossing at angle 2α is reduced by a factor of exp[−(tan(α)L/2)2/w2
0
] at the windows. This effect

is illustrated in Figure 6, where only two beams are shown for simplicity. Since the focal spot in Figure 6

is nearer to the entrance of the sample cell, the beams are well overlapped in the front portion of the cell,

between the entrance window and the blue dashed line, but are poorly overlapped towards the back of the

cell, between the blue dashed line and the exit window.

If the position of the sample cell with respect to the common focal point of the excitation beams is

adjusted to maximize the intensity of the radiated signal, the focal point will lie nearer to the entrance

window for an optically thick sample due to a trade-off between attenuation of all three excitation beams

before signal generation versus attenuation of the one signal beam after signal generation. Therefore,

we approximate the effect of varying beam overlap as perfect beam overlap in some front portion of the

40



sample cell and no beam overlap in the remainder as would be expected experimentally when sample cell

placement is optimized by maximizing integrated signal intensity. In the crude approximation used here

to examine the qualitative effects of varying beam overlap, the fraction of the sample length over which

nonlinear signal is generated, given by

fnl =
Lnl

Lnl + Llsp
(38)

can be varied, but the total sample length L = Lnl + Llsp is fixed to the thickness of the sample cell.

Since pulse c is linearly propagated before scattering off the grating produced by pulses a and b, the

generated signal at each depth is imprinted with this distortion of pulse c before linearly propagating

through the remainder of the sample cell.12 The result is that signal generated at any point in the sample

appears as if it were generated at the sample entrance and linearly propagated over the total sample length

(as implied by the final exponential of eq 5) such that shape distortions of the 2DFT spectrum along the ωt

dimension are insensitive to changes in the length and location of the signal generation region. However,

the linear propagation of pulses a and b prior to signal generation and, consequently, the propagation

distortions along the ωτ dimension are sensitive to such changes, increasing in magnitude as the signal

generation region shrinks and moves towards the sample exit.

Implementation in calculation

When implementing this approximate treatment of varying beam overlap, the propagation function Π for

Region A should use Lnl in place of L and be multiplied by an additional factor of

exp
{
i

[
k̂0

d (ωt ) · ez
]

Llsp
}

(39)

to incorporate linear propagation of the signal field in Region B. In eq 39, k̂0
d (ω) is the central wave vector

of the detection beam in the sample and Llsp is the length of the region in which the signal field is linearly

propagated following the nonlinear signal generation region. In addition to the expression in eq 39, an

expression is needed that describes the linear propagation of the detection field through region B. This

expression is specific to the representation of the spectrum to which it is applied and, therefore, will be

defined below for each representation. The linear propagation term in eq 39 and a linear phase evolution
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term for the detection field are applied to the FID-referenced representation to yield the varying-beam-

overlap FID-referenced rephasing 2DFT spectrum:

RŜ 0,VBO
2D (ωt, ωτ; T ) = RŜ 0

2D(ωt, ωτ; T )

· exp
{
i

[
k̂0

d (ωt ) · ez
]

Llsp
}

· exp
{
−i Re

[
k̂0

d (ωt ) · ez
]

Llsp
}

= RŜ 0
2D(ωt, ωτ; T )

· exp
{
− Im

[
k̂0

d (ωt ) · ez
]

Llsp
}

(40)

For small angles of incidence and κ2 � n2, eq 40 can be approximated as

RŜ 0,VBO
2D (ωt, ωτ; T ) ≈ RŜ 0

2D(ωt, ωτ; T )

· exp
[
−ωt κ(ωt )`lsp/c

] (41)

where `lsp = Llsp/
(
u · ez

)
is the additional path length for linear propagation of the detection pulse with

unit propagation vector u through the linear signal propagation length, Llsp. The superscript “VBO”

stands for varying beam overlap and indicates that the 2DFT spectrum includes the effects of varying

beam overlap distortions. Since the signal and detection fields accrue the same amount of phase when

propagating through the linear signal propagation length (Llsp), the phase propagation term on line 3 of

eq 40 cancels the oppositely-signed phase propagation contained within the complex exponential term on

line 2 of eq 40. This leaves only the attenuation of the signal field over the linear signal propagation length,

which is represented by the real-valued exponential terms on the last line of eq 40 (and eq 41).

This distortion can also be applied to the time-referenced representation to yield

RŜ t,VBO
2D (ωt, ωτ; T ) ≈ RŜ t

2D(ωt, ωτ; T )

· exp
{
iωt [n(ωt ) − nv] `lsp/c

}

· exp
[
−ωt κ(ωt )`lsp/c

]
(42)

which is valid for small angles of incidence and κ2 � n2 where n is the real part of the refractive index

of the sample and nv = 1 is the real-valued refractive index of vacuum. Eq 42 shows that physically,
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varying beam overlap introduces two components arising from propagation through Region B: a dispersive

component due to the difference in phase accrued by the signal field propagating through Llsp of sample

compared to vacuum (line 2) and an absorptive component due to attenuation of the signal field from

propagating through Llsp of sample (line 3).

Resulting calculated spectra

The spectra in Figure 7 demonstrate the effect of varying beam overlap where the signal is generated and

propagated from the entrance window to a distance Lnl into the sample, after which the signal is linearly

propagated through the remainder of the sample length (Llsp), as shown in Figure 6. For constant total

sample length L = Lnl + Llsp, the main result of varying beam overlap is to narrow the peak shape in the

ωτ dimension by eliminating some of the linear propagation distortion of pulses a and b. This helps to

increase the horizontal-to-vertical aspect ratio of the peak shape in the calculation, bringing it closer to that

of the experiment. Twisting of the split peak in Figure 7a is greatly diminished as fnl decreases and is no

longer visible by fnl = 0.2 (Figure 7c). Varying beam overlap also deepens the absorptive distortion along

the line ωt = ωeg except when T � T2. Since the signal field is always propagated over the entire sample

path length even when signal generation is confined to some front portion of the sample cell, except for

coherent effects which may be present when T is not very much greater than T2, changing fnl does not

alter the shape of the spectrum in the ωt dimension as long as the total sample length is held constant.

Excitation–Detection Transformation of Rephasing 2DFT Spectra

When applied to a distorted 2DFT relaxation spectrum (including both positive and negative τ), the

excitation–detection transformation13 to Ŝ ++
2D (eq 23) is capable of recovering the ideal (i.e. undistorted)

2DFT relaxation spectrum even for sample optical densities as high as 1. However, as illustrated in Fig-

ure 8, applying this transformation to a 2DFT rephasing spectrum does not recover the ideal rephasing

spectrum. Given the power and simplicity of the excitation–detection transformation, it is a major dis-

advantage of 2DFT rephasing spectra that this transformation cannot be directly utilized to obtain the

ideal 2DFT rephasing spectrum. The reason for this failure is that while the full τ range 2D time domain

signal has some components which are real-valued, even functions of τ, taking only the rephasing (pos-

43



 

 
(a)

−10

0

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

−10

0

10

(c)

(ωt −ωeg)/2πc (cm−1)

(ω
τ
+

ω
eg
)/
2
π
c
(c
m

−
1 )

−10 0 10

−10

0

10

383.8 384.2 384.6
ωt/2π (THz)

Figure 7: Absolute value rephasing 2DFT spectra (RŜ t,VBO
2D representation) for Bloch model where signal

is generated and propagated through the first (a) 100%, (b) 60%, and (c) 20% of the sample cell and
linearly propagated through the remainder. Peak optical density, ODmax = 1.14; grid time step, 850 fs; grid
size, 10243; dephasing rate, Γ/2πc = 0.265 cm−1; excited state lifetime, T1 = 240 ps; center frequency,
ωeg/2πc = 12816.7 cm−1; waiting time, T = 850 fs; total sample length, L = Lnl + Llsp = 500 µm; and
crossing angles, α = β = 4.84°. There are 19 contours, evenly spaced every 5% from 5% to 95%. The
dotted line indicates the diagonal: ωt = −ωτ. Both frequency axis limits match those of Figure 4 in ref
57.
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Figure 8: Absolute value 2DFT spectra for a Bloch model. (a) is RŜ ++
2D with ODmax = 1.14, (b) is RŜ t

2D
with ODmax = 0 (representing the ideal rephasing spectrum), and (c) is Ŝ t

2D with ODmax = 0 (representing
the ideal relaxation spectrum). Note the difference in axis scales when comparing to other figures. Grid
time step, 850 fs; grid size, 10243; dephasing rate, Γ/2πc = 0.265 cm−1; excited state lifetime, T1 = 30 ns;
center frequency, ωeg/2πc = 12816.7 cm−1; waiting time, T = 100.3 ps; sample thickness, L = 500 µm;
and crossing angles, α = β = 4.84°. There are 19 contours, evenly spaced every 5% from 5% to 95%.
The dotted line indicates the diagonal: ωt = −ωτ.
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itive τ) part of the spectrum makes half of the real-valued, even components appear to be real-valued,

odd functions of τ. When the signal is subsequently Fourier transformed with respect to τ, these arti-

ficial real-valued, odd components transform into imaginary-valued, odd components.81 As is apparent

in Figures 8b and 8c, the ideal rephasing spectrum contains signal at values of ωτ for which there is no

signal in the complete 2DFT relaxation spectrum, as illustrated by the lack of signal at the extremes of

ωτ in Figure 8c. When the 2DFT spectrum is truncated at τ = 0, signal amplitude is transfered from

near the line center, which is dominated by real components, to the far wings, which are dominated by

imaginary components. Thus the “excitation frequency” in the 2DFT rephasing spectrum does not reflect

the physical excitation frequency.

This rearranged signal is not amplified appropriately by the excitation–detection transformation since

it appears at the wrong excitation frequency. The result is that the RŜ ++
2D spectrum (Figure 8a) neither

matches the ideal rephasing spectrum (Figure 8b) nor the ideal relaxation spectrum (Figure 8c). While

all three spectra in Figure 8 have similar linewidths in the ωt dimension, when comparing the linewidths

in the ωτ dimension, the RŜ ++
2D spectrum is narrower than the ideal rephasing spectrum and yet wider

than the ideal relaxation spectrum. The overall narrowest lineshape is found in the ideal Ŝ t
2D spectrum in

Figure 8c, which—unlike the ideal rephasing spectrum—is easily recovered using the excitation–detection

transformation on Ŝ 0
2D with peak optical densities in excess of 1 as long as T � T2. At T = 100.3 ps, the

Ŝ ++
2D spectrum with ODmax = 1.14 and the same parameters as in Figure 8 (not shown) has contours which

are visually indistinguishable from the ideal Ŝ t
2D spectrum, the two differing by no more than 0.08%

(relative to the peak of the spectrum) at any point.

At shorter waiting times, the propagation function is no longer well described by a 2-dimensional

function. Despite this complication, the excitation–detection transformation still performs well when

applied to 2DFT relaxation spectra at short T .13 For example, at T = 850 fs, the Ŝ ++
2D spectrum with

ODmax = 1.14 (not shown) and the ideal Ŝ t
2D spectrum (which is identical to Figure 8c) differ by no more

than 13% (relative to the peak of the spectrum), the majority of the disagreement occurring near the line

center where T-dependent peak twist is most pronounced. In contrast, the same comparison done using

2DFT rephasing spectra results in a difference of up to 20% between a RŜ ++
2D spectrum with ODmax = 1.14

(not shown) and an “ideal” RŜ t
2D spectrum with ODmax = 0 (which is identical to Figure 8b). We note

that Ŝ ++
2D relaxation spectra may be Fourier transformed to the time domain and truncated to provide an
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indirect route to more nearly ideal 2DFT rephasing spectra.

Pseudo–Time Domain Filtering

When viewed in the pseudo–time domain (Fourier conjugate domains to ωt and ωτ), representations other

than RŜ t
2D and Ŝ t

2D have signal that appears to arrive at the sample exit before pulse c. The source of

this apparent “non-causal” signal is that the detection waves used in these other representations are not

true time references due to their propagating through the sample and taking on dispersion that is unac-

counted for. While the phase accrued by the detection wave from traversing the sample serves to cancel

that accrued by the signal, the variable conjugate to ωt has been “shuffled” so that it is no longer a true

time that can be used to discern the time-ordering of events. While the time ordering of and time delay

between pulses are experimentally controllable, the timing of electric field–chromophore interactions are

not. Therefore, in the case of an optically thick sample that reshapes the excitation, detection, and signal

fields, a given experimental pulse sequence with known pulse timings will have signal contributions from a

range of electric field–chromophore interaction intervals and orderings. The larger the temporal smearing

of excitation and detection pulses, the larger the range of electric field–chromophore interaction intervals

and orderings contributing to the signal. The term “pseudo–time domain” is invoked since this filter is ap-

plied along a time dimension that is referenced to an experimental pulse phase which—except for the case

of collinear beams, delta-function pulses, and a thin sample—does not specify a unique interaction time

and ordering. Therefore, these axes do not necessarily represent true elapsed time and are more properly

viewed as the Fourier conjugates of ωt and ωτ.

An interesting consequence of the loss of apparent causality in RŜ 0
2D is that it may also provide a

means to reduce absorptive distortions of the signal field, which are not accounted for in RŜ 0
2D. It was first

observed experimentally by Li et al. 57 that applying a pseudo–time domain filter that truncates the signal

before pulse c reduces the appearance of absorptive distortions in theωt dimension. The result of applying

such a filter to a calculated RŜ 0
2D spectrum is illustrated in Figure 9. To produce Figure 9c, an RŜ 0

2D

spectrum (Figure 9b) has been Fourier transformed into the pseudo–time domain, multiplied by θ(t), and

then Fourier transformed back into the frequency domain. This procedure is consistent with the processing

of experimental data illustrated in Figure 4c of ref 57. The filter narrows the spectrum in the ωt dimension
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Figure 9: The Bloch model RŜ 0
2D 2DFT spectrum Fourier transformed into the pseudo–time domain and

integrated over τ (a), with (dashed red) and without (solid blue) pseudo–time domain filtering. The re-
sulting absolute value rephasing 2DFT spectra, (b) without and (c) with pseudo–time domain filtering.
Plots (a) and (c) here are comparable to the experimental plots found in Figures 4a and 4c of ref 57, re-
spectively. Peak optical density, ODmax = 2.17; grid time step, 500 fs; grid size, 10243; dephasing rate,
Γ/2πc = 0.265 cm−1; excited state lifetime, T1 = 30 ns; center frequency, ωeg/2πc = 12816.7 cm−1;
waiting time, T = 500 fs; sample thickness, L = 500 µm; and crossing angles, α = β = 4.84°. There are
19 contours, evenly spaced every 5% from 5% to 95%. The dotted line indicates the diagonal: ωt = −ωτ.
Both frequency axes in (b) and (c) have scale limits that exactly match those of Figure 4 in ref 57.
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and greatly reduces the absorptive distortion at ωt ≈ ωeg without significantly altering other aspects of

the lineshape. While the validity of such a filtering procedure is not without question, its reduction of

absorptive distortions thought to arise from propagation of the signal is immediately apparent. However,

a better approach would be to measure the full 2DFT relaxation spectrum and perform the excitation–

detection transformation since this procedure most accurately recovers the undistorted spectrum, whose

linewidth and lineshape are physically reflective of the microscopic dipole dynamics.

Discussion

Although differences remain, the simulations qualitatively reproduce many different propagation distor-

tions of the experimental 2DFT spectra,57 including varying beam overlap distortions and peak shape

broadening, splitting, and twist. As mentioned in the Introduction, prior studies of Rb photophysics sug-

gest that the experimental 2DFT spectra will contain contributions with large waiting times (repetitive

excitation) and short lifetimes (alignment); both will quantitatively reduce peak splitting and twisting.

Additionally, the effects of pseudo–time domain filtering, in both t and τ dimensions, have been modeled

and the trade-offs of using these filters have been addressed. In this section, comparisons between simu-

lated and experimental 2DFT spectra will be further developed, highlighting both areas of agreement and

disagreement as well as suggesting experimental methods which minimize propagation distortions and

facilitate theoretical modeling. Finally, we discuss strategies for decoupling propagation distortions and

the nonlinear optical response of samples at high optical density.

Optical Density Effects

Although the range of linewidths observed when varying the optical density from 0.14 to 1.14 in Figure 3

of ref 57 is larger than the range for simulations in Figure 3, both show that increasing the optical density

of a sample increases its linewidth in addition to altering its lineshape. Both experimental and simulated

2DFT spectra exhibit the onset of peak splitting at ODmax = 0.59, the result of strong attenuation of

the signal near the resonant frequency (ωeg). Similar optical density–dependent peak shape broadening

was previously reported in simulations of absolute value rephasing 2DFT photon echo spectra at zero

waiting time by Keusters and Warren 10 and in simulations of complex-valued 2DFT relaxation spectra by
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Yetzbacher et al..13 At the highest optical density, subtle twisting of the split peak in Figure 3d is mirrored

in the experimental 2DFT spectrum. The experimental and simulated ODmax = 1.14 2DFT spectra also

share a significant absorptive distortion around ωt = ωeg, although the distortion is more pronounced in

the experiment, where it cuts all the way down through the 5% contour level (vs. the 70% contour of the

simulation). Discrepancies at high optical density will be discussed further below.

Splitting and twisting of the experimental 2D peak shape at high optical density were predicted by

Yetzbacher et al. 13 in a simulation of real (absorptive) 2DFT relaxation spectra, and the observation of

these features in absolute value rephasing 2DFT spectra of Rb vapor by Li et al. 57 largely motivated this

collaboration. The prior simulation (Figure 5 of ref 13) demonstrates subtle peak splitting and twist in

an Ŝ t
2D 2DFT spectrum for a homogeneous Bloch model in the lifetime-dephasing limit at a peak optical

density of 0.87. By comparison, the simulations presented in Figure 3 are in the pure-dephasing limit of

the homogeneous Bloch model where peak splitting and twist are more prominent for the same optical

density, an effect discussed further below. At optical densities beyond those explored by Yetzbacher et al.,

twisting is clearly visible near the center of the peak in Figures 3d, 5c, and 10, which have optical densities

ranging from 1 to 3.

Twisting requires a correlation between ωt and ωτ. Although the effect of phase-twist on the real

part of 2DFT spectra is similar in appearance to the peak shape twist observed here, phase-twist is only

observed during pulse overlap (i.e. when T ≈ 0) in ideal 2DFT spectra. However, with the inclusion of

propagation distortions, phase-twist could occur for larger waiting times due to the temporal overlap of

pulse c with the trailing FID of pulse a or b. Since phase-twist does not affect peak shapes in ideal absolute

value rephasing 2DFT spectra, for it to be responsible for the peak shape twist observed here would require

a complicated interaction between phase-twist and propagation distortions, a conclusion consistent with

the appearance of peak twist only at relatively high optical density.

Peak splitting is simpler to understand than peak twisting and is the result of resonant absorption

of pulses a and b (for splitting in the ωτ dimension) and pulse c and the signal (for splitting in the ωt

dimension). Just as with peak shape broadening,10,13 this distortion is more severe along the ωt dimension

than along ωτ, even in simulations where excitation beams are perfectly overlapped through the entire

sample length. This similarity between peak shape broadening and splitting highlights their common

source: preferential attenuation of the signal and excitation fields near −ωτ = ωt = ωeg.
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Waiting Time and Excited State Lifetime Dependence

If the radiated linear free-induction decay from pulses a and b is non-negligible at the end of the waiting

period (i.e. T 4 T2), propagation distortions will have 3-dimensional features that are not reducible to

lower dimensionality. Figures 4 and 5, although without analogs in the experimental work, demonstrate

this 3-dimensional nature of propagation distortions by varying the waiting time and excited state lifetime,

respectively, at a fixed total dephasing time.

In simulations of absolute value rephasing 2DFT correlation spectra for the homogeneous Bloch

model, Keusters and Warren 10 reported asymmetric peak shape broadening at a peak optical density of

0.32, with more severe broadening in the ωt dimension than in ωτ. In addition, they found that this asym-

metry was larger in the pure-dephasing limit (T2 = T∗2 ) than in the lifetime-dephasing limit (T2 = 2T1).

At a higher optical density (ODmax = 1) than studied by Keusters and Warren,10 our simulations show

that—in addition to peak shape broadening—peak shape twist and splitting are also affected by the ratio

T1:T2. Figure 5 explores intermediate excited state lifetimes compared to the pure- and lifetime-dephasing

limits simulated by Keusters and Warren.10 The trend we observe of larger peak shape broadening asym-

metry at a longer excited state lifetime is in agreement with what they report.10 Not visible in their work

at lower optical density is the trend of peak shape twist and splitting with the ratio T1:T2, both of which are

enhanced at longer excited state lifetimes in Figure 5. These spectra show that the ratio T1:T2 is important

for an optically dense sample since it controls the fraction of signal generated from interactions with the

incident fields of pulses a and b versus their radiated FID. For two pulse photon echoes at low optical den-

sity, Keusters and Warren 10 qualitatively explained the broadening as arising from destructive interference

between the nonlinear signal generated by interactions with the two main pulses and the signal generated

by interactions with the main part of one pulse and the trailing FID of the other pulse. A key aspect of

their discussion is that, for a resonant excitation pulse, the trailing FID is π out of phase and decays ex-

ponentially in time with the time constant T2. As a result, nonlinear signal involving one FID interaction

can be generated after the main pulse has passed and interfere destructively with the nonlinear signal from

interaction with the main part of the pulse, hastening decay of the nonlinear signal field and broadening

the spectrum. Discussion for four-wave mixing at low optical density should consider a trailing FID on

any one of the four waves (three excitation pulses plus signal). The effect of interacting with the trailing
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FID of the first pulse (a) is to broaden the 2DFT spectrum in the ωτ dimension and is likely to be similar

for two pulse and three pulse echoes, as is the effect of interacting with the trailing FID of the last pulse (c)

in broadening the 2DFT spectrum in the ωt dimension. Keusters and Warren 10 suggested that increases

in T1 allow greater contributions from interactions with the FID trailing the last pulse (c), distorting the

2DFT spectrum primarily along the ωt dimension. Here, similar coherent transient propagation effects

are probed at higher optical densities, where interactions with multiple trailing FIDs (each of which may

reflect multiple absorption–re-radiation cycles) must be simultaneously considered.

Figure 4 demonstrates that varying the waiting time has similar effects on the 2DFT spectrum as

varying the excited state lifetime. Shorter waiting times exhibit more severe peak shape twist, broadening,

and splitting. These simulated 2DFT spectra illustrate the importance of the ratio T :T2. The effect of

decreasing the waiting time T in Figure 4 is qualitatively similar to that of increasing the lifetime T1 in

Figure 5, suggesting a common origin. The qualitative explanation of the lifetime effect given by Keusters

and Warren 10 is consistent with the waiting time effect.

Given the complexity of propagation distortions in the coherent regime, it is beneficial from the point of

view of interpretation and modeling to first characterize the 2DFT spectrum at T � T2 before investigating

dynamics at shorter waiting times where coherent effects are present. Since simulating a 2DFT spectrum

at a long waiting time is typically a 2-dimensional problem, it is more straightforward in this limit to

separate microscopic dipole dynamics from propagation distortions and to determine the optical density

of the sample from its 2DFT spectrum.

Comparison to Experiment

The absorption lineshape broadening of a gas-phase chromophore can often be factored into homogeneous

Lorentzian components—such as non-resonant collisional (or pressure) broadening, resonant self broad-

ening, and lifetime broadening—and inhomogeneous Gaussian components, such as Doppler broadening.

Collisional broadening is caused by chromophore–buffer gas collisions while self broadening comes about

due to chromophore–chromophore collisions. Based on the literature values58,87,95,96 of these sources of

broadening for Rb in Ar buffer gas, collisional broadening dominates, accounting for greater than 98%

of the total linewidth under the conditions of the experiment.57 This prediction is based on using the ex-
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perimental Rb reservoir temperature to determine the vapor pressure97 and number density of Rb in the

sample cell. To estimate collisional broadening, it is assumed that 2 atm of Ar is loaded into the cell at

298 K and that its pressure increases as the cell is heated at constant volume, as in the experiment.57 It

should be noted that there is approximately ±20% variation between sources in the reported Rb vapor

pressure curve97–99 and collisional broadening coefficient.87,88,98,100–103 However, it appears that such un-

certainty is insufficient to account for the differences between the results of calculations and experimental

measurements.

At the lowest Rb reservoir temperature (90°C, ODmax = 0.14), the predicted Lorentzian FWHM

linewidth (1.14 cm−1) is more than three times larger than the linewidth estimated from the experimen-

tal57 absorption spectrum (∼0.35 cm−1). The disagreement persists at the highest Rb reservoir temperature

(160°C, ODmax = 1.14) where theory predicts a linewidth of 1.25 cm−1 while the experimental57 absorp-

tion spectrum indicates a linewidth of ∼0.51 cm−1. Owing to the inconsistency between the experimental

absorption spectra and these simple theoretic predictions of the lineshape, the dephasing rate used in these

simulations was set to Γ = 50 rad/ns = (2πc) 0.265 cm−1, corresponding to a FWHM of 0.53 cm−1, a

compromise between the experimental and predicted linewidth estimates.

In addition, with values for the linewidth,58,87,95,96 Rb number density,97 and integrated absorption

cross section,95 the absorption spectrum can be simulated for comparison to experiment. In order to

avoid sample cell uptake of Rb, the sample cell104 is made of a titanium body with sapphire105 windows.

Since this calculation relies on the experimentally reported Rb reservoir temperature to determine the Rb

number density in the optical path of the excitation beams, it will fail in the case of an inhomogeneous

temperature or Rb vapor distribution throughout the sample cell. While linear absorption measurements

are sensitive to the integrated number density of chromophores but not to chromophore density gradients,

2DFT spectra are sensitive to both, and the simulations of 2DFT spectra presented here assume a uniform

chromophore distribution in calculating propagation distortions. While the Beer-Lambert law predicts a

linear proportionality between optical density and concentration, the plot of experimental optical density

vs. concentration calculated from the Rb reservoir temperature is nonlinear and appears to saturate as Rb

number density increases. The experimental and calculated ODmax coincidentally agree to within 2% at

the highest Rb reservoir temperature. Predicted optical densities are a factor of 1.4 to 6.2 lower than

experimental ones at all except the highest experimental temperature.
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Furthermore, the extent of propagation distortions in the experimental 2DFT spectra implies optical

densities higher than measured in the experimental absorption spectra. This difference is evidenced by

simulated 2DFT spectra, calculated with optical densities taken from experimental linear absorption spec-

tra, having considerably milder propagation distortions than experimental 2DFT spectra at the same Rb

reservoir temperatures. As with the disagreement in linewidth, these inconsistencies cast doubt on the

reliability of the experimental absorption measurements as a source of ODmax and Γ for 2DFT spectra and

also suggest that the Rb reservoir temperature may not be directly indicative of the Rb vapor density in the

path of the excitation beams. These discrepancies may result from differences in beam power or buffer gas

pressure between measurements of the linear absorption spectrum and the 2DFT spectrum, which were

taken on different days.

Before comparing calculated and measured 2DFT spectra, it is important to mention two standard

checks on the experiment. First, the excitation pulse energy dependence of the nonlinear signal pulse

energy was measured at 5, 7.5, and 10 mW excitation beam power; the best fit exponent was 3.1 ± 0.4,

agreeing with a cubic power dependence within error. Second, the maximum single pulse excitation prob-

ability was estimated from the pulse area61 using the transition dipole for linearly polarized D2 excitation

(2.07 × 10−29 Cm). Using the measured pulse duration, pulse energy, and beam diameter, the calculated

excitation probability reaches 10% at the center of the beam just inside the sample entrance window. This

excitation probability would be consistent with the measured third-order power dependence of the signal

if relaxation were complete between pulse sequences, but the absence of known quenching channels sug-

gests some higher-order pumping processes not detected in the experimental power dependence. There

could be an unexpected quenching channel or optical pumping might effectively modify the steady-state

response,56,77 adding an uncertainty beyond that arising from uncertainties in optical density. As a result,

we decided to vary the optical density used in the simulations to best reproduce the propagation distortions

present in the experimental 2DFT spectra.

No asymmetry is present in undistorted (OD = 0) rephasing 2DFT spectra calculated using the ho-

mogeneous Bloch model, which produces a symmetric star-shaped peak in absolute value. At the lowest

experimental optical density (ODmax = 0.14), only minor propagation distortions are expected and sim-

ulations do not reproduce the asymmetry in linewidth between the ωτ and ωt dimensions observed in

the experiment. While absorptive distortions broaden lineshapes more severely along ωt than along ωτ,
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the 2:1 aspect ratio of the ODmax = 0.14 experimental 2DFT spectrum is only recovered in simulations at

ODmax > 1, by which point peak splitting becomes evident. Figures 4 and 5 indicate that peak splitting will

remain when signals expected from repetitive excitation [T = 13 ns, T = 26 ns, T = 39 ns, etc. with ex-

ponentially diminishing amplitudes exp(−T/T1) and population lifetime T1 = 27 ns] and alignment (with

alignment lifetime T1 = 20 ps and one-third the amplitude of the T = 200 fs 2DFT spectrum) are included.

Both the mean time between Rb–Ar collisions (τ̄ ≈ 10 ps) and the collision duration (τc ≈ 2 ps),107 es-

timated for the experimental conditions,57 are longer than the experimental waiting time (T = 200 fs).

This might lead one to doubt the applicability of the homogeneous Bloch model in favor of the Kubo

stochastic model or inhomogeneous Bloch model for this experiment. However, these models produce

either a symmetric star-shaped peak, in the case of the Bloch model in the homogeneous limit and the

Kubo stochastic model in the fast-modulation limit, or a diagonally-elongated peak that is roughly ellip-

tical, in the case of the Bloch model in the inhomogeneous limit and the Kubo stochastic model in the

slow-modulation limit. Calculations by Keusters and Warren 10 for a pure dephasing Bloch model indicate

that higher intensity pulses reduce propagation asymmetry at ODmax = 0.32 in the absolute value rephas-

ing 2DFT spectrum; this suggests that high intensity pulses would not cause asymmetry at low optical

density. On the experimental side, scattered light with intensity less than 2% of the peak shape maximum

lies along ωτ = −1.004ωt and is coincident with the diagonal within the likely uncertainty of this check

while potential ghost peaks are below 5% of the peak amplitude of the 2DFT spectrum. The origin of this

asymmetry in the 2D peak shape is not understood, perhaps indicating that the two-level homogeneous

Bloch model is not adequate to describe the nonlinear optical response of this system.

Comparing “reference around” experimental 2DFT spectra by Li et al. 57 to simulated 2DFT RŜ t
2D

spectra using the experimentally reported values for ODmax = (0.14, 0.59, 1.14) and fnl = 0.8, clear

disagreement in the width of the 2DFT lineshape and the depth of the absorptive distortion near ωt = ωeg

is noted. While reducing the fraction of the sample in which the signal field is generated (Figure 7)

does increase the aspect ratio of the 2D lineshape and slightly deepens the absorptive distortion near

ωt = ωeg, it does nothing to increase the linewidth in theωτ dimension, which is needed to better match the

experimental spectra. Outside of the dephasing rate, which is already set to a larger value than observed in

the experimental linear absorption spectrum, optical density is the only handle for changing the ωτ width.

To recover the ωτ width of the experimental OD = 1.14 “reference around” spectrum (Figure 3 of ref 57),
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Figure 10: Absolute value rephasing 2DFT
spectra with additional signal propagation
(RŜ t,VBO

2D representation) for Bloch model with
(a) ODmax = 2, fnl = 1; (b) ODmax = 3,
fnl = 1; (c) ODmax = 3, fnl = 0.8; and (d)
ODmax = 3, fnl = 0.6 where fnl = Lnl/(Lnl +

Llsp) is the fraction of the sample length over
which nonlinear signal is generated. Grid time
step, 500 fs; grid size, 10243; dephasing rate,
Γ/2πc = 0.265 cm−1; excited state lifetime,
T1 = 240 ps; center frequency, ωeg/2πc =

12816.7 cm−1; waiting time, T = 500 fs; sam-
ple thickness, L = Lnl + Llsp = 500 µm; and
crossing angles, α = β = 4.84°. There are
19 contours, evenly spaced every 5% from 5%
to 95%. The dotted line indicates the diago-
nal: ωt = −ωτ. The absolute cyclic frequency
axis at the top of the figure indicates that both
frequency axes have scales exactly matching
those of Figure 4 in ref 57.
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the ODmax used in the simulation was increased to ∼3, as illustrated in Figure 10. Since a ∼25 K increase

in temperature of the Rb vapor sample cell is sufficient to cause a factor of 3 increase in the number density

of Rb, a 3-fold increase in optical density might be within the combined uncertainty of the temperature

and linear absorption measurements. Optical pumping77 and local heating of the sample by the excitation

beams108 might also contribute to the disagreement in lineshape. Given the likely uncertainty in optical

density, model values of ODmax ≈ 3 and fnl ≈ 0.8 may best represent the actual experimental conditions.

Comparing the ODmax = 1.14 experimental 2DFT spectrum in Figure 3 of ref 57 to the ODmax = 3

simulation in Figure 10c, the FWHM through the left and right maxima along the excitation dimension are

2.1 cm−1 and 2.4 cm−1 (experiment) vs. 2.4 cm−1 and 2.4 cm−1 (simulation), the line-center FWHM along

the detection dimension are 3.9 cm−1 (experiment) vs. 4.6 cm−1 (simulation), the line-center splitting

FWHM along the detection dimension are 0.83 cm−1 (experiment) vs. 0.65 cm−1 (simulation), the splitting

depths (as a fraction of the peak shape maximum) are 0.016 (experiment) vs. 0.273 (simulation), and the

split peaks are twisted from the horizontal toward the diagonal by 10° (experiment) vs. 22° (simulation).

While the effect of any optical pumping has not been calculated, adding signal contributions from repetitive

excitation (with long waiting times as in Figure 4c) and alignment (with a short lifetime as in Figure 5a)

would reduce split peak twisting in the simulation, bringing it into closer agreement with experiment. This

rough agreement for the split peak twisting provides a crucial check of propagation distortion theory in

the coherent transient regime.

Implications for Experiment

Yetzbacher et al. previously outlined experimental conditions in which propagation distortions are mini-

mized and introduced transformations that reduce distortions in 2DFT correlation and relaxation spectra at

optical densities of up to 1.13 Through characterization of pseudo–time domain filtering, which includes

filtering both in τ (to produce rephasing 2DFT spectra) and in t, it appears that these filtering techniques

provide no clear advantage over application of the excitation–detection transformation to 2DFT relaxation

spectra for recovering the ideal lineshape. The Ŝ ++
2D spectrum not only matches the ideal 2DFT relaxation

spectrum (Figure 8c) to a high degree, but it also has a narrower 2D lineshape than the RŜ ++
2D spectrum

(Figure 8a). However, any well-characterized pseudo–time domain filter can be applied to simulations
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using the 3DFT method, as exhibited in Figures 8 and 9. The effect of a pseudo–time domain filter that

removes signal that appears to arrive before pulse c in the t dimension, presented in Figure 9, matches

some of the experimental signatures of this filter in Figure 4 of ref 57. In particular, simulations capture

both the narrowing of the lineshape in ωt and the reduction in the depth of the absorptive distortion near

ωt = ωeg.

Despite the crude nature of the approximation used, our treatment of varying beam overlap was able to

capture the experimental signature of this distortion wherein the aspect ratio of the 2D lineshape is larger

than that produced by the propagation function alone. This analysis also illustrates two important points.

First, it reinforces the observation that the signal is always effectively propagated over the entire length of

the sample cell regardless of where it is generated within the sample cell.12 As evidence, it can be seen

in Figure 7 that reducing the length of the region over which signal generation occurs does not alter the

lineshape in the ωt dimension as long as the total sample length is held constant. Second, it shows the

disadvantage of using a sample cell with a path length longer than the overlap length of the incident laser

beams since any region where beams are not well overlapped will not contribute significantly to signal

generation, but will attenuate and distort the signal.

A pseudo–time domain filter around t = tc ≡ 0 was used in the work by Li et al. 57 to discriminate

against scatter from excitation pulses. Simulations of “reference around”-type RŜ t
2D 2DFT spectra exhibit

a strong dependence on the exact placement of this filter. Moving the filter by 1 ps into positive t causes

the height of the spectrum at ωτ = ωt = ωeg (relative to the peak of the spectrum) to decrease by a factor

of 3, greatly enhancing the depth of the absorptive distortion. This sensitivity indicates that even a small

uncertainty in the position of a pseudo–time domain filter around t = 0 can significantly alter the 2DFT

spectrum.

Using the method put forward by Hybl et al.,3 2DFT spectra at long waiting times (T � T2) can be

simulated with no adjustable parameters, relying only on independent 1D spectra of the sample and exci-

tation pulses. Such simulations are valuable for comparison to experimental 2DFT spectra in the long T

limit. They can also be compared to 2DFT spectra simulated by the 3DFT method in order to test line-

shape models and to estimate the magnitude of propagation distortions. Furthermore, experimental 2DFT

spectra taken under conditions where the optical density and lineshape model, as well as its parameters,

can be predicted from prior literature results provide the opportunity to simulate distorted 2DFT spectra
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with no adjustable parameters even at short waiting times where coherent effects are present in both the

2D peak shape and the propagation distortions.

Distorted 2DFT spectra at short waiting times often disguise their true peak shape and peak width un-

der coherent effects and absorptive line broadening, making them a poor source of information on which

to base simulations. If the Bloch model is truly appropriate (and there are physical grounds to doubt this at

waiting times less than the time between collisions or the collision duration), all of the parameters neces-

sary for the 3DFT simulation are available from the experimental geometry and independent spectroscopic

measurements. So, for cases where there is no reliable source of lineshape information in the literature,

simulations of distorted 2DFT spectra at arbitrary T with no adjustable parameters may still be possible.

Through the challenge of modeling extreme propagation distortions, this study suggests a set of mea-

surements to aid quantitative theoretical modeling. Measurement of the free-induction decay of each of

the excitation pulses can check linear propagation of the excitation fields, which is a requirement of the

theory underlying these calculations. Linearity of absorption, however, does not guarantee linear propa-

gation.3,12,28 Well-resolved linear absorption spectra are also critical to this check. As with free-induction

decay measurements, absorption spectra indicate the optical density of the sample and, for the homoge-

neous Bloch model, determine the lineshape function. The theory requires that excitation beam overlap

homogeneously fill the entire sample path length, which can be accomplished by either using shallow

beam crossing angles or a sufficiently thin sample cell. For the homogeneous Bloch model, 2DFT re-

laxation spectra measured at T � T2 and low optical density can independently determine the lineshape

parameters since coherent effects are minimized at long T , leaving a “product-lineshape” which is simpler

to interpret. For a detailed analysis of 2DFT spectra at long waiting times, see the appendix of ref 3.

2DFT relaxation spectra at T � T2 but with higher optical densities, once corrected for propagation dis-

tortions using the excitation–detection transformation (exact when T � T2), would reveal the dependence

of homogeneous Bloch model parameters on chromophore density. Although increasing the optical den-

sity by increasing the temperature in this experiment would also increase the relative Rb–Ar velocity and

hence the dephasing rate, the predicted ∼10% increase in linewidth from 363 K to 433 K due to Rb–Ar

collisions is small compared to the line broadening caused by propagation distortions over the same range.

Alternatively, long-T spectra could serve an an independent measurement of the sample optical density if

the lineshape model parameters are known from an independent source. These measurements and exper-
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imental checks enable unambiguous assignment of a lineshape model, lineshape parameters, and optical

density in the incoherent limit and serve as a foundation for modeling the addition of coherent effects at

short waiting times.

Conclusions

Absolute value rephasing 2DFT spectra of the collision-broadened D2 line of rubidium in argon buffer gas

have been simulated over a range of optical densities using a 3DFT method11–14 and compared to exper-

imental 2DFT spectra reported by Li et al. 57 The slightly temperature-dependent Lorentzian linewidths

predicted from previously measured Rb–Ar collision cross sections58,87 indicate that propagation dis-

tortions are responsible for nearly all of the change in optical Bloch model 2D peak shapes across the

experimental range of optical densities. When the waiting time is much greater than the dephasing time,

propagation distortions of the 2DFT relaxation spectrum reduce to a 2D propagation function that is sep-

arable into a product of 1D excitation frequency (ωτ) and detection frequency (ωt) attenuation factors,

divided by a 1D refractive factor. When the waiting time T is less than the dephasing time T2, the op-

tical Bloch model is no longer separable into independent ωτ, ωt , and T dimensions. In this coherent

transient regime, propagation distortions reveal the three-dimensional nature of the third-order nonlinear

susceptibility and response explored here.

Although absolute value rephasing 2DFT spectra for the optical Bloch model have a symmetric 2D

Lorentzian star shape in the low OD limit, increases in the optical density of 2DFT spectra initially gen-

erate a 2D Lorentzian peak shape with a greater linewidth along the detection frequency (ωt) than the

excitation frequency (ωτ).10 This occurs for two reasons: more signal is generated near the front of the

sample, at depths where pulses that dictate the excitation frequency are less attenuated; in contrast, the

attenuation of the last excitation pulse and of the signal combine to generate an effective attenuation of the

detected signal throughout the entire sample length, independent of the depth at which signal is actually

generated.12

The above differences between lineshape distortions along the excitation and detection frequency di-

mensions are magnified when the excitation beams do not overlap throughout the sample, as in the Rb

2DFT experiment.57 For a fixed total sample length, maximum signal is generated by maximizing beam
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overlap near the entrance window–sample interface. Decreasing the length of the beam overlap region at

fixed total sample length decreases absorptive distortions along the excitation frequency dimension while

leaving signal attenuation and distortion along the detection frequency largely unchanged. Matching the

sample and beam overlap lengths is recommended to enhance signal and reduce distortion.

At peak optical densities greater than 0.5, peak splitting around the resonant detection frequency

is observed in both experimental and simulated 2DFT spectra. Higher optical densities produce fur-

ther increases in linewidth, deeper peak splitting, and introduce progressive peak shape twisting below

ODmax = 1. As the waiting time T increases, the detection frequency linewidth slightly decreases, peak

splitting diminishes, and peak twist disappears. The opposite trends are observed when increasing the

excited state population lifetime T1.

An excitation–detection transformation13 exactly recovers the ideal 2DFT relaxation spectrum at wait-

ing times T much greater than the dephasing time T2 and still approximately recovers the ideal spectrum at

shorter waiting times. In contrast, the ideal 2DFT rephasing spectrum is not recovered by the same trans-

formation of a rephasing 2DFT spectrum. Although time domain filters reduce distortion of the rephasing

2DFT spectrum, we note that distortion of the rephasing 2DFT spectrum can be reduced (for short T) or

eliminated (for T � T2) by extracting the rephasing 2DFT spectrum from the excitation–detection trans-

formed 2DFT relaxation spectrum, which contains both rephasing and non-rephasing 2DFT spectra. Long

waiting time 2DFT relaxation spectra are recommended for verifying sample conditions.

Simulations of absolute value rephasing 2DFT spectra using a peak optical density of 3, a collisional

broadening linewidth of 0.5 cm−1, and beam overlap in the first 80% of the sample closely resemble the

experimental “reference around” 2DFT spectra reported for ODmax ≈ 1 in ∼1500 Torr Ar at ∼433 K. The

discrepancy in sample conditions may arise from the combined effects of sample temperature uncertain-

ties, collision cross section uncertainties, repetitive excitation modifications of the nonlinear response, and

a rough approximation in calculation of the effect of varying beam overlap. The experimental linewidth,

peak splitting depth, and peak twist are closely reproduced by calculations at T = 200 fs waiting time un-

der these adjusted conditions; such features depend quantitatively on the relationship between the waiting

time, dephasing time, and lifetime, but peak twist is purely a coherent transient effect. This calculation

of the experimental twist of the split peaks toward the diagonal qualitatively verifies a new prediction of

the 3DFT propagation theory that should be robust to the inclusion of alignment and repetitive excitation
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effects in a more complete model. With lower repetition rates to eliminate optical pumping, more fully

overlapped beams, improved characterization of the sample absorption spectrum, and modeling that in-

cludes alignment effects, it appears that quantitative tests of the 3DFT theory against experimental 2DFT

spectra with severe propagation distortions will be possible in the coherent transient regime.
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