
Disturbance impacts on land surface temperature and gross

primary productivity in the western United States

L. Annie Cooper1 , Ashley P. Ballantyne1 , Zachary A. Holden2, and Erin L. Landguth3

1Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA, 2U.S. Forest Service,

Missoula, Montana, USA, 3Division of Biological Sciences, University of Montana, Missoula, Montana, USA

Abstract Forest disturbances influence forest structure, composition, and function and may impact

climate through changes in net radiation or through shifts in carbon exchange. Climate impacts vary

depending on environmental variables and disturbance characteristics, yet few studies have investigated

disturbance impacts over large, environmentally heterogeneous, regions. We used satellite data to

objectively determine the impacts of fire, bark beetles, defoliators, and “unidentified disturbances” (UDs)

on land surface temperature (LST) and gross primary productivity (GPP) across the western United States

(U.S.). We investigated immediate disturbance impacts, the drivers of those impacts, and long‐term

postdisturbance LST and GPP recovery patterns. All disturbance types caused LST increases (°C; fire:

3.45 � 3.02, bark beetles: 0.76 � 3.04, defoliators: 0.49 � 3.12, and UD: 0.76 � 3.03). Fire and insects

resulted in GPP declines (%; fire: −25.05 � 21.67, bark beetles: −2.84 � 21.06, defoliators: −0.23 � 15.40),

while UDs resulted in slightly enhanced GPP (1.89 � 24.20%). Disturbance responses also varied between

ecoregions. Severity and interannual changes in air temperature were the primary drivers of short‐term

disturbance responses, and severity also had a strong impact on long‐term recovery patterns. These results

suggest a potential climate feedback due to disturbance‐induced biophysical changes that may strengthen

as disturbance regimes shift due to climate change.

1. Introduction

Forests cover roughly 30% of Earth’s land surface and provide vital ecosystem services, such as water quality,

wildlife habitat, and timber production, as well as climate services [Bonan, 2008]. The ability of forests to

continue providing these ecosystem services depends on forest characteristics, such as stand structure,

composition, and functional processes. The primary drivers of forest characteristics are state factors including

climate, soils, and topography. However, secondary drivers, such as disturbance (e.g., wildfire, insect attack, or

windthrow), are often more important than state factors in determining ecosystem services at the regional

scale [Law et al., 2003; Pregitzer and Euskirchen, 2004; Bond‐Lamberty et al., 2007], influencing stand composi-

tion and stand age, as well as C fluxes, nutrient cycling, and energy dynamics. As such, disturbance is an

integral process in all forest ecosystems and altered disturbance regimes have the potential to impact forest

health globally.

Although disturbance agents such as insect outbreaks and stand‐replacing wildfires play a major role in

shaping forest ecosystems, global change may be altering disturbance regimes in the United States (U.S.)

and elsewhere. Disturbance events affect large swathes of forest in North America every year, with wildfires

affecting approximately 760,000 ha/yr [Littell et al., 2009] and insect‐induced mortality affecting approxi-

mately 100,000 to 1,000,000 ha/yr [Hicke et al., 2012; Meddens et al., 2012]. While disturbance regimes vary

in frequency and severity, more severe disturbance events, such as stand‐replacing wildfires and severe bark

beetle outbreaks, may be increasing in frequency as global temperatures rise [Watson et al., 1998; Adams

et al., 2009; Bentz et al., 2010;Westerling et al., 2011; Hicke et al., 2012;Millar and Stephenson, 2015]. The extent

and magnitude to which disturbance has altered certain ecosystem services, including climate regulation, is

often regionally specific [Randerson et al., 2006].

Disturbance events vary widely in severity and extent, and their ecological impacts are mediated by climate,

topography, and predisturbance vegetation characteristics [Holden et al., 2009; Dillon et al., 2011]. These

impacts can include everything from decreases in stand‐level productivity [Hanson and Weltzin, 2000; Kurz

et al., 2008] to changes in the radiative budget of the surface [Randerson et al., 2006; Maness et al., 2013].

Many studies have focused on the impacts of disturbance on successional patterns, forest structure, and
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composition [e.g., Sousa, 1984; Johnson et al., 1998]; however, disturbance effects on local and regional

climate are less studied. Therefore, understanding how disturbances of varying severity and frequency

impact climate is critical for predicting forest resilience and the recovery of vital ecosystem services.

Disturbance can influence climate in several ways, including altering the radiative budget of forests or by

affecting the uptake and release of C by forests. Kurz et al. [2008] estimated that large forested regions of

British Columbia (BC), Canada, switched from a C sink to a C source following a large and severe mountain

pine beetle (MPB) outbreak. The conversion in net C flux was expected to occur over several decades, sug-

gesting that severe biotic disturbances have gradual, but long‐term, impacts. These modeled results were

supported by an observed 15–20% decline in satellite‐derived GPP immediately postoutbreak [Coops and

Wulder, 2010]. Although increased albedo following beetle outbreaks in both BC and the western U.S. results

in a decline in absorbed radiation [O’Halloran et al., 2012; Maness et al., 2013; Vanderhoof et al., 2013], a

decrease in summertime evapotranspiration (ET) results in an increase in the sensible to latent heat ratio

(i.e., Bowen ratio). These effects combined to ultimately result in an ~1°C increase in surface temperature

following the BC outbreak [Maness et al., 2013].

Despite the relatively consistent findings regarding post‐MPB outbreak C fluxes, these studies focused on an

area with a very large and severe insect outbreak; results may differ when outbreaks occur on smaller scales

or under different environmental conditions. For example, the effects of less severe disturbance andmortality

events, such as smaller‐scale insect outbreaks and drought, are more ambiguous than the results from the

MPB outbreak in BC. Hanson and Weltzin [2000] determined that the likely effects of drought are reductions

in net primary production and stand water use, both phenomena resulting in positive radiative forcing (i.e.,

an atmospheric warming effect). However, changes in albedo or heterotrophic respiration were not included

in the analysis, making it difficult to assess the net radiative forcing resulting from smaller and less severe

disturbances such as drought. Thus, the exact climate effects of these disturbances are unclear and likely

depend on the extent and severity of the event as well as the environmental characteristics of the forest eco-

system (e.g., vegetation type).

Wildfire also appears to have a large effect on the net radiative forcing of ecosystems [Randerson et al., 2006],

although the effect is not well understood across different forest ecosystems. Fires in boreal Alaska were

found to have differing impacts on climate depending on the time since disturbance [Randerson et al.,

2006]. Initially, observations showed that fires resulted in positive radiative forcing due to large C emissions

and the deposition of black C on ice and snow, decreasing the albedo of the surface and increasing absorbed

radiation. However, according to model simulations, after several decades, boreal forest fires resulted in a net

negative radiative forcing due to increases in surface albedo as a result of decreased canopy cover, ultimately

leading to a potential cooling of the land surface. This is one of the few studies to develop a physical frame-

work to evaluate the net radiative impacts of the effects of forest disturbance, but it only addressed a rela-

tively small forested site and a single fire event.

Another study [O’Halloran et al., 2012] addressed the radiative impacts of fire, bark beetle attack, and hurri-

canes due to changes in albedo and the net ecosystem carbon balance over several locations across North

America. The authors found results similar to those of Randerson et al. [2006] for boreal wildfire, with an initial

warming effect, followed several decades later by a slight cooling effect. However, they found that bark

beetle attack increased wintertime albedo, resulting in negative radiative forcing. This complicates the

longer‐term results of Kurz et al. [2008], which suggest positive radiative forcing from bark beetle attack over

many decades. These results demonstrate differences in climate impacts among disturbances and distur-

bance locations and highlight the need for systematic analyses across larger areas.

Several other studies have addressed the potential for disturbances to impact climate in temperate regions

through both biogeochemical [Hanson and Weltzin, 2000; Kurz et al., 2008; Hicke et al., 2012; Seidl et al., 2014]

and biogeophysical [Vanderhoof et al., 2013;Maness et al., 2013] effects, with results indicating that temperate

disturbances may generally result in a long‐term net positive radiative forcing, although the forcing depends

on disturbance location, timing, type, and severity. The continued complexity of disturbance‐related climate

forcing in forest ecosystems indicates that an analysis evaluating the patterns of effects of multiple distur-

bance types on local to regional climate across multiple ecosystems is a novel contribution to the field.

There is a general consensus that forests will becomemore vulnerable to disturbance as a result of increasing

water and heat stress [Allen et al., 2010; Heyder et al., 2011; Anderegg et al., 2013], but in order to better
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manage for forest resilience to climate change, it is also necessary to understand the effects of forest

disturbances on local‐ to regional‐scale climate.

The aim of this study is to determine the impact of fires, bark beetles, defoliators, and “unidentified distur-

bances” (UDs) on land surface temperature (LST) and gross primary productivity (GPP) in the western U.S.

from 2002 to 2012. Specifically, our analysis seeks to answer the following research questions: (1) How do

LST and GPP change immediately following disturbance in forests of the western U.S.? (2) How do these

short‐term effects differ among ecoregions and disturbance types? (3) How important are severity, extent,

and interannual air temperature change to the short‐term disturbance response of LST and GPP? And (4)

how do LST and GPP change over 12 years following disturbance? This study adds to the literature through

an analysis of disturbance effects across ecoregions and four disturbance categories. It covers a large geogra-

phical region and provides a summary of the relative importance of disturbances of varying types and loca-

tions on local‐ to regional‐scale climate.

2. Methods

2.1. Study Area

We assessed the impacts of disturbance over the western U.S. (Figure 1a), a region encompassing substantial

topographic and climatic variation. Mean annual temperatures range from −3°C in the Intermountain west to

24°C in the southwest [PRISM Climate Group, 2011], and mean annual precipitation ranges from 5925 mm in

the Pacific northwest to 62 mm in the desert southwest [PRISM Climate Group, 2011].

Figure 1. (a) Map of ecoregions used in the study. Ecoregions were limited to 11 states (WA, OR, CA, ID, NV, AZ, MT, UT, WY,

CO, and NM). (b) Location of disturbances across the western U.S. Note that disturbances shown are not to size, and

actual pixel size is smaller than map representation.
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A range of disturbances are known to impact western forests, including prescribed and wildland fires, insects

and pathogens, windthrow, and timber harvest. Substantial efforts to map wildfires and insect‐induced mor-

tality have resulted in spatially explicit annual maps of these disturbance types. We therefore focus primarily

on these disturbance types and classify all other forms of disturbance as UD. Furthermore, as our disturbance

detection approach was limited to detecting only disturbances affecting moderately large areas of the land-

scape, insect species included in the insect damage categories were limited to species of aggressive bark

beetles and defoliators [see Hicke et al., 2012]. Bark beetle species included mountain pine beetle

(Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and species of ips (Ips sp.).

Defoliators included western spruce budworm (Choristoneura occidentalis), western black‐headed budworm

(Acleris gloverana), western hemlock looper (Lambdina fiscellaris spp. lugubrosa), pine needlesheath miner

(Zelleria haimbachi), sawflies (Suborder Symphyta), tent caterpillars (Malacosoma sp.), and Douglas fir tussock

moth (Orygia pseudostugata).

2.2. Disturbance Detection and Grouping by Disturbance and Ecoregion

Disturbances were mapped using a combination of satellite imagery and aerial data sources, including

Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) time series ima-

gery (http://lpdaac.usgs.gov), Monitoring Trends in Burn Severity (MTBS) data [Eidenshink et al., 2007], and

Aerial Detection Survey (ADS) maps (USDA Forest Service, Forest Health Protection and its partners). EVI time

series data for 2000–2014 were accessed between July and September 2014. These data are available at

250 m resolution and are collected via the Terra satellite every 16 days. EVI was used rather than the

Normalized Difference Vegetation Index (NDVI) because it is less susceptible to saturation in dense canopies

[Liu and Huete, 1995]. The index is calculated as

EVI ¼ G ×
ρnir−ρredð Þ

Lþ ρnir þ C1ρred þ C2ρblueð Þ
(1)

where G is the gain factor, ρnir and ρred are atmospherically corrected surface reflectances, L is the canopy

background adjustment term, and C1 and C2 are coefficients for the aerosol resistance term [Huete et al.,

2002]. While the blue band used for correcting residual atmospheric effects (C2ρblue) is only available at

500 m rather than 250 m, this should have negligible impacts on results (http://lpdaac.usgs.gov).

Raw EVI images were preprocessed for quality assurance, and pixels determined to be either cloudy or

unreliable due to satellite measurement abnormalities were removed. Images were further processed to

remove nonforested pixels according to a 20% forest mask created from the 250 m resolution MODIS

Vegetation Continuous Fields product [DiMiceli et al., 2011; Townshend et al., 2011]. Forested images were

then mosaicked to cover the western U.S. and run through a preprocessing algorithm to remove outliers

and replace missing values by interpolation, using the “interpts” function in the “wq” package [Jassby and

Cloern, 2015] in R [R Core Team, 2013], resulting in spatially and temporally continuous time series of EVI

values. Outliers were determined as values lying outside of 150% of the first or third quartiles of the EVI value

distribution. Because the time series were evaluated for change at the pixel level, we were further able to

selectively remove pixels where (a) more than one quarter of the total measurement days were missing or

(b) more than 20 consecutive measurement days were missing.

We then used the Breaks for Additive Season and Trend (BFAST) change detection algorithm [Verbesselt et al.,

2010a, 2010b] to determine areas of likely disturbance between 2002 and 2012 at the pixel level (i.e., 250 m).

The BFAST algorithm decomposes time series into seasonal, trend, and noise components and then com-

pares slopes of trend segments iteratively to find breakpoints [Verbesselt et al., 2010a, 2010b]. We used the

BFAST algorithm with a harmonic seasonal component and a single allowable breakpoint. With a single

breakpoint, only 1 year per pixel could show disturbance, resulting in the pixel disturbance being the largest

break in the time series (if breaks were detected) and thus the most severe disturbance in that pixel. BFAST

could not detect disturbances 2000–2001 and 2013–2014 due to lead‐in requirements within the algorithm.

Pixels with significant detected decreases in the EVI time series were labeled with the year of change and

compiled into annual raster files.

In an effort to improve the detection of disturbed pixels in cloud‐ and snow‐contaminated areas, we augmen-

ted the BFAST results with data on forest loss from Hansen et al. [2013]. The Hansen data were originally

computed annually at 30 m resolution using Landsat imagery, thus increasing the likelihood of catching a
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cloud‐free segment of the landscape. For this analysis, these 30 m data were aggregated to 240 m resolu-

tion to approximate the resolution of the MODIS data. The coarser‐resolution forest loss files were then

placed onto a grid equivalent in resolution and extent to the BFAST results grid, with Hansen raster values

added to the nearest BFAST‐equivalent grid pixels. Once equivalent grids were achieved, the Hansen and

BFAST detection rasters were mosaicked to a final disturbance raster, with disturbances marked if they

were shown on either of the two detection rasters (Figure 1b). Data from Hansen et al. [2013] were pre-

pared and downloaded from Google Earth Engine [see Hansen et al., 2013] in August 2015. Raster files

were mosaicked in ArcGIS [Esri, 2010].

The combined disturbance data were split into four distinct disturbance type categories—(1) fire, (2) bark

beetles, (3) defoliators, and (4) UD. Fire disturbance pixels were identified as pixels where the combined dis-

turbance data for a given year overlapped MTBS fire polygons for that same year. Insect disturbance pixels,

including bark beetles and defoliators, were determined as pixels where the combined disturbance data

for a given year overlapped the ADS polygons labeled as bark beetle or defoliator mortality for any year

between 2002 and 2012. Insect damage may only reach an EVI‐detectable severity after several years,

although the outbreak may be detected in the ADS maps at the very start of the outbreak. Alternatively,

ADS data may mark the disturbance after it is detected by satellite methods. Thus, it was assumed that if

the pixel was within the bounds of the ADS polygon, it was most likely an insect damage pixel. This assump-

tion was not made for fires because all damage occurs within a single year, allowing for much more accurate

identification and timing. Where fire and insect damage polygons overlapped, the pixel was labeled “fire” if

the detection year matched the year of the fire and labeled “bark beetle” or “defoliator” if the detection year

did not match the year of the fire. The UD category was applied to all other pixels that did not fall under the

previous categories.

MTBS and ADS presence or absence values were extracted at disturbance detection points in ArcGIS [Esri,

2010] in order to indicate the mode of disturbance for that pixel. ADS polygons were limited to those contain-

ing damage attributed to the bark beetle and defoliator species listed in section 2.1. We chose not to use a

cutoff for trees killed per acre within ADS polygons, as mortality area is patchy within the affected area poly-

gons, making polygon‐level trees killed per acre unrepresentative of all pixels within each polygon.

Lastly, results were evaluated by ecoregions as defined by the Environmental Protection Agency’s Level II

ecological region product [Omernik, 1987; Omernik and Griffith, 2014]. Data were grouped into ecoregions

according strictly to the Level II regions at first, and then regions with fewer than 50 detected disturbance

pixels were combined with the ecoregion nearest to them in both location and vegetation type (Figure 1a).

Detection results were evaluated for accuracy using twomethods, (1) evaluation relative to ADS (USDA Forest

Service, Forest Health Protection and its partners) and MTBS polygons [Eidenshink et al., 2007] and (2) com-

parison with 2002–2010 detection results from the well‐validated Vegetation Change Tracker (VCT) project

[Huang et al., 2010; Zhao et al., 2015]. The first method indicated mixed results for the number of ADS and

MTBS polygons that were detected by the combined BFAST and Hansen data set (Table S3 in the supporting

information). For example, ADS bark beetle polygons were often undetected, but most MTBS polygons were

detected. Those polygons that were not detected by the data set tended to be smaller and had lower

recorded severity (Table S3). The second validation method demonstrated similar overlap between VCT‐

detected pixels and ADS and MTBS polygons as method 1, suggesting general agreement between VCT

and the data set used here in detecting disturbance (Table S3). Additionally, an examination of the distances

between BFAST/Hansen points and VCT points indicated similarities in areas of detection (Figure S9 and

Table S4). The detection areas that did not match were primarily in UD areas.

2.3. Response and Predictor Variable Preparation

Mean summertime (June–July–August; JJA) Landsat‐based 30 m LST data were prepared in Google Earth

Engine in August 2015 using methods described in Weng et al. [2004] and Sobrino et al. [2004]. In short, this

method for estimating LST uses an estimated land surface emissivity based on NDVI [Sobrino et al., 2004] as

input into the equation

LST ¼
TB

1þ λ × TB
ρ

� � ln ε (2)
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where TB is the effective at‐satellite temperature (K), λ is the wavelength of emitted radiance (μm), ε is NDVI‐

based emissivity, and ρ ¼ h×c
σ= , with h equal to Planck’s constant (J s), c equal to the speed of light (m s−1),

and σ equal to the Boltzmann constant (J K−1) [Weng et al., 2004]. The resulting product was aggregated to

240 m to better match the detection data. Landsat data are available from the U.S. Geological Survey.

Changes in GPP were estimated using the 1 km, 8 day, MOD17A2 GPP product. Data were downloaded via

the Land Processes Distributed Active Archive Center in September 2015, and pixels flagged as low quality

were removed.

Factors (i.e., predictor variables) potentially influencing the disturbance response variables included distur-

bance severity (S), extent (E), and local interannual change in air temperature (Tair). S was determined as

the per‐pixel change in predisturbance to postdisturbance EVI (see equations (5) and (6)). The E of fire distur-

bance events was labeled as the total acres burned, retrieved from the MTBS fire polygon data. Each fire pixel

was labeled with the total area of the fire. The E of bark beetle, defoliator, and UD events was estimated as the

size of the area covered by adjoining pixels detected in the same year. The calculation of area for insect and

UD disturbances was done in ArcGIS [Esri, 2010]. We chose to label each pixel with the area of the total

disturbance (encompassing several pixels), because we were interested in how disturbance in surrounding

pixels influences the effects within single pixels. For example, a large fire may cause a larger increase in

LST in some pixels because surrounding pixels no longer have surviving vegetation, and thus higher ET, to

mitigate that pixel’s rising LST.

PRISMmonthly 800 m temperature data [PRISM Climate Group, 2011] averaged for JJA were used to represent

local air temperatures, for use in determining how the disturbance response results were influenced by

nondisturbance‐related differences in temperature. Tair was calculated as the predisturbance to postdistur-

bance change in the variable (see equations (5) and (6)). Data were downloaded from the PRISM website

in October 2015.

It should be noted that the aim of this analysis was not to identify the drivers of fires, bark beetle outbreaks, or

defoliator attacks but rather to identify what disturbance or environmental factors have the strongest influ-

ences on the responses of LST and GPP following disturbance. Many other studies have identified the drivers

of disturbance [e.g., Raffa et al., 2008; Dillon et al., 2011; Westerling et al., 2011].

2.4. Analysis of Disturbance‐Related Changes in LST and GPP

The LST difference and GPP percent change following the disturbance were calculated at the pixel level. Only

changes in the JJA values of the variable were analyzed for this study. Values for each variable before (Vpre)

and after (Vpost) the detected disturbance were calculated as follows:

Vpre ¼
V t−1 þ V t−2ð Þ

2
(3)

Vpost ¼
V t þ V tþ1ð Þ

2
(4)

where Vt is the variable at t years before or after the detected disturbance. We then calculated the absolute

(ΔV) and percent change (% ΔV) in each variable as

ΔV ¼ Vpost−Vpre (5)

%ΔV ¼
Vpost−Vpre

Vpre

� �

× 100 (6)

All calculations were completed in R [R Core Team, 2013].

2.5. Statistical Analyses

After response variables were extracted at each detected disturbance point, differences in disturbance effects

between ecoregions and disturbance types were examined. The significance of the differences between both

ecoregions and disturbance types was determined using multivariate analysis of variance (MANOVA) tests. If

significant differences in disturbance response variables (LST and GPP) were found, discriminant function
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analysis was conducted to determine the ability of the response variables to predict the type of disturbance

that caused the response and the ecoregion in which the disturbance occurred. MANOVA tests were

conducted in R [R Core Team, 2013]. Discriminant function analysis was also done in R using the “lda”

function in the “MASS” package [Venables and Ripley, 2002].

To analyze the influence of the potential drivers of disturbance impacts, regression trees were created using

the “randomForest” function within the randomForest package [Liaw and Wiener, 2002] in R. One model

was created for each response variable (i.e., LST and GPP), resulting in two total models. The importance S,

E, and Tair to the response variables was identified by mean squared error (MSE) importance values from

the random forest models. Ecoregion and disturbance type were also included in the models as potential

driving factors (Table 1).

To determine how the disturbance responses of LST and GPP change through time, data were collected for

all years following disturbance events through 2014. Predisturbance to postdisturbance changes in LST and

GPP were used to identify the patterns in recovery following disturbances segregated by four severity classes

(0–20%, 21–40%, 41–60%, and >60%), with percent decline in EVI used as a proxy for severity (Figure S10).

Recovery data were prepared with the same methods used to calculate initial disturbance response

(equations (5) and (6)), with Vpost representing only 1 year rather than the average of 2 years. Line graphs

of recovery were analyzed by time to stabilization and compared by disturbance type, ecoregion, and sever-

ity category. The time period of the analysis (2002–2012) was insufficient to see full recovery following distur-

bance. However, “stabilization,” or leveling in the response variables following the disturbance, may result

due to other factors, including regrowth of noncanopy vegetation. This stabilization, if seen, indicated some

degree of recovery and is used here as an indication of future trends in recovery.

3. Results

3.1. Changes in LST and GPP in Response to Disturbance

3.1.1. Fire

We observed a significant increase in LST and a decline in GPP following fire events (Figure 2 and Table S2).

The mean LST increase (°C) was 3.45 � 3.02 (μ � σ) over all regions (Figure 2a), although there was consider-

able interregional variation (Figure 3). Cold Deserts experienced the largest increases in LST (4.57 � 3.45),

while the Marine West Coast Forests experienced the smallest increases (1.10 � 1.98). Fires also resulted

in significant declines in GPP (Figure 2b). Across all regions, the mean GPP percent change was

−25.05 � 21.67. The fire effect on GPP varied significantly by ecoregion (Figure 3). The largest declines

in GPP were seen in the Warm Deserts (−41.49 � 23.81), and the smallest declines were observed in

Marine West Coast Forests (−4.72 � 11.38).

3.1.2. Bark Beetles

Following bark beetle outbreaks, LST generally increased, and response of GPP was variable across

ecoregions (Figure 2 and Table S2). All but two regions, the Sierra Madre and Temperate/West Central

Table 1. Variables Included in the Random Forest Models
a

Predictor Variable Abbreviation Reasoning

Severity (% decline in EVI) S A higher degree of mortality (i.e., higher severity) in the pixel will separate it from the original state more than a

lower degree of mortality.

Local interannual change

in air temperature

Tair A change in the average JJA air T will influence soil moisture and therefore latent heat exchange, surface

temperatures, and photosynthesis (GPP).

Extent E Disturbances that cover the entire pixel should have a larger impact on the response variables than small

(<1 pixel) disturbance patches. Responses to smaller disturbances may be diluted by undisturbed patches

of forest.

Disturbance type D Included for comparison with the above variables. Disturbance type should have a strong influence on the

average LST, GPP, and C stock response because each disturbance type affects forest structure and

composition differently.

Ecoregion R Also included for comparison with S, Tair, and Ea. Environmental characteristics, including soils, vegetation,

climate, and hydrology, differ by ecoregion and may impact disturbance responses.

a
S, Tair, and Ea are continuous variables. D and R are factors.
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Semi‐Arid Prairies, showed increases

in LST following bark beetle out-

breaks (Figure 2a). The mean impact

of bark beetles on LST (°C) was

0.76 � 3.04. The largest increase in

LST was seen in the Western

Cordillera (0.92� 3.00), and the smal-

lest increase was seen in Warm

Deserts (0.01 � 0.87). Bark beetle dis-

turbance occurring in Sierra Madre

and Temperate/West Central Semi‐

Arid Prairies resulted in slight

decreases in LST (−0.05 � 3.13 and

−0.18 � 2.89). The mean impact of

bark beetle outbreaks was a percent

change in GPP of −2.84 � 21.06,

although seven of the nine ecore-

gions showed a slight increase in GPP

(Figure 3). The greatest increase in

GPP occurred in Warm Deserts

(29.86 � 37.09), although there were

also increases in the Cold Deserts,

Sierra Madre, Upper Gila Mountains,

Marine West Coast Forests, and all Semi‐Arid Prairies. GPP decreased postdisturbance in Mediterranean

California and the Western Cordillera (−1.02 � 17.01 and −4.43 � 13.80).

Figure 2. Density distributions of JJA changes in (a) LST and (b) GPP follow-

ing fire, bark beetle attack, defoliator attack, and UDs.

Figure 3. JJA change in response variables by ecoregion. Bar height is the mean response for the ecoregion; error bars

represent standard deviation.
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3.1.3. Defoliators

Overall, LST increased slightly and GPP decreased slightly following defoliator attacks (Figure 2 and Table S2).

The average LST effect over all regions was 0.49� 3.12°C, with four ecoregions showing increases in LST and

two ecoregions showing decreases. An additional three ecoregions had no data. The largest increases in LST

following defoliator attack occurred in Cold Deserts (2.68� 3.00). The Sierra Madre and Upper Gila Mountain

ecoregions showed decreases in LST (−0.56� 2.12 and −0.48� 2.94). The overall defoliator effect on GPP (%)

was very small (−0.23� 15.40), with substantial variation between ecoregions. The Upper Gila Mountain ecor-

egion showed large increases in GPP following defoliator attacks (9.68 � 27.91), while Mediterranean CA

showed moderate GPP declines (−4.51 � 10.97).

3.1.4. Unidentified Disturbance

In general, LST and GPP increased following UDs (Figure 2 and Table S2). The mean LST effect (0.76� 3.03°C)

and regional variability were very similar to the patterns following insect outbreaks (Figure 2). The ecoregion

with the largest increase in LST was the Marine West Coast Forest ecoregion (1.48 � 3.24). LST decreased

in the South Central Semi‐Arid Prairies following UDs (−0.15 � 2.97). GPP generally increased following

UDs, with variation in response between ecoregions (Figure 3). The mean percent change in GPP was

1.89 � 24.20. The largest increases in GPP occurred in four regions: Warm Deserts (9.13 � 42.16), Sierra

Madre (11.48 � 68.57), Upper Gila Mountains (8.03 � 36.55), and South Central Semi‐Arid Prairies

(9.26 � 34.99). The Western Cordillera showed a slight decrease in GPP (−0.35 � 20.28).

3.2. Differences in Disturbance Response Between Disturbance Types and Ecoregions

MANOVA tests indicated that there were highly significant differences in LST and GPP responses due to

disturbance type (F(6, 4883470) = 59,477, p < 0.01), ecoregion (F(16, 4883470) = 4735, p < 0.01), and

the interactive effect of disturbance type and ecoregion (F(42, 4883470) = 516, p < 0.01). In order to ensure

that the large sample size was not confounding the significance of the results, MANOVA tests were also

conducted on 2000 samples of 1000 detected disturbance points and the statistics of each of those

2000 samples averaged to determine the significance of lower sample size on the factor differences.

Disturbance (F(6, 1960) = 25.98, p < 0.01) and ecoregion (F(16, 1960) = 3.47, p < 0.01) remained significant,

despite the lower sample size. The interactive effect between disturbance type and ecoregion became

insignificant (F(17, 1960) = 1.66, p = 0.20).

Discriminate function analysis was used to determine whether the responses of LST and GPP were sufficiently

different to classify detected pixels into disturbance types and ecoregions. A linear model using the response

variables (LST and GPP) as predictor variables predicted disturbance type with 83.98% accuracy. The response

variables resulted in lower accuracy when predicting ecoregion (49.76% accuracy). However, when the data

were subset by disturbance type, linear models predicted ecoregion with higher accuracy for bark beetle

attack (72.92%) and defoliator damage (92.95% accuracy) than for fire (57.25% accuracy) and UDs

(46.36% accuracy).

3.3. Importance of Severity, Extent, and Local Interannual Change in Air Temperature for LST and

GPP Responses

The random forest models used to determine the importance of S, E, and Tair to the postdisturbance response

in LST and GPP were cross validated using a 60% testing subset of the data. R2 values of the relationship

between predicted and actual data were 0.39 for LST and 0.45 for GPP (Table 2).

Across both response variable models, both S and Tairwere the most important continuous variables in deter-

mining disturbance impacts according to MSE importance (Table 2). Both models also underscored the

importance of disturbance type and ecoregion on LST and GPP. E had relatively low importance in the ran-

dom forest models. The models had somewhat low predictive power, likely because all potential predictor

variables were not included in the model. While the residual sum of squares (RSS) importance values were

not used to determine variable importance, they corroborate the results using MSE importance (Table 2).

3.4. Long‐Term Patterns and Trends in Disturbance Response

3.4.1. Fire

LST and GPP showed a short time to stabilization across all ecoregions following fire. In general, LST

rose quickly in the first year postdisturbance and then followed a slight decline over the next 1–4 years

(Figures 4 and S1), although LST remained elevated from predisturbance LST and even rose gradually over
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the remainder of the years following the decline. This pattern was consistent across ecoregions, with slight

variations in the timing of the decline and in the level to which LST declined postdisturbance. As

predicted, the severity (% decline in EVI) of the disturbance had a strong influence on the LST increase

postdisturbance. Surprisingly, severity did not have an effect on the duration of the postdisturbance

difference in LST. Ecosystem LST values appeared to decline just as quickly following high‐severity fires as

lower severity fires, although they retained higher LST than lower severity fires. GPP decreased over the

first 1–2 years following fire and then increased back to a stable level over the following 2–12 years

(Figures 5 and S6), although GPP remained lower than predisturbance levels for higher severity fires. Most

Figure 4. JJA change in LST (°C) following disturbance over the entire western U.S. See Figures S1–S4 for changes by

ecoregion. In the case of bark beetles and defoliators, “year of disturbance” is defined as the year in which damage

reaches a level detectable in the EVI time series.

Table 2. Summary of Random Forest Models Used to Predict LST and GPP
a

Response

Variable Predictor Variable

% Increase

in MSE

Increase

in RSS RMSE MBE

Model

R2 Testing n Training n

LST Severity 20.13 13.3 × 106 2.49 0 0.39 1465320 976855

Change in air T 16.25 10.6 × 106

Extent 7.72 2.32 × 105

Disturbance Type 16.07 3.78 × 105

Ecoregion 15.45 2.03 × 105

GPP Severity 14.95 8.88 × 107 18.73 −0.03 0.45 1465320 976697

Change in air T 17.77 7.26 × 107

Extent 10.42 2.36 × 107

Disturbance Type 11.12 3.30 × 107

Ecoregion 13.78 3.22 × 107

a
Themodel R2 value is the correlation between values predicted by themodel and the actual values in the 60% testing

subset of the data. The “% increase in MSE” is the increase in MSE that would occur if that predictor variable were
removed from the model. The “increase in RSS” is the increase in RSS that would occur if the values of that variable were
permuted across all nodes in all trees.
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regions showed a similar pattern, with varying degrees of differences between the severity categories. The

highest‐severity fires (> 60% decline in EVI) showed the largest declines in GPP. However, these fires did

not show significantly different stabilization times than fires in other severity categories.

3.4.2. Bark Beetles

Generally, LST increased gradually in the 1–2 years following bark beetle disturbance and then stabilized at

higher temperatures for the remainder of the postdisturbance years, with some recovery to slightly lower

temperatures (Figures 4 and S2). This pattern was fairly consistent across ecoregions and severity levels,

despite many of the ecoregions not having any bark beetle detections. In general, GPP declined in the year

of the disturbance event and then recovered gradually over the next 3–12 years (Figures 5 and S7). Higher‐

severity attacks resulted in the sharpest declines and longest recovery times of GPP. Several regions did not

show significant impacts of bark beetle disturbance on GPP.

3.4.3. Defoliators

The regions with data available for defoliator attacks showed an increase in LST in the 1–2 years after an

attack (Figures 4 and S3), with higher‐severity disturbances resulting in a larger increase in temperature.

LST never fully recovered to predisturbance levels and actually increased over the period of observation,

although the rate of increase slowed over time. In several regions and with lower severity disturbances,

LST increased but did not decline over the period of available data. GPP declined in the year of disturbance

in the Western Cordillera and Upper Gila Mountains ecoregions (Figures 5 and S8) and increased slightly in

the Cold Desert and West/Central Semi‐Arid Prairie ecoregions. GPP increased back to predisturbance levels

over the remainder of the available time period in the two ecoregions that showed initial declines. In the

ecoregions that showed GPP increases, GPP levels fluctuated around predisturbance levels.

3.4.4. Unidentified Disturbances

For the first 1–3 years following UDs, LST increased from predisturbance levels (Figures 4 and S4). LST showed

slight indications of recovery (i.e., decreasing LST) in the 1–5 years following maximum LST increases but

tended to stabilize at higher temperatures. Following UDs, GPP declined for 1–2 years (Figures 5 and S8)

and then gradually increased for 1–9 years until stabilizing. In the Marine West Coast Forests it took a

Figure 5. Percent JJA change in GPP following disturbance over the entire western U.S. See Figures S5–S8 for changes by

ecoregion. In the case of bark beetles and defoliators, year of disturbance is defined as the year in which damage reaches a

level detectable in the EVI time series.
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much longer period of time for the very high‐severity disturbances to recover compared to the other three

disturbance categories.

3.4.5. Relationships Between Recovery and Initial Impacts

Recovery patterns following bark beetle, defoliator, and fire effects (Figures 4 and 5) are of similar magnitude

and sign, seeming to contradict the results from section 3.1 (Figure 3). This is due to the separation of severity

in the recovery figures. The severity categories do not contain equal numbers of pixels, and thus if the aver-

age is taken, bark beetle and defoliator LST and GPP responses are smaller than those following fire simply

due to the inclusion of more low‐severity disturbances. Additionally, as many of the pixels lie within the

Western Cordillera ecoregion, the results of that ecoregion dominate the recovery results.

4. Discussion

4.1. Mechanisms Behind LST and GPP Responses to Disturbance

Our results indicate that LST increases and GPP decreases following forest disturbances in the western U.S.,

although these responses vary by ecoregion. These responses to tree mortality are expected, as mortality

results in a loss of canopy photosynthesis and thus GPP. Previous research [e.g., Bright et al., 2013; Maness

et al., 2013] has indicated that ET declines coincident with photosynthesis following disturbance.

Decreases in ET result in shifts in the exchange of heat from latent to sensible heat, resulting in increased

LST. Decreased albedo following fires also enhances absorption of radiation at the surface, further increasing

LST. There are mixed results regarding the importance of albedo for impacting LST and radiative forcing

following insect outbreaks or drought, with some results indicating little importance [Bright et al., 2013]

and some indicating higher importance [O’Halloran et al., 2012]. Disturbance‐related albedo changes may

be more or less important to LST and radiative forcing at varying times of the year, with more importance

in the winter due to snowpack effects (i.e., more exposed snow due to a loss of canopy cover) [Randerson

et al., 2006; O’Halloran et al., 2012] and less importance in summer. Decreased surface shading by the

canopy due to needle loss and/or snagfall and subsequent changes in soil moisture may also impact postdis-

turbance LST.

Despite showing a broad‐scale reduction in GPP, some ecoregions showed an increase in GPP. This may

occur through several mechanisms: (1) false classification of a pixel as disturbance due to natural fluctuations

in the EVI signal, (2) predisturbance limitation of GPP by climate conditions, (3) release of the remaining vege-

tation from resource (light, nutrient, and/or water) limitation, or (4) an increase in the length of the growing

season. The first and second mechanisms are the most probable in the case of UDs where detections may

reflect random or phenological fluctuations in canopy greenness or temporary climate‐induced declines in

photosynthesis (e.g., due to drought). Natural fluctuations in the EVI signal may have been labeled as distur-

bance in some instances, resulting in false positives. Removal of climate limitations postdetection would

allow “disturbance” pixels to increase in GPP, also resulting in false positives because no actual mortality

occurred. The third mechanism is that partial canopy mortality, as may occur in insect outbreaks, may release

any remaining vegetation from resource limitation, enhancing the productivity of the remaining vegetation

enough to compensate for the partial or complete loss of the canopy, increasing GPP. Several studies [Veblen

et al., 1991; Brown et al., 2012; Reed et al., 2014; Pec et al., 2015] have cited this mechanism to explain potential

increases in productivity following insect disturbance. While the relatively low resolution of MODIS GPP is

unlikely to detect small changes in GPP due to this mechanism, if the affected area is large enough, it may

be sufficient. Finally, sites with increased GPP typically also had increased LST. As minimum temperature is

a variable in the current GPP algorithm, slight increases in LST could extend the growing season and thus

increase GPP.

4.2. Causes and Implications of Differences in Response Among Disturbance Types and Ecoregions

There were differences in LST and GPP responses to disturbance both between disturbance categories and

ecoregions, although the general response patterns matched those from previous studies [e.g., Coops and

Wulder, 2010; Bright et al., 2013; Maness et al., 2013; Moore et al., 2013]. We hypothesize that insect distur-

bances and UDs resulted in less severe responses than fires due to both the detection method used and

the nature of the disturbances. Our disturbance detection algorithm may have recorded some pixels as dis-

turbed that were experiencing decreased greenness that did not cause significant mortality, diminishing the

category’s overall disturbance response results. Additionally, bark beetle outbreaks, defoliator attacks, and
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UDs tend to be somewhat species specific and may occur over several years [Raffa et al., 2008; Bentz et al.,

2010]. Thus, small patches within larger pixels might be at differing successional stages at the time of obser-

vation [e.g., Penn et al., 2016]. These disturbance characteristics could decrease the disturbance LST and GPP

response because few trees may be affected in a given area annually. This also could result in the inclusion of

some mortality in our predisturbance LST and GPP response estimates. However, our recovery figures

(Figures 4 and 5) indicate that the largest changes in magnitude of the variables occurred in the year of

the detection. This suggests that most of the mortality or decrease in productivity occurred in the year of

detection and not in previous years. Thus, we believe that the muting effect of gradual disturbances is

very slight.

The variation in disturbance response among ecoregions is likely a result of regional variation in climate, for-

est composition and structure, soils, and hydrology, as well as disturbance regime. For example, postfire

increases in LST were much lower in ecoregions with high precipitation and moderate temperatures (e.g.,

Marine West Coast Forests) than in ecoregions with low precipitation and higher temperatures (e.g., Upper

Gila Mountains), likely due to greater water availability for latent heat exchange and lower atmospheric

demand. Differences between ecoregions in terms of cloudiness may also account for some of the differ-

ences in disturbance responses. However, all response variables were preprocessed to minimize cloud cover

and were JJA averages, when clouds are the least prevalent. The exact influence of environmental variables

other than air temperature was not investigated in this study and merits further research.

The observed differences in disturbance response between ecoregions reinforce the importance of manage-

ment strategies that are dependent on the disturbance locale. Current and predicted future climate [PRISM

Climate Group, 2011; Dobrowski et al., 2013] and disturbance regimes [Fulé et al., 1997; Franklin et al., 2002]

differ substantially between ecoregions. We show that response regimes (i.e., response magnitude, direction,

and duration) also differ significantly. Variation in management strategies among ecoregions and other

management divisions will have increasing importance as these components (i.e., climate, disturbance

regime, and response regime) of climate disturbance feedbacks interact. This is especially true in areas where

high‐severity disturbance events may be increasing in frequency, as recovery to predisturbance biophysical

characteristics may not occur, indicating longer‐term shifts in ecosystem type or function. Managers should

be wary of applying strategies aimed at mitigating disturbance‐climate feedbacks from one region to

another without validation.

4.3. Potential Disturbance Feedbacks to Local and Regional Climate

Disturbance severity (S) is critical to LST and GPP responses, as has been noted in many previous studies

[Randerson et al., 2006; Bond‐Lamberty et al., 2007; Kurz et al., 2008;Maness et al., 2013]. Disturbances are pro-

jected to increase in severity due to climate change [Adams et al., 2009; Littell et al., 2009; Bentz et al., 2010;

Westerling et al., 2011; Seidl et al., 2014], indicating the presence of a positive feedback loop whereby changes

in climate may result in more frequent and more severe disturbances, which then may result in greater LST

and GPP feedbacks to climate. As severity was also linked to differences in postdisturbance recovery, longer

feedbacks from disturbance to local climates may result as severity increases due to climate change. Longer

disturbance impacts may lead to shifts in ecosystem type, as prolonged changes in the energy budgets of the

area prevent the vegetation from fully recovering [e.g., Breshears et al., 2009; Allen et al., 2010]. However, the

impacts of changes in disturbance regime on recovery patterns may be mitigated somewhat by a CO2 ferti-

lization effect, which potentially allows vegetation to grow more quickly due to enhanced photosynthetic

efficiency [Foster et al., 2010; McMahon et al., 2010; Williams et al., 2012].

Years with warmer air temperatures also resulted in larger LST and GPP responses. As such, disturbance

impacts are likely to be enhanced in areas where climate change will result in warmer conditions. Forest func-

tion may changemore in response to future disturbances than it did in response to historic disturbances with

the same severity and extent.

4.4. Scale and Its Role in Disturbance‐Induced Climate Forcing

The variation in disturbance responses between disturbance types highlights the importance of scale in dis-

turbance studies. Previous studies [e.g., Kurz et al., 2008; Hicke et al., 2013] found that insect outbreaks can

result in potential impacts at least as large as fire. We did not see this in our results. However, nonfire distur-

bances are typically more spatially and temporally patchy than fires. Less continuous spatial patterns mean
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that when aggregated across large pixels (e.g., 250 m), the disturbances appear to have a smaller effect. The

use of 1 kmGPP data may have exaggerated this effect. Penn et al. [2016] found that despite the large impacts

on ET observed at the hillslope scale following a bark beetle outbreak, only small effects were seen at the

watershed scale due to the mediating contribution of nearby healthy vegetation.

4.5. Disturbance Detection

The detection of low‐severity disturbances and in particular insect‐induced damage and mortality remains

a challenge for remote sensing, particularly in cloud‐dominated and mountainous regions. Evaluation

efforts are further hampered by the limited availability of broad‐scale repeated ground survey data. The

BFAST/Hansen and VCT remotely sensed data sets we evaluated agreed well with each other and with

MTBS polygons (Table S3). However, both data sets showed poor agreement with ADS maps (Table S3).

This is not surprising, as ADS maps, while very useful at coarse resolutions for research or for forest planning

purposes, have only low to moderate accuracy when compared to field plots [Johnson and Ross, 2008]. While

ADS data are increasingly used in research studies on the extent and impacts of insect disturbance, these

data have their own issues. For example, different observers conduct the surveys each year, and the methods

used vary from region to region. More specifically, one observer might draw a small polygon around only a

few trees, while another might draw a very large polygon around the same small area. ADS maps are subjec-

tive and represent general areas of disturbance, not precise disturbance locations [Hall et al., 2006; Johnson

and Ross, 2008; Johnson and Wittwer, 2008]. Despite low agreement between our detection product and

ADS, we believe that our combined approach, whereby we limit our ecosystem response results to areas

where ADS also detected insect damage, is justified and preferable to using ADS alone to represent nonfire

disturbances. The approach uses remotely detected data as a complement to ADS and MTBS data to more

finely resolve the temporal and spatial variation in disturbance locations. Several studies have used this com-

bined approach [Hall et al., 2006; Assal et al., 2014], in which aerial surveys bound an area, but remote sensing

algorithms are used to discover the exact locations and timing of disturbances within those bounds. It is

highly unlikely that detected disturbances within an aerial polygon represent a disturbance other than that

marked by the survey. Although our disturbance detection is not perfectly accurate, it is statistically compar-

able to the results from the similar VCT remote sensing approach (Tables S3 and S4 and Figure S9). By limiting

our data extent to areas of known disturbance, we can be confident that the detected points are indeed

disturbance.

4.6. Assumptions and Errors

Several assumptions may have contributed to increased uncertainty in the results. While the BFAST method

has proven effective at detecting disturbances such as fires, floods, and deforestation [Verbesselt et al., 2010a;

Watts and Laffan, 2014; DeVries et al., 2015], the method’s success may vary depending on local vegetation

and disturbance type [Watts and Laffan, 2014]. We demonstrated that BFAST and Hansen data combined

are able to detect the majority of large, moderate to severe, disturbances (Figures S9 and S10 and Tables S3

and S4). However, small or patchy disturbances may be missed at this resolution (250 m), leading to conser-

vative results that are likely to be underestimates rather than overestimates of the total impacts of distur-

bance on forest ecosystems.

We may have also introduced some error by using all MTBS and ADS polygons, regardless of the severity

reported in those polygons. However, our detection methods were designed to represent more spatially

and temporally explicit disturbance locations and tended to pick up higher‐severity disturbances than would

have been found in a random subset of the disturbance polygons (Table S3). It is therefore unlikely that we

include many nondisturbance pixels in low‐severity polygons.

We also assume that the detected decline in EVI represents mortality, not simply a decline in canopy “green-

ness” related to temporary stressors such as high vapor pressure deficit. It is likely that these false positives

are few [Watts and Laffan, 2014; Dutrieux et al., 2015] and occur primarily in the UD category. The use of fire,

bark beetle, and defoliator polygons decreased the likelihood of false positives in those categories. Detected

declines in EVI that did not represent mortality should result in a decrease in the magnitude of the response

results, as nonmortality detections will decrease the average change observed. Additionally, we demonstrate

the validity of EVI‐based severity in Figure S10.
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Issues of scale, especially pertaining to our use of 1 km GPP, may have also resulted in increased uncertainty.

However, several other studies have investigated the effects of MPB on GPP and found reductions in GPP that

overlap the 10–90% quantiles of our results (−27–21%). Results in the upper and lower quantiles of our data

are not considered due to outliers. Bright et al. [2013], Coops and Wulder [2010], andMoore et al. [2013] found

GPP declines of 5–26%, 15–20%, and 13–30%, respectively. Coops and Wulder [2010] studied MPB distur-

bance in British Columbia, and Bright et al. [2013] and Moore et al. [2013] studied MPB disturbance in

Colorado. Both regions have experienced severe MPB damage. While our results overlapped zero and used

the same MODIS GPP product to estimate changes in the variable, we also used coarser‐resolution data to

locate areas of likely disturbance (i.e., 240 m versus 30 m or field data) and included less severely disturbed

areas in addition to severely disturbed areas.

Finally, the calculation of extent (E) may have contributed toward its insignificant relationship with distur-

bance responses. E was determined as the area of adjoining pixels that were affected by the same distur-

bance type. This method is slightly problematic as it assumes that bark beetle and defoliator disturbances

in the same area represent the same outbreak. However, it is logical that E is less important than severity

and interannual changes in air temperature for determining disturbance effects on LST and GPP.

5. Conclusions

We used satellite data to objectively determine the effects of four categories of disturbance on LST and GPP

across nine ecoregions in the western U.S. We found that all disturbance types resulted in overall increased

LST in the 2 years following disturbance, and all disturbance types but UD resulted in decreased GPP,

although the exact magnitude and direction of these changes varied significantly both among disturbance

types and ecoregions. Fires showed the largest and clearest impacts in all response variables, whereas bark

beetle, defoliator, and UD responses were much less pronounced. Severity and interannual changes in air

temperature were the primary drivers of the magnitude of disturbance response regardless of the type or

location, and disturbances of higher severity resulted in longer recovery times. The results of this study

suggest a strong potential climate feedback due to biophysical changes in forests following disturbance

events that may strengthen as disturbances grow in frequency and severity in the coming decades.

Despite several assumptions made in the study, to our knowledge this analysis remains the first to incorpo-

rate multiple disturbance types over a large geographical region in an evaluation of the effects of disturbance

on ecosystem climate services. Future research utilizing both field and satellite observations in conjunction

with ecosystem simulations is required to advance our understanding of ecosystem responses to interactions

between climate and disturbance.
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