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ABSTRACT 

This letter introduces a method of analyzing multi-stable truss structures and unit cells of 

engineered materials using the third order derivative of the formulated system’s potential 

energy function. The method can determine systematically all the cusp point singularities 

arising at the onset of bistability, and therefore identify the regions of hysteretic 

superelasticity and superplasticity from the usual geometrical nonlinearity in the solution 

space. The ability to design these behaviors is a great advantage that is highlighted with 

the example analysis of a bistable plane truss and a tetrahedral unit cell of a 3D lattice 

structure. 
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1. INTRODUCTION 

In a century where the need for smart materials and structures has been discussed extensively, the 

truss systems are of interest for both engineers and material scientists alike because of their 

adaptivity for a microstructure or an architectural piece for a controlled and an optimized design. 

Many truss systems have been studied [1-3] and observed to switch between two different states 

of equilibrium under an applied load and this is exhibited by a snap-through action.  The 

application of the multiple states of equilibrium that could be achieved with a truss system has 

been seen in mechanical, electromechanical systems and MEMS.  This corresponds with smart 

applications of buckling induced systems that utilizes the switching actions that accompany the 
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buckling instability of a system [4]. Most of the studies done in the area of truss stability have 

involved numerical or semianalytical computations [5-6]. Some of these works [5,7-8] have shown 

how geometrical and material nonlinearities affects stability of truss systems and that if properly 

designed could lead to a desired state of equilibrium. Even with the success of these methods the 

need for an analytical method to improve universality when analyzing trusses with high 

geometrical nonlinearity [9] and to fully understand the behavior of these systems including 

general multistability criteria is recognized [10]. Space trusses analyzed in [8] by numerical 

methods have shown the possibility of developing a lattice structure that would exhibit multiple 

states of equilibrium. Interesting applications in smart structures, structural composites and 

metamaterials can also be envisioned for periodic lattices [11-13], whose behavior can be 

predicted from the unit cell analysis. The application of lattice structures and elastic networks in 

materials science and engineering is widespread and therefore it drives our interest as well.    

The aim of this letter is to demonstrate an analytical approach for a panoramic analysis of multi-

stable lattice structures and with the relevant concepts in mind. The discussion involves the 

equilibrium potential energy of the structure with its usual critical point condition and degenerate 

critical point condition [6,14-16] outlined in most stability studies of lattice structures to generate 

stability diagrams. However, we introduce a new concept of the cusp curve, the locus of all cusp 

point singularities in the parametric solution space based on the third order derivative of the 

potential energy function, which is used as a tool to predict any possible bistable hysteretic 

behavior of the truss system. It leads essentially to a phase diagram of the system in terms of the 

corresponding system parameters. Such a phase diagram gives the designer the flexibility to select 

a desired structural behavior: monostable elasticity, bistable superelasticity, or bistable 

superplasticity corresponding to the situation when the original configuration can only be 

recovered by load reversal. The letter illustrates the method using a 2D lattice first, and then 

proceeds to a 3D tetrahedral truss example. 

 

2. ANALYSIS OF MULTI-STABLE STRUCTURES 

Throughout our analysis we have assumed that the lattice structure is linearly elastic, undergoes 

moderate axial strains (< 0.05)  and large nodal displacements leading to a geometrical 
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nonlinearity. In our analysis we would like to eliminate the possibility of buckling instability and 

so the assumption of very high Euler load is made [14]. We therefore apply the principle of 

stationary potential energy to get the total potential energy and applying the critical points 

condition �𝑑𝑑∏
𝑑𝑑𝑑𝑑

= 0� for the system we arrive at the system equilibrium equation that is analyzed 

for the stable states of our lattice structure. The total potential energy, Π, of our system is defined 

as the total strain energy, U, stored in the bars less the potential energy of the external loads, V, 

 Π = 𝑈𝑈 − 𝑉𝑉           (1) 

The strain energy stored in each bar or elastic link could be expressed as 

  𝑈𝑈 = 𝐸𝐸𝐸𝐸(𝑙𝑙−𝐿𝐿)2

2𝐿𝐿
           (2) 

with E, A, L and l denoting the Young’s modulus, cross-sectional area, relaxed and deformed 

lengths of the bar, respectively.  Since 𝐸𝐸𝐸𝐸/𝐿𝐿 represents the stiffness, k, of the bar and Cauchy 

strain, 𝜀𝜀𝑐𝑐 = (𝑙𝑙 − 𝐿𝐿)/𝐿𝐿, where 𝑙𝑙 is the deformed length, Eqn. 2 can be written as 

𝑈𝑈 = 1
2
𝑘𝑘𝐿𝐿2𝜀𝜀𝑐𝑐2           (3) 

As would be seen in the foregoing analysis 𝜀𝜀𝑐𝑐 can be replaced with the Green’s strain, 

 𝜀𝜀𝐺𝐺 = 𝑙𝑙2−𝐿𝐿2

2𝐿𝐿2
           (4) 

This is adapted for the lattice elements knowing the relationship between the two could be 

expressed as 𝜀𝜀𝐺𝐺 = 𝜀𝜀𝑐𝑐 + 1
2
𝜀𝜀𝑐𝑐2  [17] and hence the difference in strain value is insignificant 

(< 0.3%) on the assumption of moderate axial strains.  

The potential energy of the applied load, F, acting against the strain energy in the bars is expressed 

as 𝑉𝑉 = 𝐹𝐹𝐹𝐹  with u denoting the nodal displacement under the load.  

The basic principle in our analysis would be to find the equilibrium equation of the truss system 

and based on the control parameters present, prepare the stability and phase diagrams that would 

be used to control and design the bistable superelastic or superplastic response of the structure.  
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2.1 Plane Truss Analysis 

The first truss to be analyzed is the five-bar plane truss in Figure 1, a more complicated case of the 

von Mises truss whose stability analysis is well documented [15,18-19]. The top bars are assumed 

to have the same stiffness and similar for the bottom bars as shown.  

 

 

Fig. 1 Bistable five-bar plane truss 

 

The Green’s strain from Eqn. 4 for the bars k1 and k2 are obtained as  

𝜀𝜀1 = 𝑢𝑢2−2𝐻𝐻1𝑢𝑢
2�𝐿𝐿2+𝐻𝐻12�

          (5)                                                     

𝜀𝜀2 = 𝑢𝑢2−2𝐻𝐻2𝑢𝑢
2�𝐿𝐿2+𝐻𝐻22�

          (6)   

Therefore the strain energy stored in the bars from Eqn. 3 are expressed as 

𝜋𝜋1 = 1
8

𝑘𝑘1
�𝐿𝐿2+𝐻𝐻12�

[𝑢𝑢2 − 2𝐻𝐻1𝑢𝑢]2        (7)                                                        

𝜋𝜋2 = 1
8

𝑘𝑘2
�𝐿𝐿2+𝐻𝐻22�

[𝑢𝑢2 − 2𝐻𝐻2𝑢𝑢]2        (8)                       

The total potential energy, Eqn. 1, of this structure reads 

∏ = 𝑘𝑘1
4�𝐿𝐿2+𝐻𝐻12�

[𝑢𝑢2 − 2𝐻𝐻1𝑢𝑢]2 + 𝑘𝑘2
4�𝐿𝐿2+𝐻𝐻22�

[𝑢𝑢2 − 2𝐻𝐻2𝑢𝑢]2 − 𝐹𝐹𝐹𝐹   (9)                                                                                                                                     

Therefore applying the principle of equilibrium potential energy we obtain the governing 

equilibrium equation: 
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𝑑𝑑∏
𝑑𝑑𝑢𝑢

= 𝑘𝑘1
�𝐿𝐿2+𝐻𝐻1

2�
(𝑢𝑢2 − 2𝐻𝐻1𝑢𝑢)(𝑢𝑢 − 𝐻𝐻1) + 𝑘𝑘2

�𝐿𝐿2+𝐻𝐻2
2�

(𝑢𝑢2 − 2𝐻𝐻2𝑢𝑢)(𝑢𝑢 − 𝐻𝐻2) − 𝐹𝐹 = 0  (10)          

To simplify the analysis we minimize the number of design variables in Eqn.10 by writing it in a 

reduced dimensionless form. The dimensionless force f and displacement x can be introduced as    

  𝑥𝑥 = 𝑢𝑢
𝐻𝐻1

      𝑓𝑓 = 𝐹𝐹
𝐻𝐻1
3

(𝐿𝐿2+𝐻𝐻12)(𝐿𝐿2+𝐻𝐻22)
�𝐿𝐿2+𝐻𝐻12�𝑘𝑘2+�𝐿𝐿2+𝐻𝐻22�𝑘𝑘1

      (11) 

Then we may introduce only two dimensional system parameters, a and b,  

 𝑎𝑎 = 3
𝐻𝐻1

�𝐿𝐿2+𝐻𝐻12�𝐻𝐻2𝑘𝑘2+�𝐿𝐿2+𝐻𝐻22�𝐻𝐻1𝑘𝑘1
�𝐿𝐿2+𝐻𝐻12�𝑘𝑘2+�𝐿𝐿2+𝐻𝐻22�𝑘𝑘1

       𝑏𝑏 = 2
𝐻𝐻12

�𝐿𝐿2+𝐻𝐻12�𝐻𝐻22𝑘𝑘2+�𝐿𝐿2+𝐻𝐻22�𝐻𝐻12𝑘𝑘1
�𝐿𝐿2+𝐻𝐻12�𝑘𝑘2+�𝐿𝐿2+𝐻𝐻22�𝑘𝑘1

  (12)       

and write the following dimensionless form of the equation of equilibrium for our truss structure: 

𝑓𝑓 = 𝑥𝑥3 − 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏         (13)                                                               

 

2.2 Stability Diagrams 

At this point we have been successful in achieving a simplified equilibrium equation in Eqn. 13 

which can serve as a simple tool to understand the multiple states of equilibrium of the truss 

structure. It will also enable us to develop relationships between the various control parameters 

(𝑓𝑓, 𝑎𝑎, 𝑏𝑏) of the structure, using the stability diagram concept. A stability diagram is a plot of 

bifurcation curves comprised of all possible bifurcation points that may exist for the system in the 

(𝑓𝑓, 𝑎𝑎, 𝑏𝑏) space. This concept seen in catastrophe theory [16,20-21]  and thus shows how the control 

parameter f and the system parameters a and b affect the states of  equilibrium. We obtain the 

sought stability diagram by projecting the 3D solution space of  𝑑𝑑∏
𝑑𝑑𝑢𝑢

  of Eqn. 13 into the (𝑓𝑓, 𝑎𝑎) or 

(𝑓𝑓, 𝑏𝑏) plane, depending on which system parameter is fixed. Figure 2 shows the topology of the 

solution space when 𝑎𝑎 is held constant and we make an orthogonal projection toward the (𝑓𝑓, 𝑏𝑏) 

the plane. The stability diagram could also be obtained directly by plotting the functions that 

describe the bifurcation curves. 
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Fig. 2 A three-dimensional view of the folded solution space (13) at constant a, and 

its bifurcation set projection onto the fb-plane; CP – the cusp point; BC – 

bifurcation curves, the locus of all existing (ab-parameterized) bifurcation points; 

(1) – region of unique solutions; (2) – region of two stable solutions. For a value 𝑏𝑏 

fixed within the region (2), the system experiences a jump in response (switching 

between two stable equilibrium states) when an increasing/decreasing load crosses 

the right/left bifurcation curve, producing a mechanical hysteresis. 

 

The functions describing the bifurcation curves are obtained by solving the degenerate condition, 
𝑑𝑑2∏
𝑑𝑑𝑢𝑢2

= 0, for solutions to the system state variable 𝑦𝑦 which is given by Eqn.14 and then substituting 

each solution obtained into Eqn. 13:                                                   

𝑥𝑥 = 𝑎𝑎±√𝑎𝑎2−3𝑏𝑏
3

          (14)         
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Fig. 3 Stability diagrams for the parameter b versus the dimensionless force f at 

a = 0.78 (top), and for the parameter a versus f at 𝑏𝑏 = 0.16 (bottom). Structural 

superelasticity is the region where the system can experience a reversible transition 

between the two stable states with load application and removal. In the structural 

superplasticity region, the system also switches between two stable states but there 

is a residual deformation when the load is removed (f = 0), and a full recovery is 

only possible with a load reversal.   

 

Eliminating the state variable 𝑥𝑥  with this step we obtain two functions in terms of only the control 

and system variables 𝑓𝑓,𝑎𝑎, 𝑏𝑏 which describe the set of bifurcation curves for the truss system. 

Hence, the stability diagrams, Figure 3, are obtained by fixing one of the system variables, either 

 𝑎𝑎 or 𝑏𝑏  in the functions obtained for the bifurcation curves to a desirable constant value, and 
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plotting the other system parameter as a function of the dimensionless force f. Each point on the 

bifurcations curves represents a saddle-node bifurcation with the force f as the control parameter, 

except for the point at the cusp of the plots in Figure 3. This cusp point (CP) represent a higher 

order singularity where a supercritical pitchfork bifurcation may occur on the parameter plane 

(𝑓𝑓, 𝑏𝑏) or (𝑓𝑓,𝑎𝑎) in the direction tangential to the cusp. Consequently, the areas between the two 

lines represent a region where two stable and one unstable solution of the governing equilibrium 

equation exists, and only one (stable) solution exists on all other areas of the stability diagrams.  

Since the parameter f represents the external load, a hysteretic superelastic or superplastic type 

response to a cyclic load is therefore possible for a range of parameters a and b. Typical forms of 

these responses, (SE) and (SP), are shown in Figure 4 in comparison to the usual nonlinear 

response, when one of the parameters (a or b) are located in the monostable elasticity (ME) region. 

 

 

Fig. 4 Three types of structural responses governed by the equilibrium 

equation (13): structural superplasticity (SP), structural superelasticity (SE), and 

the usual monostable elastic (ME) behavior. The inner dash lines represent the 

unstable equilibrium configurations.      
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As an example, for a five-bar truss with a set of design parameters chosen as 𝐿𝐿 = 0.5 𝑚𝑚, 𝐻𝐻1 =

0.0822 𝑚𝑚 , 𝐻𝐻2 = 0.020 𝑚𝑚 , 𝑘𝑘1 = 2.32 × 105 𝑁𝑁/𝑚𝑚  and 𝑘𝑘2 = 1.0 × 107 𝑁𝑁/𝑚𝑚 , see Figure 1 (bar 

𝑘𝑘1 is above 𝑘𝑘2 in this example), we obtain  𝑎𝑎 = 0.78 and 𝑏𝑏 = 0.16 as the dimensionless system 

parameters. The both stability diagrams of Figure 3 indicate that such a truss will experience 

forward and reverse superelastic transition at the (critical) loads of 0.00986 and 0.00304 

dimensionless units, or 224 and 69 N, respectively. The first diagram shows the case when a is 

fixed and the second when 𝑏𝑏 is fixed. In both plots we encounter a single cusp point at the onset 

of bistability, which could be predicted using a mathematical condition proposed in the following 

section.  

 

2.3 Cusp Curve and System Phase Diagram 

As can be seen from Figure 2, the solution space of the five-bar structure contains a higher order 

singularity, the cusp point (CP). Physically, such a point represent the onset of bistability in the 

system; for example, the b-coordinate of the cusp point in Figure 3 (top) represents a critical value 

of this system parameter, below which a hysteretic mechanical response becomes possible.       

In the design of our system, the stability curves could be created for all possible values of one 

particular system parameter and these plots would help control and optimize the desired system 

parameter. To simplify this process we develop the concept of the cusp curve, a plot of only cusp 

points in the ab-plane, which separates the entire region of hysteretic (bistable) elasticity from the 

usual (monostable) geometrically nonlinear elasticity.  

We develop the cusp curve by solving simultaneously the condition  𝑑𝑑
3∏
𝑑𝑑𝑢𝑢3

= 0 (leading to 𝑥𝑥 = 𝑎𝑎/3) 

with the degenerate condition, 𝑑𝑑
2∏
𝑑𝑑𝑢𝑢2

= 0, and the equilibrium equation, Eqn. 13. This gives an 

expression in terms of only the control parameters 𝑎𝑎 and 𝑏𝑏, which is solved for 𝑏𝑏 in Eqn. 15. In 

order to separate further the most interesting region of structural superelasticity from the region of 

superplasticity (with a residual deformation at force removal), the force condition 𝑓𝑓 = 0 by 

Eqn. 13 is solved together with the degenerate condition to give the Eqn. 16.  

𝑏𝑏 = 𝑎𝑎2

3
           (15)       
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𝑏𝑏 = 𝑎𝑎2

4
           (16)       

These two functions are then plotted as shown in Figure 5 to represent a phase diagram of the 

system.  

 

 

Fig. 5 Phase diagram of elastic systems of the type 𝑓𝑓 = 𝑥𝑥3 − 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏, showing 

the regions of principal mechanical behavior. The line from Eqn. 15 divides the 

regions of structural monostability and bistability, and the Eqn. 16 line subdivides 

the bistability into the structural superelasticity and structural superplasticity.  

 

To illustrate the use of the phase diagram we consider the design case used above and locate the 

obtained system parameters 𝑎𝑎 = 0.78 and  𝑏𝑏 = 0.16 on the graph. As can be seen, this design is 

within the structural superelastic region, being in agreement with the Figure 3 stability diagrams. 

Thus, the desired stability behavior could be achieved by manipulating the original design 

parameters in Figure 1, and identifying the position of a resultant pair of system parameters a and 
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b on the phase diagram. From Figure 5, the region of structural superelasticity is a narrow band 

which represents somewhat a rare case of achieving such a behavior in a design. Therefore, one 

may see how important a phase diagram, using the cusp point and zero-force conditions, could be 

for a design process.  

We note that utility of the Green’s strain measure (4) in the potential energy form (3) is the main 

approximation of the method enabling the analytical stability analysis of sections 2.2 and 2.3. 

Since the Green’s strain and Cauchy stress tensors are not work conjugate, this approximation 

should be used in a cautious manner. The method can be quick and reliable in identifying a 

possibility to achieve bistability as in principle; however, accuracy of the phase diagram 

boundaries will diminish with an increase of maximal strain in members using the Green’s strain 

measure. This latter factor can serve as an indicator of the method’s applicability: the maximal 

strain in those members using the Green’s strain measure for their potential energy form (3) should 

not exceed 0.04-0.05 during the entire load-unload cycle, including the state-switching regimes, 

due to the relationship 𝜀𝜀𝐺𝐺 = 𝜀𝜀𝑐𝑐 + 1
2
𝜀𝜀𝑐𝑐2. Furthermore, validation of the method for all types of 

structures can be performed in a straightforward manner by using the Cauchy strain for all 

structural members in the total potential energy (9) and running a quasistatic energy minimization 

procedure to get a numerical load-deformation curve of Fig.4 type. Results of our various 

validations runs indicate that the maximal error for all state and system parameters, including the 

critical loads, is on the order of the mismatch between 𝜀𝜀𝐺𝐺 and 𝜀𝜀𝑐𝑐, provided that the Green’s strain 

in structural members remains in the moderate range (𝜀𝜀𝐺𝐺 < 0.05) for an entire load-unload cycle. 

For the design example discussed in the end of section 2.2, this mismatch does not exceed 0.1% 

over the load cycle shown in Figure 4.  

 

2.4 Tetrahedral Structure Analysis 

In this section we adapt the analytical procedure of the five-bar truss to analyze the tetrahedral 3D 

lattice structure of Figure 6 for variation in the stiffness of its outer shell and inner core elements. 

The stability analysis of this unit cell can provide the basis for generalizing the behavior of various 

multistable periodic structures under the application of external loads.  
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The strain energy in the bars is written as below using the fact that the base triangle of the modified 

tetrahedral truss model is equilateral, the assumption that the length of the exterior bars are equal 

and in a similar manner all the inclined interior bars are of equal length. The top node, where the 

force is applied is constrained to move vertically (nodal displacement v), and the three bottom 

nodes can only move in the base plane of the tetrahedron (nodal displacement u). The stiffness of 

each bar is as shown on Figure 6. Then, their corresponding strain energies are:     

𝜋𝜋1 =
𝑘𝑘1

24𝐵𝐵2
�𝑢𝑢2 + 2𝐵𝐵𝐵𝐵 + 𝑣𝑣2 − 2√2𝐵𝐵𝐵𝐵�

2
 

𝜋𝜋2 = 𝑘𝑘2
8(𝐻𝐻2+𝐵𝐵2)

(𝑢𝑢2 + 2𝐵𝐵𝐵𝐵 + 𝑣𝑣2 − 2𝐻𝐻𝐻𝐻)2         (17) 

𝜋𝜋3 =
𝑘𝑘3

8𝐵𝐵2
(𝑢𝑢2 + 2𝐵𝐵𝐵𝐵)2 

 

                    

Fig. 6 Tetrahedral lattice cell with an inner core: a side view of structure showing 

the direction of applied load and bars stiffnesses, and a sectional view of the xy-

plane from the vertical line of symmetry to a base node (𝑆𝑆 = √3𝐵𝐵).           

 

The total strain energy due to the nine bars and the external load reads 
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∏ =
𝑘𝑘1

8𝐵𝐵2 �𝑢𝑢2 + 2𝐵𝐵𝐵𝐵 + 𝑣𝑣2 − 2√2𝐵𝐵𝐵𝐵�
2

+
3𝑘𝑘2

8(𝐻𝐻2+𝐵𝐵2)
(𝑢𝑢2 + 2𝐵𝐵𝐵𝐵 + 𝑣𝑣2 − 2𝐻𝐻𝐻𝐻)2 +

9𝑘𝑘3

8(𝐵𝐵2)
(𝑢𝑢2 + 2𝐵𝐵𝐵𝐵)2 – 𝐹𝐹𝐹𝐹 (18)   

The two equilibrium equations derived from Eqn. 18 are 

0 = 𝑑𝑑∏
𝑑𝑑𝑣𝑣

= 𝑘𝑘1
2𝐵𝐵2

�𝑢𝑢2 + 2𝐵𝐵𝐵𝐵 + 𝑣𝑣2 − 2√2𝐵𝐵𝐵𝐵��𝑣𝑣 − √2𝐵𝐵� + 3𝑘𝑘2
2(𝐻𝐻2+𝐵𝐵2)

(𝑢𝑢2 + 2𝐵𝐵𝐵𝐵 + 𝑣𝑣2 − 2𝐻𝐻𝐻𝐻)(𝑣𝑣 − 𝐻𝐻) − 𝐹𝐹 (19) 

0 = 𝑑𝑑∏
𝑑𝑑𝑢𝑢

= 𝑘𝑘1
2𝐵𝐵2

�𝑢𝑢2 + 2𝐵𝐵𝐵𝐵 + 𝑣𝑣2 − 2√2𝐵𝐵𝐵𝐵� + 3𝑘𝑘2
2(𝐻𝐻2+𝐵𝐵2)

(𝑢𝑢2 + 2𝐵𝐵𝐵𝐵 + 𝑣𝑣2 − 2𝐻𝐻𝐻𝐻) + 9𝑘𝑘3
2(𝐵𝐵2)

(𝑢𝑢2 + 2𝐵𝐵𝐵𝐵) (20)                                                                                                                                       

These equations can be rewritten in the dimensionless forms as  

𝑔𝑔 = �𝑥𝑥2 + 2𝑥𝑥 + 𝑦𝑦2 − 2√2𝑦𝑦��𝑦𝑦 − √2� + 𝛼𝛼(𝑥𝑥2 + 2𝑥𝑥 + 𝑦𝑦2 − 2ℎ𝑦𝑦)(𝑦𝑦 − ℎ) (21)                                                      

0 = �𝑥𝑥2 + 2𝑥𝑥 + 𝑦𝑦2 − 2√2𝑦𝑦� + 𝛼𝛼(𝑥𝑥2 + 2𝑥𝑥 + 𝑦𝑦2 − 2ℎ𝑦𝑦) + 𝛽𝛽(𝑥𝑥2 + 2𝑥𝑥)  (22)   

𝑔𝑔 = 𝐹𝐹
𝑘𝑘1𝐵𝐵

,    𝛼𝛼 = 3𝑘𝑘2
𝑘𝑘1(ℎ2+1) , 𝛽𝛽 = 9𝑘𝑘3

𝑘𝑘1
,     𝑦𝑦 = 𝑣𝑣

𝐵𝐵
,   𝑥𝑥 = 𝑢𝑢

𝐵𝐵
    (23)                    

To obtain a single expression in terms of the state variable 𝑦𝑦 only, we derive the expression in 

Eqn. 24 from Eqn. 22 and substitute the result into Eqn. 21: 

(𝑥𝑥2 + 2𝑥𝑥) = −𝛾𝛾�𝑦𝑦2 − 2√2𝑦𝑦� − 𝛼𝛼𝛼𝛼(𝑦𝑦2 − 2ℎ𝑦𝑦)     (24)                                                                                                                                                                                             

 𝛾𝛾 = 1
𝛼𝛼+𝛽𝛽+1

          (25)                                                                                   

𝑔𝑔 = �(1 − 𝛾𝛾)�𝑦𝑦2 − 2√2𝑦𝑦� − 𝛼𝛼𝛼𝛼(𝑦𝑦2 − 2ℎ𝑦𝑦)��𝑦𝑦 − √2� + 𝛼𝛼�(1 − 𝛼𝛼𝛼𝛼)(𝑦𝑦2 − 2ℎ𝑦𝑦) − 𝛾𝛾�𝑦𝑦2 − 2√2𝑦𝑦��(𝑦𝑦 − ℎ) 

            (26)                   

Grouping and simplifying the terms we obtain a similar cubic force equilibrium equation, as in 

Eqn. 13, although with a new dimensional force f and new coefficients a and b: 

𝑓𝑓 = 𝑦𝑦3 − 𝑎𝑎𝑦𝑦2 + 𝑏𝑏𝑏𝑏         (27)       

𝑓𝑓 = 𝑔𝑔
1+𝛼𝛼−𝛾𝛾−2αγ−𝛼𝛼2𝛾𝛾

 ,   𝑎𝑎 = − 3√2(𝛾𝛾+αγ−1)+3ℎ(αγ−𝛼𝛼+𝛼𝛼2𝛾𝛾)
1+𝛼𝛼−𝛾𝛾−2αγ−𝛼𝛼2𝛾𝛾

 ,   𝑏𝑏 = 4(1−𝛾𝛾)−4√2𝛼𝛼𝛼𝛼ℎ+2ℎ2(𝛼𝛼−𝛼𝛼2𝛾𝛾)
1+𝛼𝛼−𝛾𝛾−2αγ−𝛼𝛼2𝛾𝛾

 (28)         

It is useful to note that this equilibrium equation corresponds to a generic nondimensional potential 

energy form 

𝑈𝑈(𝑦𝑦,𝑓𝑓,𝑎𝑎, 𝑏𝑏) = 𝑦𝑦4/4 − 𝑎𝑎𝑦𝑦3/3 + 𝑏𝑏𝑦𝑦2/2 − 𝑓𝑓𝑓𝑓     (29)       
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Having derived the governing equilibrium equation, Eqn. 27, stability diagrams could be created 

using the same procedure outlined above for the four bar truss. Since both structures produced the 

same form of the system equilibrium equation, the phase diagram in Figure 5 would be the same 

for the modified tetrahedral truss and so it is referenced here.  

In the case of a specific tetrahedral truss with the following design parameters, 𝐵𝐵 = 0.1𝑚𝑚, 𝐻𝐻 =

0.05𝑚𝑚, 𝑘𝑘1 = 104 𝑁𝑁/𝑚𝑚, 𝑘𝑘2 = 3 ∙ 104 𝑁𝑁/𝑚𝑚 and 𝑘𝑘3 = 2 ∙ 104 𝑁𝑁/𝑚𝑚, we obtain  𝑎𝑎 = 1.83 and 𝑏𝑏 =

1.01 as the system parameters, and as shown on Figure 5, the system is positioned in the structural 

superelasticity region. Undertaking reverse designs using the values within the superelastic region, 

it should be noted that the stiffness coefficients must remain positive in all cases. One can 

determine the critical loads at which the tetrahedral truss will experience the forward and reverse 

superelastic transitions from a new set of stability diagrams similar to those in Figure 3 plotted for 

the a and b values found here, or by solving simultaneously the Eqs. 13 and 14. These loads are 

0.175 and 0.149 dimensionless units, or 986 and 839 N, respectively.  

 

Fig. 7 Periodic structure and the bistable unit cell of an engineered material 

composed of a stiff reinforcement core immersed in a soft continuum matrix. Dash 

lines represent effective interactions between the nearest nodes due to the matrix 

material.  

 

3. CONCLUSIONS 

This letter has shown the predictive power of the stability diagrams when combined with the phase 

diagram, obtained on the basis of cusp point singularity parameterization in the solution space, in 
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analyzing potentially bistable structural systems. The truss systems analyzed have shown that the 

governing equilibrium equation for deformation under a load for some periodic lattice trusses 

could be classified into a basic generalized form as shown for the two trusses analyzed. This form 

can be regarded as a canonical equation of equilibrium of geometrically nonlinear trusses governed 

by the Green’s strain measure with one independent degree of freedom. It has been shown that for 

certain truss systems the potential of the superelastic behavior could be rare due to the narrow band 

of the region on the phase diagram. Nonetheless, the phase diagram shows all the possible 

parameters values that would lead to the structural superelasticity. Overall, the ability to design 

standalone bistable trusses and unit cells of a periodic materials with one independent degree of 

freedom has been understood using the analytical procedure shown in this letter. 

In the future, it would certainly be interesting to expand this methodology to the collective behavior 

of periodic structures and composite materials with bistable unit cells. Such a material would be a 

2N-stable mechanical systems (N is the number of unit cells) with interesting global properties for 

many potential applications including impact absorbers, compliant and resilient metamaterials, and 

shape-memory enabled polymorphic structures. The honeycomb-foam structure of Figure 7 is an 

example of an engineered material with a soft continuum matrix surrounding a stiff reinforcing 

core of hexagonal elements. The interaction between the core structure and the matrix material 

could therefore be idealized by the unit cell shown in the figure whose analysis would follow the 

same method above. Likewise, many multistable 3D lattices and frameworks can be analyzed on 

the basis of the bistable tetrahedron-shaped unit cell discussed in section 2.4. The role and utility 

of periodic boundary conditions for the 2N-stable periodic structures should also be investigated. 

Furthermore, structural systems and materials featuring unit cells with two or more independent 

degrees of freedom are worth of separate studies. In particular, bistable unit cells with one 

additional (internal) degree of freedom were shown recently [23-24] to provide opportunities for 

mechanical metamaterials [23-27] with negative compressibility properties.  
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