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Conventional calculations of the global carbon budget infer the

land sink as a residual between emissions, atmospheric accumu-

lation, and the ocean sink. Thus, the land sink accumulates the

errors from the other flux terms and bears the largest uncertainty.

Here, we present a Bayesian fusion approach that combines multiple

observations in different carbon reservoirs to optimize the land (B)

and ocean (O) carbon sinks, land use change emissions (L), and

indirectly fossil fuel emissions (F) from 1980 to 2014. Compared

with the conventional approach, Bayesian optimization decreases

the uncertainties in B by 41% and in O by 46%. The L uncertainty

decreases by 47%, whereas F uncertainty is marginally improved

through the knowledge of natural fluxes. Both ocean and net land

uptake (B+ L) rates have positive trends of 29± 8 and 37± 17 Tg C·y−2

since 1980, respectively. Our Bayesian fusion of multiple observa-

tions reduces uncertainties, thereby allowing us to isolate important

variability in global carbon cycle processes.
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The land and ocean carbon sinks provide a vital climate mit-
igation “service” by absorbing on average about 55% of an-

thropogenic CO2 emissions from fossil fuel combustion and land
use change. Research has focused on understanding the rela-
tionships between year-to-year variability in carbon sinks and
climate (1, 2), as well as the long-term trend over the full in-
strumental period of CO2 monitoring at the Mauna Loa station
(3). Quasidecadal variations of emissions and sinks have received
comparatively less attention. However, significant climate varia-
tion occurs at this specific timescale (4). Since 1980, the variable
occurrence of different El Niño–Southern Oscillation events, two
large volcanic eruptions (El Chichón and Pinatubo) and the recent
slowdown of land surface warming have modulated the strength of
carbon sinks. There are also decadal-scale changes in the rate at
which human activities perturb the natural carbon cycle, in par-
ticular the recent acceleration of fossil fuel and cement emissions
in the 2000s (5) and the slowdown in global land use change
emissions (LUC) in the mid-2000s, which appears to be partly
driven by reduced deforestation in Brazil (6).
Here, we provide a data-driven assessment of global CO2

sources and sinks at 5-y intervals for the period of 1980–2014.
We use a Bayesian fusion approach whereby different data
streams of ocean and land uptake, LUC emissions, are optimally
combined, and their uncertainty reduced from prior knowledge.
This approach estimates the land sink constrained by data, which
is a major improvement over the conventional method for calcu-
lating the global carbon budget by Ciais et al. (7) and Le Quéré
et al. (8), hereafter LQ15, where the unknown land sink was de-
termined as a residual from the other components (emissions,

atmospheric increase, ocean uptake). Most of the data streams
used in this analysis start in 1980, and about one-half of them
give decadal mean values of natural sinks and thus do not allow
us to tackle the reconstruction of interannual variability. Our
choice of applying a Bayesian fusion approach to optimize 5-y
average component fluxes of the global carbon budget is there-
fore a compromise that maximizes the use of available obser-
vations of decadal average fluxes.
The principle of the Bayesian fusion approach is to combine

an a priori imperfect knowledge of fluxes with observations and
their uncertainties to infer optimized estimates of fluxes. Here,
we define a priori values of terms in the global carbon budget
that are not from observations. Specifically, we set prior fossil
fuel and cement emissions (F) from inventories and the simu-
lated land, ocean, and land use change carbon fluxes from process-
based models (Table S1). The fluxes in this study are only an-
thropogenic fluxes, assuming a mean CO2 growth rate of zero
during preindustrial times. Observational datasets independent
from those prior values are applied to constrain land use change
emissions (L), the ocean uptake of anthropogenic CO2 (O), the
land-biosphere sink (B) in ecosystems not affected by land use
change, and the net land flux (B + L) (Table S2). We select the
constraining data from peer-reviewed publications and evaluate
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their reported uncertainties and possible error correlations with
each other (see details in Table S2).

Results

In the optimization of the global anthropogenic carbon budget
(Fig. 1), the prior value of F and its uncertainty (Table S1) were
defined from the mean value and the range of different fossil fuel
and cement emission inventories, namely from the Carbon Di-
oxide Information Analysis Center (CDIAC) (9), International
Energy Agency (IEA) (10), Emissions Database for Global At-
mospheric Research (EDGAR) (11), and BP Statistical Review
of World Energy (12). These emission inventories are not
treated as direct observations of emissions, and there is currently
no independent observation to verify F. The prior values of O
are from seven ocean biogeochemistry models (8), and the prior
values of B are from the nine TRENDY land carbon models
(13). These prior values from state-of-the-art models are without
direct observational constraints. Some of these models could
possibly be tuned using similar observation-based data, but which
observational data were used for model tuning was not explicitly
reported. The prior estimates of L are derived from the differ-
ence of simulated land carbon fluxes with and without LUC in
the TRENDY carbon models (13). All fluxes are defined as
positive if CO2 is emitted to the atmosphere by the land or the
ocean reservoir. Uncertainties in the prior estimates of 5-yearly
O, B, and L, are set to the maximum between those reported by
LQ15 and the SDs across models. All uncertainties here refer to
1-σ Gaussian errors. In this context, the prior uncertainties are
0.5 for O, 0.9 for B, and 0.8 Pg C·y−1 for L, thus not smaller than
the values of 0.5, 0.8, and 0.5 Pg C·y−1 from LQ15. It is important
that the prior uncertainties are not too small, so that adding
observations can adjust and constrain the sought fluxes.
Several independent data streams, each with their specific

uncertainty and temporal averaging period (Table S2), are
combined in the Bayesian optimization with the above prior
knowledge. These data streams are as follows: (i) the atmo-
spheric CO2 growth rate (CGR) from the National Oceanic and
Atmospheric Administration (NOAA)/Earth System Research
Laboratory (ESRL) atmospheric network (14), which constrains
the sum of all fluxes and is determined very accurately from
more than 60 monitoring stations; (ii) the atmospheric 5-y mean
(negative) growth rate of O2/N2 in the atmosphere from the

Scripps O2 Program (15), which relates to the combined effect of
B + L and F changes, while being insensitive to changes in O
(note that O2/N2 has a negative trend in the atmosphere); (iii) a
set of yearly mean estimates of O from observational products
based on in situ partial pressure of CO2 (pCO2) surveys cor-
rected for natural ocean CO2 outgassing from carbon delivered
by rivers (16) and using a neural network approach (17) and a
diagnostic mixed-layer approach (18), and a set of decadal-mean
estimates of O from inventories of carbon change in the ocean
deduced indirectly from chlorofluorocarbons (CFCs) (19) com-
bined with 14C (20), and observed atmospheric mean CO2 level
and oceanic CO2 and dissolved inorganic carbon observations
(21); (iv) 10-y mean estimates of B from a global synthesis of
changes in forest carbon stocks (22); (v) decadal mean B + L from
inventory-based land carbon storage change from the RECCAP
publications on regional budgets (Table S3); (vi) 5-y mean LUC
emissions from two independent bookkeeping approaches con-
strained by observed carbon stocks (23, 24). The uncertainties in
each data stream are either derived directly from the original
publications (when reported) or estimated from expert judgments
(see details in Table S2). The optimization is performed for seven
consecutive 5-y windows between 1980 and 2014.
In the Bayesian optimization, observations that describe mean

fluxes during intervals longer than 5 y are still useful to infer
5-yearly fluxes. For example, the mean ocean sink observation
for the 1990s (19) constrains the two mean 5-yearly O during
1990–1999, whereas other independent observations (O2/N2 and
CGR) help to further allocate O values between the periods
1990–1994 and 1995–1999. Despite no direct observation of F,
this flux is found to be slightly improved in the Bayesian fusion,
through knowledge of the other terms, and because the sum of
all fluxes is very well constrained from CGR observations. We
are aware that some observation-based land sink estimates have
systematic errors in the way they are included in the optimiza-
tion. In particular, the estimate of B from ref. 22 is only for
forests and ignores other biomes. However, the Regional Carbon
Cycle Assessment and Processes (RECCAP) studies (25–27) and
other estimates (22, 28) of the carbon stock change in nonforest
biomes suggest that the forest sink alone accounts for most of the
global land sink B.
The improved global budget of anthropogenic CO2 is shown in

Fig. 2, and all data are given in Table S1. After optimization, the
a posteriori uncertainty in each flux is reduced. Compared with
the conventional method applied by LQ15 and IPCC-AR5 (7),
uncertainties in B and O are reduced by 41% and 46% in this
study. In the Bayesian data fusion, the land sink is no longer
solely inferred as a residual that accumulates uncertainties from
all other terms, and it exhibits a large reduction in uncertainty.
The uncertainty in L decreases by 47%, but the uncertainty in F
is marginally improved (by 1%) through the indirect constraints
of other terms. In the absence of direct constraint on F, this small
reduction in the F uncertainties compared with LQ15 and IPCC-
AR5 (7) is also because we use multiple emission inventories
[whereas LQ15 and IPCC-AR5 (7) only used CDIAC (9)] and
start at relatively higher prior uncertainties in F (Table S1) than
in LQ15. Despite their improved (smaller) uncertainties, the 5-y
mean fluxes shown in Table S1 do not differ statistically in their
mean values from LQ15. This indicates that each flux of the
Bayesian carbon budget is fully consistent with LQ15 even though
we used an array of data with different measurement methods and
with uncertainties estimated in different ways. Specifically, we
obtain emissions from fossil fuel burning and cement production
that are smaller than LQ15 by 0.18 ± 0.19 Pg C·y−1 during 1980–
2014 (Fig. 2). A downward revision of global F is consistent with
the correction of the emissions for China based on evidence of the
lower carbon content for coal burned in that country (29). Com-
pared with LQ15, the optimized ocean sink during 2000–2004 is
larger by 0.22 Pg C·y−1 but lower by 0.18 ± 0.10 Pg C·y−1 during

Fig. 1. The framework of our optimization. The number of constraining
data streams and the specific data sources are marked on the Right. The
fluxes that are optimized are 5-y averages of F, O, B, and L, representing
fossil fuel and cement emissions, ocean sink, land sink, and land use change
emissions, respectively. The observations used to constrain these fluxes are
the 5-y averaged growth rates of CO2 and O2/N2 in the atmosphere, obser-
vations of O and B from carbon measurements made in these two reservoirs,
and inventory-based estimates of L and the net land sink (B + L). In this
framework, the CO2 growth rate constrains the sum of all of the fluxes. The
O2/N2 growth rate allows us to separate O and B + L and bring some con-
straint on F as well.
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all of the other periods. In the past decade (2005–2014), both
ocean sink and land sink from our optimization are smaller than
LQ15. The optimized fluxes of L are similar to or lower than
those from LQ15. The trend of F for the seven 5-y periods is
positive (P = 0.003), with a probability of a positive trend for
ocean and net land (B + L) uptake rates of 93%; the trend of B
or L individually is not statistically significant (P = 0.23 for both).
The increasing rate of ocean and net land uptake are 29 ± 8 and
37 ± 17 Tg C·y−2 since 1980, respectively. Similar statistically
positive trends were also found in the 5-y mean ocean and net
land uptake rates between 1980 and 2014 calculated from the
yearly budget updated by LQ15 (Fig. S1A). Given the robustness
of O inferred by our optimization (Fig. S2), and in view of the
many observations constraining this flux, there is a high confidence
that the ocean sink has been increasing over time since 1980. The
optimized land sink is less variable between different 5-y periods
than in LQ15 (Fig. S1A). However, the ocean sink is more vari-
able, with a SD of 0.34 Pg C·y−1 compared with 0.27 Pg C·y−1 by
LQ15 (SDs across the seven periods analyzed).
From 1980 to 2014, the average fractions of F + L emission

reabsorbed by the land and ocean carbon reservoirs are 29 ± 5%
(mean ± 1 σ of inter–5-y variability) and 26 ± 2%, respectively.
The ratios of both O and B to F + L emission do not exhibit any
significant trends (P > 0.05; Fig. S1B). Even with their reduced
uncertainty in this study compared with LQ15, the variability of

O and B between 5-y intervals prevents us from assessing the very
small trends in their ratios to emissions. Similarly, we found no
significant trend in the ratio of O or B to fossil fuel emission (F).
The larger variability of the B-to-(F + L) ratios compared with the
O-to-(F + L) ones (Fig. S1B) suggests that the efficiency of the land
sink at absorbing emissions is more variable than that of the ocean
sink. For instance, during the period that followed the cooling from
the Pinatubo eruption in 1990–1994 (30–32), the B-to-(F + L) ratio
increased by 46% above its long-term mean. This ratio was also
higher than normal during 2005–2009, possibly due to the absence
of El Niño and to the occurrence of a cooler and wetter La Niña
event in 2008–2009 manifested by lower than normal CGR (3).

Discussion

In our Bayesian fusion, the CGR constrains the sum of the dif-
ferent fluxes; thus, an overestimation of a component flux due to
the use of a single published estimate of that flux would result in
an underestimation of another flux, leading to negative corre-
lations between uncertainties in the different components of the
posterior fluxes. These negative correlations are clear between
uncertainties in B and F (ranging from −0.80 to −0.35), in B and
O (from −0.60 to −0.30), and in B and L (from −0.53 to −0.24)
(Fig. S3). This indicates that, although the uncertainties for each
flux can be significantly decreased, the remaining (posterior)
uncertainties are hard to be decoupled. In comparison, we also
calculate the correlations between uncertainties in B and other
fluxes by classical error propagation rule from mass balance
equation B = CGR – F – O – L. The conventional error budget
calculation gives a typical uncertainty of 0.76 Pg C·y−1 for
B. Negative error correlations also exist in that approach between
B and F (−0.39), between B and O (−0.79), and between B and L
(−0.39). Thus, in our study, not only the posterior uncertainties
of B (0.42–0.53 Pg C·y−1) are smaller than those calculated by
the conventional approach, but also the negative error correla-
tion between B and O is smaller, indicating a better separation
between the carbon sinks of B and O. In addition, although the
negative correlations between B and F, and between B and L are
slightly larger than those calculated by the conventional ap-
proach, it does not mean our approach has poorer ability to
separate these components because we have succeeded in sig-
nificantly decreasing the absolute uncertainties for all of the
fluxes, thus allowing us to draw more definitive conclusions.
The Bayesian fusion of different observational components of the

anthropogenic CO2 budget proposed in this study provides the most
robust estimate to date of the strength and evolution of the land
sink on 5-y intervals and brings a more robust picture of the current
perturbation of the carbon cycle. Future work could apply the same
fusion approach to regional carbon budget estimates and to gross
CO2 fluxes of photosynthesis, respiration, and fire emissions.

Materials and Methods
Bayesian Estimation System. Each estimate of the 5-y mean carbon fluxes,
called hereafter the “control variables” x, is based on the update from a
prior estimate of these variables xb, using some observation-based estimates
yo of the fluxes that are connected to the control variables through the
relationships H: x→y = H[x]. We follow a Bayesian statistical approach for
this estimation. Assuming that the distributions of uncertainties in xb and yo

are unbiased and Gaussian, being characterized by the prior and observation
uncertainty covariance matrices B and R, respectively, and that H is linear
(denoted as a matrix H), the statistical estimate of x, given xb and yo, is
unbiased and Gaussian, and the corresponding optimal estimate xa and
uncertainty covariance matrix A are given (33) as the following:

A=

�

B-1 +HTR−1H
�

−1
, [1]

xa = xb +AHTR−1
�

yo −Hxb
�

, [2]

where the superscripts T and “−1” denote the transpose and inverse of a
matrix, respectively.

A

B

C

D

Fig. 2. (A) The fossil fuel and cement emissions (F), (B) ocean sink (O) and
(C) net land flux (B + L), and (D) land sink (B) and land use change emissions
(L) from prior knowledge, posterior results, and LQ15. All of the fluxes are
5-y means in each period. The error bars represent the 1-σ uncertainties.
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In the optimization, we update the estimate of the mean fluxes of fossil
fuel and cement emissions (F), ocean sink (O), land sink (B), and land use
change emissions (L) for each 5-y interval from 1980 to 2014 (Fig. 1 and Table
S1). The observation vector contains estimates of 5-y mean global value for
the following: the atmospheric growth rates of CO2 (CGR, in petagrams of
carbon per year), atmospheric growth rates of O2/N2 (CGR-O2, per meg unit),
observation-based estimates of ocean sinks, land sinks, land use change
emissions, and net land sink (B + L) (the data sources for these components
of yo are summarized in Fig. 1 and provided in Table S2). H is defined for
each 5-y interval by the following:

                x    →                   yo               =                                  Hx               

H :

2

6

6

4

F
O
B
L

3
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7

5

→

2

6

6

6

6

6

4

CGR
CGR−O2

O
B
L

B+ L

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

F+O+B+ L
αFF+ αBðB+ LÞ+ ZO2

O
B
L

B+ L

3

7

7

7

7

7

5

, [3]

where αF, αB, and ZO2 are constant coefficients from ref. 15.

The prior estimates for the different control variables are built with in-
dependent datasets so that there are no correlations between the prior
uncertainties in the different control variables. When setting up the obser-
vation covariance matrix, the temporal correlations between the uncer-
tainties in different 5-y intervals for CGR and O are estimated using the
method in ref. 34. The correlations between the uncertainties in the two
data-driven estimates of O (17, 18) are estimated from the series of annual
fluxes of the two products by assuming that the correlation in annual fluxes
within each 5-y period is an approximation of the 5-y mean flux error
correlation.

Data Used to Derive the Prior Statistics of the Control Variables. To define the
prior estimate of F, individual country data from four emission inventories
[CDIAC (9), IEA (10), EDGAR (11), and BP (12)] are grouped into geographic
regions as specified by the United Nations Statistics Division (unstats.un.org/
unsd/methods/m49/m49regin.htm). Cement emissions from EDGAR are added
into the IEA and BP datasets that do not include cement emissions. Uncer-
tainties for each country (35) are used to create regional uncertainty distri-
butions using a bootstrapping method, with the uncertainties of the highest
emitters in each region contributing the most to the uncertainty distributions.
This effect is achieved by weighting the sampling probability (Ps) by the rela-
tive contribution of each country’s emissions (EC) to the total emissions within
the region (ER) as follows:

Ps =
EC
ER

. [4]

To constrain the temporal component of the emission errors, 10 random
samples are drawn from the corresponding regional uncertainty distribution
for each country, producing 10 random uncertainties for each country. These
country-level uncertainties are used to constrain a random error time series
covering 1980–2014, which is then run through an algorithm incorporating
autocorrelated random noise, such that

eFðtÞ = 0.95× eFðt−1Þ + eðtÞ, [5]

where emission error factors for any given year eF(t) are correlated with the
emission errors from the previous year eF(t−1) by an autoregressive coefficient
of 0.95 with e(t) as random error. The autocorrelated time series are then
multiplied and added to the fossil fuel emissions for each country, and
subsequently 500 samples of global fossil fuel emissions are taken for each
5-y bin. The means and SDs of each bin for each inventory are calculated
from these 500 samples. Additionally, the correlation in global uncertainty is
calculated between 5-y bins and inventories to produce an error-covariance
matrix. The maximum between the uncertainties calculated above and the
SDs of the 5-y means across four emission inventories were adopted as the
uncertainties in the prior estimate of F.

Prior O values are set from the ocean biogeochemistry model values used
in LQ15, which represent state-of-the-art ocean models and are generally
consistent with estimates from data-based products (8). Note that LQ15
adjusted their simulated O so as to match ocean observations during the
decade of the 1990s and then used these bias-corrected ocean models out-
side this period (see adjusted values in Table S1). Here, for setting the prior O
estimate and uncertainty, we consider simply the spread and the mean of
ocean models without any adjustment, because the adjustment performed
by LQ15 is already a kind of model data-fusion approach based on the ocean
observations used in our study.

Prior values of L and B are set from simulations in the TRENDY (version 2)
model intercomparison project (13). The simulations in TRENDY (version 2)
are up to 2012, and thus the priors for the period of 2010–2012 were used
for the period of 2010–2014. All of the prior flux values are summarized in
Table S1.

Uncertainty Correlations Between Optimized Variables. The correlations of the
uncertainties between optimized variables are shown in Fig. S3. In com-
parison, we also calculate the correlations between uncertainties in the
fluxes when deriving the estimate of B using the classical mass balance
equation B = CGR – F – O – L. First, the uncertainties in an estimate of the
flux i is calculated using inverse variance method, based on the variances
associated with all of the estimates of this flux (j = 1, 2, . . ., m):

σi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Pm

j=1
1
σ
2
i,j

v

u

u

t . [6]

The resulting uncertainties for CGR, F, O, and L are as follows: 0.2, 0.3, 0.6, and
0.3 Pg C·y−1, respectively. Based on a simple error propagation: «B = «CGR −

«F − «O − «L and the independence of the estimates of CGR, F, O, and L, the
variance of the uncertainty in B is given by the following:

σ
2
B = E

�

«
T
B«B

�

= σ
2
CGR + σ

2
F + σ

2
O + σ

2
L , [7]

where E(.) is the expectation of a variable. The correlation between the
uncertainties in B and in another variable, namely, O in the equation below,
is given by the following:

rð«B, «OÞ=
E
�

«
T
B«O

�

σBσO
=−

σO

σB
. [8]

Sensitivity Tests. Four sets of sensitivity tests were conducted (Fig. S2):
(i) using F from different inventory datasets (IEA, EDGAR, CDIAC, and BP,
respectively) as priors; (ii) using different ocean constraining datasets (only
data from ref. 17, only data from ref. 18, data from refs. 17 and 18 but
without other ocean data, and all ocean data except ref. 19, respectively);
(iii) using different tiers of constraining data (tier 1 only, tier 1 plus tier 2,
and tier1 plus tier 2 plus tier 3, respectively); and (iv) using enlarged prior
uncertainties (106 Pg C·y−1 except F), prior B and O from CMIP5 models (36)
instead of TRENDY (version 2) models, and a subset of constraining data
including CGR, O2/N2, L from ref. 24 and O from pCO2 and inventories (17,
18, 20). The constraining data tiers (Table S2) were defined as follows: tier 1,
direct carbon observations (e.g., CGR); tier 2, indirect carbon observations
unambiguously related to carbon quantities (e.g., O2/N2); tier 3, direct car-
bon observations with an empirical (data-driven) model used to obtain
global estimates, for example, the use of geostatistics to up-scale local data
into global values; tier 4, indirect carbon observations not simply related to
global carbon flux quantities.

The ocean sink is rather consistent in all sensitivity tests (Fig. S2), implying
it is very robustly constrained in the optimization because of the sufficient
number and consistency of constraining observational data (see the O
constraining data in Table S2). Small changes in optimized F were found
(Fig. S2A) in the sensitivity tests using prior F from different datasets, and
the land sink is more dependent on the prior F choice. In the sensitivity
tests using different ocean constraining data (Fig. S2B), all fluxes are
generally consistent, and very slight changes for O appear in the tests using
ocean data from ref. 17 only and from ref. 18 only during 2000–2004 and
2005–2009. The decadal estimates (19–21) only have small impact on their
corresponding periods. The important point for the sensitivity tests using
different tiers of constraining data are that there is no inconsistency (i.e.,
shift in posterior estimate) between the assimilations of different “obser-
vation-based” tiers, although L may change due to the lack of individual
constraints in tier 1 and tier 1 plus tier 2 (Fig. S2C). With enlarged prior
uncertainties (106 Pg C·y−1 except F), the mean flux values do not shift in
general but the posterior uncertainties increase (Fig. S2D). Results are also
very consistent by replacing prior B and O from TRENDY, version 2, models
with from CMIP5 models (Fig. S2D). The sensitivity test using a subset of
constraining data underestimate B and L compared with the original opti-
mized results (Fig. S2D) because the L estimates in ref. 23 (used in the
original optimization but not in this sensitivity test) is higher than that in
ref. 24 (Table S2).

Trend Test. A Mann–Kendall statistical test was applied as a trend test.
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