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Abstract

Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet
there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While tem-
perature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot
scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across
different biomes and at the global scale require tests of the relationships between field estimates and global climatic
data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil
temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil
Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve
predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is
comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver
of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors
of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipi-
tation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain
due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more
directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity
by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mecha-
nistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr ', but also highlight
regions of uncertainty where more observations are required or environmental controls are hard to constrain.
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plant roots as well as microbial communities, soil respi-

Introduction . . . .
ration integrates both autotrophic and heterotrophic

Global soils store over 1500 Pg of carbon (C), more than
the atmosphere and terrestrial plant biomass combined
(Scharlemann et al., 2014). Each year, soil respiration
pathways release 75-100 Pg C to the atmosphere as
CO,, outweighing fossil fuel emissions by an order of
magnitude (Bond-Lamberty & Thomson, 2010a,b; Bal-
lantyne et al., 2015). Despite the importance of soil res-
piration (Rs) as an ecosystem carbon source, our
understanding of global constraints to Rs and its sensi-
tivity to changing climate conditions remains uncertain
(Falkowski et al., 2000; Emmett et al., 2004; Seneviratne
et al., 2010; Wu et al., 2011). Assessments of global- and
biome-level net ecosystem exchange require applying
climatic controls on Rs that are limited by scales of
measurement (Jones et al., 2003; Exbrayat ef al., 2013;
Yang et al., 2013; Xiao et al., 2014). Because soils contain
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respiration processes, which are difficult to disentangle
at both small and large spatial scales. Autotrophic res-
piration, however, is generally considered to be propor-
tional to gross primary productivity (GPP), and total
soil respiration measurements have been used to
explore climatic controls on heterotrophic respiration
(Rustad et al., 2000; Raich et al., 2002; Wieder et al.,
2013).

Quantitative models of Rs typically depend upon
local-scale measurements of available energy, water,
and carbon or upon global-scale observations informed
by satellite measurements, using precipitation as a
proxy for water availability and other broad assump-
tions. However, relatively few studies have assessed
global variations in soil respiration with a large number
of empirical measurements that can help bridge the gap
between local, regional, and global scales (Rustad et al.,
2000; Seneviratne et al., 2010; Hashimoto et al., 2015;
Sierra et al., 2015). Specifically, soil moisture controls on
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respiration have not been evaluated from observations
at the global scale.

In order for global land models to more accurately
simulate the sensitivity of Rs to temperature, moisture,
and productivity, biome-specific parameters may need
to be developed in conjunction with estimates of NPP
and soil carbon content. Many of the temperature and
moisture scalars, thresholds, and optima in these mod-
els are assumed to be constant or change very little
among biomes in the absence of more detailed informa-
tion (Exbrayat ef al., 2013; Yang et al.,, 2013; Yi et al.
2011). Site-specific and regional studies, however, sug-
gest that the relative importance of factors like soil
moisture or carbon content varies across different
biomes due to soil properties (Davidson & Janssens,
2006; Moyano et al., 2013), seasonality of precipitation
(Chimner & Welker, 2005; Wei et al., 2010; Wang et al.,
2013), vegetation characteristics, or other factors (Pacific
et al., 2009; Suseela et al., 2012; Fissore et al., 2013). Glo-
bal land model simulations of terrestrial carbon fluxes
that incorporate Rs components are commonly cali-
brated and validated against eddy covariance measure-
ments of net ecosystem carbon exchange (Yang et al.,
2013), but to our knowledge these models have not yet
been validated using remote-sensing data and field
measurements of Rs.

The Global Soil Respiration Database (Bond-Lamb-
erty & Thomson, 2010a,b) updates the collection of soil
respiration studies originally analyzed by Raich & Sch-
lesinger (1992) and contains 4387 observations of Rs
from 1971 to the present. This database (SRDB version
2) reports location information and measurement data
for about 3500 studies that report an annual integrated
soil respiration flux. These measurements span a wide
breadth of space and time, although most observations
represent recent years and northern temperate lati-
tudes. Recently these data have been used to show an
apparent increase in soil respiration in response to
warming surface temperatures and changes in precipi-
tation (Bond-Lamberty & Thomson, 2010a,b; Hashi-
moto et al., 2015), outline uncertainty in nonbiological
influences of soil respiration (Rey, 2014), question the
climate and vegetation controls on heterotrophic respi-
ration functions implemented in earth-system models
(Shao et al., 2013), and assess precipitation and temper-
ature sensitivity at different scales (Sierra et al., 2015).
We contribute to this growing body of work by linking
Rs observations to independent estimates of soil mois-
ture, precipitation, soil temperature, vegetation net and
gross primary production (NPP, GPP), and soil carbon
content from datasets designed for studies at regional
and global scales. This study explores the extent to
which soil respiration is controlled by these environ-
mental factors at global and biome scales and
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incorporates these empirical constraints into statistical
models built on mechanistic bases for predicting Rs.
These analyses identify dominant factors regulating Rs
in different biomes and highlight uncertainty around the
relative importance of these environmental factors across
biomes when incorporated into global predictions.

Materials and methods

Data assembly and integration

We linked soil moisture and temperature estimates from the
global ERA-Interim re-analysis product (Berrisford ef al., 2011;
Dee et al., 2011) from the period 1979 to the present
(0.5-degree resolution) to annual respiration values from the
SRDB. We used soil temperature and soil moisture estimates
for level 1 (surface, <20 cm) depths, and we collected daily
mean estimates for each of these variables before aggregating
them into annual statistics. Satellite data were queried for
locations and years corresponding with annual Rs estimates
from the SRDB. We collected annual GPP and NPP values in
the same fashion from two sources: the satellite observation-
based 1-km resolution MODIS (Moderate Resolution Imaging
Spectroradiometer) MOD-17A2/3 (Collection 5) global pro-
duct (Running et al., 2004; Zhao et al. 2005), covering 2000—
2012, and AVHRR (Advanced Very High Resolution Radiome-
ter)-based Global Production Efficiency Model product, dis-
tributed by the University of Maryland’s Global Land Cover
Facility and covering 1979-1999 (Prince & Small, 2003).
Annual GPP figures for the years 20002012 were aggregated
from 8-day values. We collected soil organic carbon estimates
(both total soil column parameters and upper 20 cm topsoil
carbon estimates) and other site variables, such as soil pH,
from the Soilgrids 1 km product, distributed by the Interna-
tional Soil Reference and Information Centre (Hengl et al.,
2014). Land cover classification and vegetation characteristics
were derived from MOD-17’s collection-5 plant functional
types (Friedl et al., 2010) as well as vegetation descriptions in
the SRDB, and we partitioned the resultant dataset into nine
global biomes characterized by similarities in climate and veg-
etation type (Fig. 1).

Gridded datasets were queried for locations and years cor-
responding with annual Rs estimates from the SRDB. For our
analysis, we filtered the SRDB to eliminate those studies that
are unlikely to represent typical soil respiration efflux at the
mismatched spatial scale of the global grid-cell observations
by eliminating manipulative studies and those flagged by the
SRDB as problematic data or having a low number of mea-
surements contributing to annual integrated Rs; these criteria
and the stipulation that studies report annual calculations of
Rs eliminated nearly 60% of the available SRDB record, which
further reduced the number of measures in both arctic and
tropical biomes. Furthermore, to control for topographic
heterogeneity that may render local study site locations less
suitable for representing regional conditions indicated from
coarse footprint satellite and global climate observations, we
applied a quarter-degree mask to a 1-km resolution digital ele-
vation map (ASTER-GDEM) (Tachikawa et al., 2011) around
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Fig. 1 Biomes and global Annual Soil Respiration observations of the study set. [Colour figure can be viewed at wileyonlinelibrary.com].

each in situ SRDB observation location and eliminated sites
where the standard deviation of the regional topography
exceeded 115 m. This process eliminated the most topographi-
cally heterogeneous 15% of the original SRDB dataset. Our
final dataset contained 1740 annual Rs observations from 1979
to 2012 (Fig. 1), 1734 of which were spatially and temporally
linked to soil moisture and temperature measurements, 1366
of which were linked to NPP measurements, and 1725 of
which were linked to soil carbon estimates.

Statistical models

In order to explore the primary factors influencing spatial vari-
ability in Rs measurements, we performed a series of descrip-
tive and predictive statistical analyses. First, univariate analyses
allowed us to establish the primary variables significantly corre-
lated with the Rs observations. Second, we calculated biome-
scale mean Rs measurements and those of influential drivers.
Third, we performed a principal components analysis (PCA) of
the global dataset and independently for each biome to explore
patterns by which several factors covaried and the relative
strength with which they contributed to variability in Rs. We
also produced regression trees to explore the hierarchical
importance of these factors on Rs variability in each biome.
Finally, we evaluated the performance of predictive models of
Rs based upon the dataset. We compared the fit of a generalized
additive model (GAM) to those of several commonly used
model structures using a nonlinear least squares (NLS) proce-
dure to fit the environmental variable coefficients. We
addressed spatial and quantitative differences between these
mechanistic models and the statistical models.

For each of the nine biomes, and for the global dataset as a
whole, we tested for significant linear relationships between
Rs and 9 independent variables. On a matrix of all variables,
we calculated pairwise Pearson product-momentum

correlations and partial correlation coefficients adjusting for
all other variables. We also calculated the sample size, mean,
and standard deviation for these variables for each biome
(Table 1, Figs 2—4). Following Raich & Schlesinger (1992), we
performed simple linear and nonlinear regression analyses for
each environmental variable on biome-level Rs.

We analyzed both the global dataset and each biome indi-
vidually using principal components analysis (PCA). We first
calculated global PCAs of the independent variables most
expected to influence Rs variability, from which we overlaid
Rs values to assess where these values clumped relative to the
loading values, and second, of data including Rs values as
well as the significantly correlated independent variables.

Another means of explaining variation in the Rs values is
through regression tree analysis (De’ath & Fabricius, 2000).
This procedure splits the dataset by recursive partitioning of
the variance in Rs. Each node of the regression tree model
effectively ranks the independent environmental variables’
explanatory power toward each subset of the Rs dataset. To
avoid over-fitting, the regression trees were pruned using a
reduced-error algorithm which terminates the recursive parti-
tioning procedure when further splits no longer reduce cross-
validation error.

We compared the performance of several regression model
structures for predicting annual Rs in the dataset. Table 3
describes the model structure and performance of GAMs for
the global dataset and for each biome individually, using the
Pearson coefficient of determination (+?), Akaike’s information
criterion (AIC), and root-mean-squared error (RMSE) to assess
goodness of fit. These models assume a linear relationship
between NPP and Rs as described in previous literature, as
well as a linear fit of one or more additional soil characteristics
(SOC or pH) depending upon the significance of that relation-
ship in each data subset. Nonlinear temperature and moisture
functions were calculated using a cubic-spline smoothing
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function. In our analysis, these general additive models serve
as an empirical ‘benchmark’ predicting the observed data to
the best degree for comparison with mechanistic models.

Mechanistic models

We fit two mechanistic model forms using a nonlinear least
squares (NLS) fit procedure. Assuming an Arrhenius-style
function to scale a hypothetical maximum respiration rate in
response to temperature, and model parameters shaped as
Michaelis-Menten functions to act as scalars of two other vari-
ables (following Raich et al., 2002; Chen et al., 2014), we evalu-
ate the relative performance of models which converge on
these coefficients for mean annual precipitation, mean soil
moisture, total soil carbon, and topsoil carbon, and with or
without an additional linear function of NPP. Although pub-
lished work has described the ability of this model structure
to predict variation in Rs with annual precipitation (Chen
et al., 2010, 2014), the direct relationship with soil moisture at
the global scale has not been previously tested. Because many
studies have described a parabolic moisture function which
dampens respiration rates at higher soil moisture levels, we
repeated the above-described process to fit moisture coeffi-
cients within a model structure based on the Carnegie-Ames-
Stanford Approach (CASA), a set of functions used to scale
soil carbon decomposition in several major earth-system mod-
els (Potter et al., 1993; Melillo et al., 2000; Wang et al., 2010;
Fung et al., 2015; ). In addition to an exponential temperature
function, the CASA model framework scales the response rate
by a quadratic soil moisture function. These NLS regression
models were validated using k-fold cross-validation on five
testing and training datasets, each containing 20% of the origi-
nal data. Additionally, we calculated total global Rs estimates
for each of these models by multiplying the predicted Rs rate
in each grid cell by its area and summing grid cells for global
estimates. Error in these global estimates was calculated by
propagating the site error and again multiplying by the area
of the cells: Rseror = (1/ 71 * RMSE? /n) * cell area. Importantly,
these global estimates were calculated only where spatially
delineated by the biomes in this study; wetland areas, which
are known to contribute to global Rs but had too few Rs obser-
vations, were not considered in our global predictions and
excluded from our spatial models.

Data processing and availability

To process the spatial and temporal components of the source
data, we used both ArcGIS (distributed by ESRI) and NOAA's
Weather and Climate Toolkit (www.ncdc.noaa.gov/wct). All
statistical analyses were performed using rstublo (Version
0.98.1091, rstudio.com). Principal components analysis was
performed using the devtools and ggbiplot packages. Regression
tree analysis was performed using the rpart and plyr packages.
Statistical modeling was performed with the gam, mgcv, and
nls packages. Raster analysis and modeling were performed
using the raster and rgdal packages. Our dataset, supplemental
information, and sample code are available in supporting doc-
uments online.
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Results

Consistent with previous studies (Raich ef al., 2002;
Bond-Lamberty & Thomson, 2010a,b; Chen et al., 2010),
we find that temperature is the most important factor
regulating global Rs. Mean annual soil temperature
estimates derived from ERA-Interim re-analysis and
MAT measurements from the SRDB are highly corre-
lated (Table 2) and show similar controls on Rs (Fig. 2);
we therefore address mean soil temperature for the
remainder of the analysis. At the global scale, mean soil
temperature shows a strong positive linear relationship
with biome mean Rs (Fig. 2). In the regression tree
analysis, mean soil temperature is the dominant factor

explaining global Rs variability (Fig. 5). However,
within biomes, the role of soil temperature is not
always as dominant as some global land models have
assumed (Chen & Tian, 2005). In biome-specific regres-
sion tree analyses, soil temperature is a secondary or
tertiary factor in temperate evergreen forests, temperate
deciduous forests, and boreal forests (supplemental
information). The biplot shown in Fig. 6 reports the
eigenvectors and proportion of variance explained by
the first two principal components in the PCA. The
variables included in each analysis are plotted as vec-
tors representative of the strength and direction to
which they load each component. Soil temperature and
soil carbon content are the strongest loaders of the first

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 2090-2103
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principal component (—0.61 and 0.62, respectively,
Fig. 6), each explaining over half the variability in the
Rs data but in opposite directions, and appear to be the
strongest drivers of Rs differences between biomes.
Our analysis indicates significant soil moisture con-
trols on global Rs. Soil moisture from ERA-Interim dis-
plays a much different relationship to Rs than mean
annual precipitation. Mean annual precipitation (MAP)
shows a strong positive and linear relationship with Rs
at the global scale (Fig. 3), as has been shown in previ-
ous studies (Raich & Schlesinger, 1992; Davidson et al.,
2012), but the relationship with mean annual soil mois-
ture is much more variable. The highest Rs values occur
around 27% volumetric water content (Fig. 3), but Rs
values are variable throughout the soil moisture range.
Arctic and tropical soils show the greatest coefficient of
variation in mean annual soil moisture. In tests for lin-
ear correlation with other variables, soil moisture

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 2090-2103

shows the strongest relationship with soil carbon con-
tent when accounting for the influence of other vari-
ables (Pearson correlation = 0.53).

Within individual biomes, soil moisture is the domi-
nant predictor in the regression tree analysis only in
temperate evergreen and temperate deciduous forests
(Supporting Information). In mixed forests, savannas
and shrublands, and boreal forests, it is a dominant sec-
ondary or tertiary predictor of Rs after accounting for
high soil temperatures. In the global PCA, soil moisture
largely explains the residual variability in PC2 (load-
ing = 0.64, Fig. 6). Importantly, it appears to describe
more Rs variability within individual biomes, such as
in arctic or tropical forest with high moisture variation,
than across biomes. Soil moisture can help to further
explain or more accurately predict Rs variability in
these instances where temperature or precipitation is
less variable within a biome’s dataset.
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Table 2 Generalized Additive Model statistics for each dataset

Biome # Observations ~ Model parameters P-value 7* RMSE  AIC

Globe 1741 Rs_annual = te(STMean, SMMean) + <0.0001 0.31 41093  3739.6
0.17*NPP — 177.18*pH — 3.12*Soil C

Arctic 29 Rs_annual = te(STMean, SMMean) <0.05 0.16 232.54 278.18

Boreal forests 184 Rs_annual = te(STMean, SMMean) + <0.0001 0.55 141.97 299.83
1.06*NPP

Croplands/mixed 402 Rs_annual = te(STMean, SMMean) <0.05 0.1 393.9 1026.69

Grasslands 163 Rs_annual = te(STMean, SMMean) <0.001 0.34 346.44 427.93

Mixed forest 524 Rs_annual = te(STMean, SMMean) + <0.0001 0.45 242.53 1208.49
0.1*NPP + 4.33S0il C

Savannahs/shrublands 110 Rs_annual = te(STMean, SMMean) <0.001 0.39 502.43 327.48

Temperate deciduous forests 65 Rs_annual = te(STMean, SMMean) <0.05 0.12 297.15 376.4

Temperate evergreen forests 123 Rs_annual = te(STMean, SMMean) <0.01 029  356.97 342.24

Tropical forests 141 Rs_annual = te(STMean, SMMean) <0.05 0.13 573.01 410.55

STMean, mean soil temperature; SMMean, mean soil moisture; Soil_C, total soil carbon; te, “Tecumseh’” smoothing algorithm (cubic-
spline regression); RMSE, root-mean-squared error (g C m > yr~'); AIC, Akaike’s information criterion.

STMean < 296

STMean < 279

@ SMMean < 0.23

STMean < 286

810
=107

STMean >= 286 @

Soil_C <117

Fig. 5 Regression tree for the global dataset. Predictor coefficients and number of observations reported at each node. STMean, mean
annual soil temperature (C); SMMean, mean annual soil moisture (m® m™3); Soil_C, total soil carbon (tonnes ha™!). NPP (gC m~2 yr’l)

also included as independent variable in model calibration.

Our use of GPP and NPP modeled from satellite
observations further corroborates the early relationship
described by Raich and Schlesinger. At the global scale,
NPP is a strong positive and linear predictor of Rs
(Fig. 4a), with a slope of 1.22. NPP also shows a signifi-
cant positive Rs control within most biomes, except in
forested biomes where NPP values are the least variable
relative to those of Rs. NPP emerges as an important
predictor of within-biome Rs only in croplands and
grasslands, where it remains secondary to soil tempera-
ture. NPP plays a similar role as soil moisture in the
PCA, where it loads the second principal component the
most strongly (0.71, Fig. 6) and the direction of its vector
parallels cropland and grassland data specifically.

Soil carbon estimates show a strong negative and
nonlinear relationship with Rs at the global scale

(Fig. 4b). Arctic and boreal biomes, with the highest
soil carbon estimates, have the lowest Rs values; this
difference skews the global soil respiration—soil carbon
relationship and may limit our ability to construct
empirical models of Rs based on soil carbon availability
at the global scale. Grasslands, savannas and shrub-
lands, and arctic biomes show the highest coefficients
of variation in soil carbon. In the regression tree analy-
sis, topsoil carbon is the strongest predictor of Rs vari-
ability in temperate evergreen and boreal forests. Soil
carbon loads the first principal component in the PCA
with equal strength to soil temperature, but in the
opposite direction, negatively for higher Rs values
(Fig. 6), suggesting that total soil carbon reflects the car-
bon remaining in soils as the result of temperature-
mediated respiration rates.

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 2090-2103
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In Fig. 7, we show the results of individual biome
models derived using global gridded ERA-Interim cli-
mate data for 2014, and including the resulting RMSE
for each model. Figure 8 displays three global maps of
predicted Rs using gridded climate data from 2014. At
the scale of annual Rs measurements and coarse global
climatic measurements, each of our statistical or mecha-
nistic modeling efforts captured between 29% and 65%
of the variability in SRDB observed Rs. This is suggestive
not only of the limitations of the driving datasets and
resulting empirical models in accurately predicting glo-
bal Rs spatial patterns, but also of the difficulty in cor-
roborating the mechanistic relationships we model with
observations and climate estimates made at broadscales.
The GAMs developed in this analysis performed best for
boreal forests (+* = 0.55) and mixed forests (> = 0.55),
which were the only biomes in which additional linear
NPP coefficients were statistically significant and
improved the model fit (Table 2). The differences
between these biome-parameterized models and the glo-
bal model are most evident when compared spatially
(Fig. 8). Given the results in Figs 7a and 8a, the relative
contribution of NPP to modeled Rs is likely the strongest
driver of the large differences in predicted Rs in the trop-
ics. Due largely to sparse site observations in this region,
the resulting moisture-temperature functional relation-
ship with Rs has the greatest degree of error in the trop-
ics (RMSE = 573.01) relative to other biomes.

In statistical models, the CASA framework and para-
bolic moisture function explain more Rs variability than
the Michaelis-Menten mechanistic framework when

P2 27.3% expiained var
-

PC1 502% emlained var

utilizing either soil moisture or MAP, which has been
shown to be an effective predictor of global Rs in other
studies (Table 3a, b) (Bond-Lamberty & Thomson,
2010a,b); the soil moisture optimum in the strongest of
these (Table 3b-3; #* = 0.65) is around 38% volumetric
water content. Each of the model structures used in the
NLS process was able to converge on global functions
relating soil moisture, temperature, and NPP, but insuf-
ficient variability in the data within individual biomes
prevented statistically significant models from converg-
ing at the biome scale. Using the Michaelis-Menten
structure, mean annual precipitation performed only
slightly better than mean soil moisture in each model
(Table 3a). NPP as an additional variable improved the
fit of each model, as did soil pH although it added little
explanatory power (* = 0.29, 0.3, respectively, Table
3a). Use of the CASA model structure improved explan
atory power both with and without the inclusion of a
linear NPP function (Table 3b). The total soil carbon
model with CASA structure explains nearly half of the
Rs variability in cross-validation, but the spatial analy-
sis shows that it greatly overestimates Rs specifically in
some tropical areas with relatively high NPP and a lack
of Rs observations (Fig. 8). The topsoil carbon model
improved the explained spatial variability even without
the inclusion of an NPP component, yet with a greater
degree of RMSE uncertainty (Table 3b). Total annual
global Rs was 93.9 + 25.11 Pg C yrf1 in the global
GAM. The global Michaelis-Menten model with pre-
cipitation produced an Rs rate of 80.3 + 24.6 Pg C yr !
globally, and the CASA-framework model with soil

Fig. 6 Principal components analysis biplot of variability in independent variables. Red vectors represent principal component load-

ings of each variable. Point size = Annual Soil Respiration (g C m™

yr~"): [Colour figure can be viewed at wileyonlinelibrary.com].

- PCI PC2 PC3 PC4

- STMean -0.6068083  0.2222568 - 0.3864441 -0.6580627
- SMMean 0.3784518  0.6420554  -0.6241701  0.2344158
- SatNPP -0.3254588  0.7067730  0.5997726  0.1866048
- Soil C 0.6185746  0.1970752  0.3183482  -0.6907831
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Fig. 7 The predicted results of Rs_annual in 2014 using biome-specific GAM models. (a) Predicted Rs_annual, (g C m~2 yr’l) (b)
RMSE of model for each biome (g C m 2 yr ). [Colour figure can be viewed at wileyonlinelibrary.com].

moisture and a linear NPP function produced a global
Rs rate of 108.6 + 69.6 Pg C yr '. Differences in the
resulting model Rs totals and associated error ranges
reflect the compounded error and uncertainty in certain
regions (e.g. the highly productive tropics), which is
evident in the spatial differences seen in Fig. 8.

Discussion

Researchers have identified the need for a comprehen-
sive understanding of the primary environmental fac-
tors controlling soil respiration rates around the globe
(Cox et al., 2000; Cramer et al., 2001; Trumbore, 2006;
Todd-Brown et al., 2013). Benchmarking semi-empirical
models of Rs against available observations has been
shown to help constrain global climatic functions esti-
mating the total Rs flux (Hashimoto et al., 2015). At the
broad spatial and temporal scales explored in this
study, we address important and unfortunate limits to
scaling up predictions of Rs as a function of climatic
and environmental factors with known mechanistic
relationships at finer temporal and spatial scales.

The results of this study are consistent with previous
studies reporting positive global relationships between
mean annual Rs and mean atmospheric temperature
and precipitation (Raich et al., 2002; Chen et al., 2014);
however, our analysis clearly illustrates the importance
of soil moisture in regulating Rs variability in specific
biomes and the relative utility of these data at the glo-
bal scale. Global-scale correlation between tempera-
ture, precipitation, and primary productivity has
shown how environmental drivers regulate total Rs,
but these relationships ‘given available data’ are insuf-
ficient to calibrate models that acknowledge differ-
ences within biomes. Earlier research has shown global
Rs estimates to be approximately 24% greater than
NPP (Raich & Schlesinger, 1992). Our analysis, with
over 1000 additional observations including satellite-
derived NPP, corroborates this finding (22%, Fig. 4a).
The additional variability that results from hetero-
trophic respiration is explained in part by the soil car-
bon and soil moisture estimates.

This investigation highlights two important consider-
ations regarding our ability to accurately assess soil

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 2090-2103
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Fig. 8 The predicted results of Rs_annual in 2014 using global models. Left: predicted total annual Rs (g C m 2 yr'). Center: RMSE/
Rs_annual represents the model error as a percent of predicted flux. Right: Mean annual Rs rate by latitude (g C m™2 yr™). (a) Global

generalized additive model (Table 3) RMSE; 410.93 g C m? yr’l; R

2 = .31. (b) Global NLS model with total soil carbon, CASA struc-

ture, and NPP coefficient (Table 3b-3). RMSE = 1140.22 ¢ C m > yr ; R* = 0.41. (c) Global NLS model with total soil carbon, CASA
structure, and no NPP coefficient (Table 3b-1). RMSE = 576.243 ¢ C m™2 yr~'; R* = 0.65. [Colour figure can be viewed at wileyonline-

library.com].

respiration at these scales. Firstly, when individual
biome datasets are considered independently, they
show contrasting relative degrees of importance among
factors known to regulate soil respiration. Rs variability
within biomes differs significantly according to the
variability of some drivers. For example, NPP is a poor
predictor of Rs variability globally and within forested
biomes (tropical, temperate, and boreal), likely due to
the low spatial variability exhibited by estimated NPP,
which is unable to account for the observed Rs variabil-
ity within these biomes. Soil moisture, however, is
much more variable in temperate and boreal forests

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 2090-2103

and indeed appears to be more important in regulating
Rs within these biomes. Secondly, in most biomes there
are insufficient data in this scaled-up approach to refine
the fine-scaled details and incorporate such factors into
biome-specific mechanistic models. Therefore, global
models incorporating temperature, moisture, and car-
bon supply relationships averaged over large areas
inherently miss the underlying spatial differences that
these factors have at finer scales. This is highlighted, for
example, by a disproportionate influence of NPP in the
highest-productivity tropics (where we had little Rs
data) influencing likely overestimates of global Rs
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Table 3 Model Summaries for Nonlinear Least Squares fit procedure using (a) Arrhenius temperature function and Michaelis—
Menten soil moisture, precipitation, and carbon parameters. (b) CASA model framework. Procedure calibrated only 1st Soil Mois-
ture function numerator, regulating optimum of parabolic curve

# Observations Model parameters P-value ? RMSE AIC
(@

1 1366 Rs_annual = 446.8¢%%535T™ean (GN[\Mean/ <0.0001 0.3 4119 14712.93
(SMMean — 0.006))(SoilC/SoilC + 71.1)) + 0.16NPP

2 1725 Rs_annual = 104.2¢%9255T™Mean (GN[Mean/ <0.0001 0.29 412.27 14714.71
(SMMean — 0.003))(SoilC/SoilC + 10.01)) — 96.6pH

3 1366 Rs annual = 447.3¢%0545T™ean (\TAP /(MAP — 14.9)) <0.0001 0.31 403.82 11913.62
(S0ilC/SoilC + 83.59)) + 0.11NPP

4 1725 Rs_annual = 808.8¢"03%5T™ean (\AP /(MAP — 11.4)) <0.0001 0.3 404.6753 11917
(S0ilC/S0ilC + 27.42)) — 60pH

(b)

1 1366 Rs_annual = Topsoil C*1.94%(1.720-1895TMean <0.0001 0.49 438.981 18513.4
((SMMean — 0.748)/(0.55 — (.748))%-¢481
((SMMean + 0.007)/(0.55 — 0.007))*?* + 0.495NPP

2 1725 Rs_annual = Topsoil_C*24%*(1.72%-115TMean) <0.0001 0.37 564.4527 19131.34
((SMMean — 1.1)/(0.55 — 1.1))%-¢481
((SMMean + 0.007)/(0.55 — 0.007))>%2

3 1366 Rs_annual = Soil C*68%(1.720-225TMean) <0.0001 0.41 1140.223 20867.26
((SMMean — 2.2)/(0.55 — 2.2))5-6481
((SMMean + 0.007)/(0.55 — 0.007))>?? + 1.36NPP

4 1725 Rs_annual = Soil C*64%*(1.72%-215TMean) <0.0001 0.65 576.243 19182.32

((SMMean — 2.1)/(0.55 — 2.1))%6481
((SMMean + 0.007)/(0.55 — 0.007))>%2

STMean, mean soil temperature (C); SMMean, mean soil moisture (m® m™~3); Soil C, soil carbon (tonnes ha™'); AP, mean annual pre-
cipitation (mm); Topsoil C, soil carbon in upper 20 cm (tonnes ha™'); RMSE, root-mean-squared error (g C m 2 yr '); AIC,
Akaike’s information criterion. Annual global soil respiration = X(cell rate*cell area); Error = ( ; 1« RMSE?/n) * cell area.

a: (1) Global model using soil moisture and an additional linear NPP parameter; (2) global model using soil moisture and an addi-
tional linear pH parameter; (3) global model using precipitation and an additional linear NPP parameter; (4) global model using
precipitation and an additional linear pH parameter. b: (1) Global model using topsoil carbon and an additional linear NPP parame-
ter; (2) global model using topsoil carbon and no additional linear NPP parameter; (3) global model using total soil carbon and an

additional linear NPP parameter; (4) global model using total soil carbon and no additional linear pH parameter.

(Fig. 8b). The rates of error in predicting annual Rs in
global models are disproportionately large, relative to
total Rs rates, for arctic and boreal regions where total
Rs is low (Fig. 8). These complications highlight limits
toward the accuracy of global mechanistic model struc-
tures and the need for larger observational datasets that
provide a more accurate reconstruction of the underly-
ing variability necessary to allow biome-scale model
structures to be better calibrated.

At the global scale, the highest annual Rs rates seem
to occur where mean annual volumetric soil water con-
tent approaches ~27% (Fig. 3), which could corroborate
the functions of recently constructed models (Falloon
et al., 2011; Davidson et al., 2012; Yi et al. 2011), but the
high degrees of spatial variation and difference in tem-
poral scale that our models illustrate globally demon-
strate the limits of a focused understanding. Our NLS
procedure which incorporated a parabolic moisture
function as used in several earth-system models
(Melillo et al., 2000; Exbrayat et al., 2013) performed

remarkably better than models which relied upon pre-
cipitation as seen in previous studies (Table 3a, b)
(Chen et al., 2010, 2014).

Soil moisture appears to explain more Rs variability in
all forested biomes. This could be due in part to a rela-
tive lack of spatial variability in temperature and NPP
within these ecosystems and in part to the mediating
influence of snowpack and thaw dynamics on soil mois-
ture variability (Brooks et al., 2005, 2011; Monson et al.,
2006a,b; Oquist et al., 2009), especially in the boreal for-
ests (Dunn et al., 2007; Du et al., 2013). Because of the
strong correlation between precipitation and NPP, soil
moisture may help to better explain climatic variability
which drives the heterotrophic component of soil respi-
ration, as it integrates the effects of precipitation and
temperature on soil conditions. The Rs response to soil
moisture may attenuate expected Q10 responses to
warming, and soil moisture may become a more impor-
tant variable where increasing temperatures coincide
with reductions in precipitation changes in its character.

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 2090-2103
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The climatic influence on soil respiration is most
evident when considering the negative relationship
between soil carbon stocks and Rs at the global scale.
That biomes with the highest mean soil carbon con-
tent show the lowest mean Rs values indicates that
respiration can be less limited by carbon supply than
by the interactive effects of soil moisture and temper-
ature. Climate is the primary factor regulating the
release or retention of significant soil carbon in
regions like the arctic and boreal forests (Brooks et al.,
2005; Hartley et al., 2008; Du et al., 2013). There is sig-
nificant uncertainty regarding climate change’s poten-
tial to drive the mobilization and release of large
amounts of soil organic carbon found in high north-
ern latitudes (Elberling et al.,, 2008; Schuur et al.,
2008), and changing precipitation and snow dynamics
are likely to affect soil moisture conditions and respi-
ration rates (Lee et al., 2004; Euskirchen et al., 2007; Yi
et al. 2011). Relatively low NPP rates in these colder
biomes amplify the importance of climatic factors in
driving the decomposition of large soil organic carbon
pools derived from past, rather than current, produc-
tivity, especially when considering that error in global
models is a greater percentage of total Rs estimates at
high latitudes.

Other important factors relevant to the relationship
between precipitation, soil moisture, and carbon supply
are difficult to disentangle at these broad scales. Soil
texture is an important factor in determining the effect
of varying levels of soil moisture as well as the quality
of the soil carbon content in various locations, a factor
emphasized by other researchers but not explicitly eval-
uated at the global scale in our study (Davidson et al.,
2000). Precipitation dynamics, as they relate to tempera-
ture, may be better addressed using data representing
actual evapotranspiration or the ratio of actual to poten-
tial evapotranspiration. Each of these calculations, how-
ever, requires an increase in the detail, magnitude, and
consistency of data across a very large number of stud-
ies that rendered them inadequate measures for a study
at this scale. Similarly, strategies used to model primary
productivity at scales suitable for this analysis require
the acceptance of certain model assumptions and lack
of mechanistic detail. Models of NPP, for example, do
not include rates of root respiration, and this unac-
counted component of autotrophic respiration could
help explain differences between total Rs estimates and
mean NPP or GPP rates across biomes.

In forested biomes, high rates of NPP and high Rs
relative to model error may overwhelm the tempera-
ture and moisture influences on Rs uncertainty (Jans-
sens et al., 2001). Overestimates of Rs in our statistical
models are underscored by relatively large uncertainty
in the tropics, especially in regions with the highest

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 2090-2103

NPP (Figs 7 and 8). Prior research has shown local soil
moisture characteristics to affect Rs variability within
tropical forests and has stressed the need to measure
both soil moisture and soil properties at varying depths
(Davidson et al., 2000). Furthermore, primary produc-
tivity in tropical forests is exceedingly difficult to esti-
mate (Cleveland et al., 2015). Seasonal precipitation
dynamics in tropical ecosystems also likely contribute
to the high soil moisture variability shown in this
study, but at annual timescales this is not captured and
temperature still emerges as the dominant Rs control
despite the control of moisture in some site-scale stud-
ies (Hashimoto ef al., 2004).

The general additive model used in this study
describes an overfit statistical relationship between the
satellite-derived variables and the observations in the
SRDB, but it provides an empirically driven benchmark
against which to compare fitted models with mechanis-
tic bases. While the results of the models with
Michaelis-Menten moisture or precipitation parameters
corroborate prior research which is mainly focused on
temperate ecosystems, our research clarifies the inher-
ent errors associated with applying such analyses at
global scales and highlights the spatial nature of these
differences. Models with a quadratic soil moisture func-
tion modeled after CASA improve explained variance
but often at the cost of increased RMSE. The addition of
a fitted NPP coefficient in the total soil carbon model,
for example, leads to significant overprediction of Rs in
areas of high NPP when compared to the GAM (Fig. 8).
These model results help to illustrate that even small
changes in environmental scalars can have notable
impacts on global estimations of soil carbon efflux, as
has been shown in comparisons of major ESMs
(Exbrayat et al., 2013).

Relatively fewer measurements in some ecosystems,
such as in tropical and temperate deciduous forests,
make it difficult to assess climatic relationships and cal-
ibrate models using the empirical record at this scale.
In Fig. 7 and Table 2, smooth functions of soil moisture
and temperature were fit for each biome; relative differ-
ences in the performance of these models and in the Rs
estimates made in Fig. 8 show that without enough
data to explain variability within biomes as a function
of NPP, for example, error in Rs estimates can vary
significantly. Additionally, a global-scale analysis of
soil respiration variability relies upon annual Rs mea-
surements and the scale or location mismatch between
these point data and gridded variables. It is more
important to compare differences in the ranges of
observed and estimated values at these scales than to
make point-by-point comparisons (Shao et al., 2013),
but our analysis demonstrates the utility in benchmark-
ing estimates against global soil respiration
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observations when calibrating model scalars to make
spatially explicit global predictions (Reichstein & Beer,
2008). The influence of climatic variables on Rs calcu-
lated at finer scales in earth-system models must mani-
fest even in annual observations at large scales. The
relative differences in the outputs of these models sug-
gest the importance of considering soil moisture influ-
ences on respiration and where areas of uncertainty in
our global understanding of soil respiration necessitate
further broadscale research.

This study illustrates the importance of soil moisture
as a metric predicting Rs with other climatic and envi-
ronmental variables that have been investigated as fac-
tors driving soil respiration rates at the global scale. By
combining observations from the empirical record with
satellite-derived measurements of soil moisture, tem-
perature, and NPP, we are able to interpret the relation-
ship between these factors and Rs across spatial scales
and explore areas of uncertainty and areas where the
relative dominance of one or more of these variables
calls for further research. In general, we note that a lim-
ited number of observations in tropical regions with the
highest predicted Rs rates and in arctic regions with the
highest estimated soil carbon stocks are one obstacle to
better constraining global-scale estimates of Rs. With-
out proper correction of the effects of spatial sampling,
the heterogeneous distribution of the measurements
may also bias global respiration estimates toward the
rates of the most sampled biomes. We also note that
much of the uncertainty in global-scale Rs modeling
derives from the integration of instantaneous effects
and seasonal dynamics of these variables at annual
timescales. A bridge between the necessity for a large
number of global observations and the need to incorpo-
rate smaller-scale temporal dynamics will require more
studies such as this which integrate remote-sensing
measurements and field observations to gain new
insight into terrestrial ecosystem carbon dynamics at
the global scale.
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