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Abstract

Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet

there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While tem-

perature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot

scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across

different biomes and at the global scale require tests of the relationships between field estimates and global climatic

data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil

temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil

Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve

predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is

comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver

of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors

of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipi-

tation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain

due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more

directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity

by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mecha-

nistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr�1, but also highlight

regions of uncertainty where more observations are required or environmental controls are hard to constrain.
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Introduction

Global soils store over 1500 Pg of carbon (C), more than

the atmosphere and terrestrial plant biomass combined

(Scharlemann et al., 2014). Each year, soil respiration

pathways release 75–100 Pg C to the atmosphere as

CO2, outweighing fossil fuel emissions by an order of

magnitude (Bond-Lamberty & Thomson, 2010a,b; Bal-

lantyne et al., 2015). Despite the importance of soil res-

piration (Rs) as an ecosystem carbon source, our

understanding of global constraints to Rs and its sensi-

tivity to changing climate conditions remains uncertain

(Falkowski et al., 2000; Emmett et al., 2004; Seneviratne

et al., 2010; Wu et al., 2011). Assessments of global- and

biome-level net ecosystem exchange require applying

climatic controls on Rs that are limited by scales of

measurement (Jones et al., 2003; Exbrayat et al., 2013;

Yang et al., 2013; Xiao et al., 2014). Because soils contain

plant roots as well as microbial communities, soil respi-

ration integrates both autotrophic and heterotrophic

respiration processes, which are difficult to disentangle

at both small and large spatial scales. Autotrophic res-

piration, however, is generally considered to be propor-

tional to gross primary productivity (GPP), and total

soil respiration measurements have been used to

explore climatic controls on heterotrophic respiration

(Rustad et al., 2000; Raich et al., 2002; Wieder et al.,

2013).

Quantitative models of Rs typically depend upon

local-scale measurements of available energy, water,

and carbon or upon global-scale observations informed

by satellite measurements, using precipitation as a

proxy for water availability and other broad assump-

tions. However, relatively few studies have assessed

global variations in soil respiration with a large number

of empirical measurements that can help bridge the gap

between local, regional, and global scales (Rustad et al.,

2000; Seneviratne et al., 2010; Hashimoto et al., 2015;

Sierra et al., 2015). Specifically, soil moisture controls on
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respiration have not been evaluated from observations

at the global scale.

In order for global land models to more accurately

simulate the sensitivity of Rs to temperature, moisture,

and productivity, biome-specific parameters may need

to be developed in conjunction with estimates of NPP

and soil carbon content. Many of the temperature and

moisture scalars, thresholds, and optima in these mod-

els are assumed to be constant or change very little

among biomes in the absence of more detailed informa-

tion (Exbrayat et al., 2013; Yang et al., 2013; Yi et al.

2011). Site-specific and regional studies, however, sug-

gest that the relative importance of factors like soil

moisture or carbon content varies across different

biomes due to soil properties (Davidson & Janssens,

2006; Moyano et al., 2013), seasonality of precipitation

(Chimner & Welker, 2005; Wei et al., 2010; Wang et al.,

2013), vegetation characteristics, or other factors (Pacific

et al., 2009; Suseela et al., 2012; Fissore et al., 2013). Glo-

bal land model simulations of terrestrial carbon fluxes

that incorporate Rs components are commonly cali-

brated and validated against eddy covariance measure-

ments of net ecosystem carbon exchange (Yang et al.,

2013), but to our knowledge these models have not yet

been validated using remote-sensing data and field

measurements of Rs.

The Global Soil Respiration Database (Bond-Lamb-

erty & Thomson, 2010a,b) updates the collection of soil

respiration studies originally analyzed by Raich & Sch-

lesinger (1992) and contains 4387 observations of Rs

from 1971 to the present. This database (SRDB version

2) reports location information and measurement data

for about 3500 studies that report an annual integrated

soil respiration flux. These measurements span a wide

breadth of space and time, although most observations

represent recent years and northern temperate lati-

tudes. Recently these data have been used to show an

apparent increase in soil respiration in response to

warming surface temperatures and changes in precipi-

tation (Bond-Lamberty & Thomson, 2010a,b; Hashi-

moto et al., 2015), outline uncertainty in nonbiological

influences of soil respiration (Rey, 2014), question the

climate and vegetation controls on heterotrophic respi-

ration functions implemented in earth-system models

(Shao et al., 2013), and assess precipitation and temper-

ature sensitivity at different scales (Sierra et al., 2015).

We contribute to this growing body of work by linking

Rs observations to independent estimates of soil mois-

ture, precipitation, soil temperature, vegetation net and

gross primary production (NPP, GPP), and soil carbon

content from datasets designed for studies at regional

and global scales. This study explores the extent to

which soil respiration is controlled by these environ-

mental factors at global and biome scales and

incorporates these empirical constraints into statistical

models built on mechanistic bases for predicting Rs.

These analyses identify dominant factors regulating Rs

in different biomes and highlight uncertainty around the

relative importance of these environmental factors across

biomes when incorporated into global predictions.

Materials and methods

Data assembly and integration

We linked soil moisture and temperature estimates from the

global ERA-Interim re-analysis product (Berrisford et al., 2011;

Dee et al., 2011) from the period 1979 to the present

(0.5-degree resolution) to annual respiration values from the

SRDB. We used soil temperature and soil moisture estimates

for level 1 (surface, <20 cm) depths, and we collected daily

mean estimates for each of these variables before aggregating

them into annual statistics. Satellite data were queried for

locations and years corresponding with annual Rs estimates

from the SRDB. We collected annual GPP and NPP values in

the same fashion from two sources: the satellite observation-

based 1-km resolution MODIS (Moderate Resolution Imaging

Spectroradiometer) MOD-17A2/3 (Collection 5) global pro-

duct (Running et al., 2004; Zhao et al. 2005), covering 2000–

2012, and AVHRR (Advanced Very High Resolution Radiome-

ter)-based Global Production Efficiency Model product, dis-

tributed by the University of Maryland’s Global Land Cover

Facility and covering 1979–1999 (Prince & Small, 2003).

Annual GPP figures for the years 2000–2012 were aggregated

from 8-day values. We collected soil organic carbon estimates

(both total soil column parameters and upper 20 cm topsoil

carbon estimates) and other site variables, such as soil pH,

from the Soilgrids 1 km product, distributed by the Interna-

tional Soil Reference and Information Centre (Hengl et al.,

2014). Land cover classification and vegetation characteristics

were derived from MOD-17’s collection-5 plant functional

types (Friedl et al., 2010) as well as vegetation descriptions in

the SRDB, and we partitioned the resultant dataset into nine

global biomes characterized by similarities in climate and veg-

etation type (Fig. 1).

Gridded datasets were queried for locations and years cor-

responding with annual Rs estimates from the SRDB. For our

analysis, we filtered the SRDB to eliminate those studies that

are unlikely to represent typical soil respiration efflux at the

mismatched spatial scale of the global grid-cell observations

by eliminating manipulative studies and those flagged by the

SRDB as problematic data or having a low number of mea-

surements contributing to annual integrated Rs; these criteria

and the stipulation that studies report annual calculations of

Rs eliminated nearly 60% of the available SRDB record, which

further reduced the number of measures in both arctic and

tropical biomes. Furthermore, to control for topographic

heterogeneity that may render local study site locations less

suitable for representing regional conditions indicated from

coarse footprint satellite and global climate observations, we

applied a quarter-degree mask to a 1-km resolution digital ele-

vation map (ASTER-GDEM) (Tachikawa et al., 2011) around
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each in situ SRDB observation location and eliminated sites

where the standard deviation of the regional topography

exceeded 115 m. This process eliminated the most topographi-

cally heterogeneous 15% of the original SRDB dataset. Our

final dataset contained 1740 annual Rs observations from 1979

to 2012 (Fig. 1), 1734 of which were spatially and temporally

linked to soil moisture and temperature measurements, 1366

of which were linked to NPP measurements, and 1725 of

which were linked to soil carbon estimates.

Statistical models

In order to explore the primary factors influencing spatial vari-

ability in Rs measurements, we performed a series of descrip-

tive and predictive statistical analyses. First, univariate analyses

allowed us to establish the primary variables significantly corre-

lated with the Rs observations. Second, we calculated biome-

scale mean Rs measurements and those of influential drivers.

Third, we performed a principal components analysis (PCA) of

the global dataset and independently for each biome to explore

patterns by which several factors covaried and the relative

strength with which they contributed to variability in Rs. We

also produced regression trees to explore the hierarchical

importance of these factors on Rs variability in each biome.

Finally, we evaluated the performance of predictive models of

Rs based upon the dataset. We compared the fit of a generalized

additive model (GAM) to those of several commonly used

model structures using a nonlinear least squares (NLS) proce-

dure to fit the environmental variable coefficients. We

addressed spatial and quantitative differences between these

mechanistic models and the statistical models.

For each of the nine biomes, and for the global dataset as a

whole, we tested for significant linear relationships between

Rs and 9 independent variables. On a matrix of all variables,

we calculated pairwise Pearson product–momentum

correlations and partial correlation coefficients adjusting for

all other variables. We also calculated the sample size, mean,

and standard deviation for these variables for each biome

(Table 1, Figs 2–4). Following Raich & Schlesinger (1992), we

performed simple linear and nonlinear regression analyses for

each environmental variable on biome-level Rs.

We analyzed both the global dataset and each biome indi-

vidually using principal components analysis (PCA). We first

calculated global PCAs of the independent variables most

expected to influence Rs variability, from which we overlaid

Rs values to assess where these values clumped relative to the

loading values, and second, of data including Rs values as

well as the significantly correlated independent variables.

Another means of explaining variation in the Rs values is

through regression tree analysis (De’ath & Fabricius, 2000).

This procedure splits the dataset by recursive partitioning of

the variance in Rs. Each node of the regression tree model

effectively ranks the independent environmental variables’

explanatory power toward each subset of the Rs dataset. To

avoid over-fitting, the regression trees were pruned using a

reduced-error algorithm which terminates the recursive parti-

tioning procedure when further splits no longer reduce cross-

validation error.

We compared the performance of several regression model

structures for predicting annual Rs in the dataset. Table 3

describes the model structure and performance of GAMs for

the global dataset and for each biome individually, using the

Pearson coefficient of determination (r2), Akaike’s information

criterion (AIC), and root-mean-squared error (RMSE) to assess

goodness of fit. These models assume a linear relationship

between NPP and Rs as described in previous literature, as

well as a linear fit of one or more additional soil characteristics

(SOC or pH) depending upon the significance of that relation-

ship in each data subset. Nonlinear temperature and moisture

functions were calculated using a cubic-spline smoothing

Fig. 1 Biomes and global Annual Soil Respiration observations of the study set. [Colour figure can be viewed at wileyonlinelibrary.com].
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function. In our analysis, these general additive models serve

as an empirical ‘benchmark’ predicting the observed data to

the best degree for comparison with mechanistic models.

Mechanistic models

We fit two mechanistic model forms using a nonlinear least

squares (NLS) fit procedure. Assuming an Arrhenius-style

function to scale a hypothetical maximum respiration rate in

response to temperature, and model parameters shaped as

Michaelis–Menten functions to act as scalars of two other vari-

ables (following Raich et al., 2002; Chen et al., 2014), we evalu-

ate the relative performance of models which converge on

these coefficients for mean annual precipitation, mean soil

moisture, total soil carbon, and topsoil carbon, and with or

without an additional linear function of NPP. Although pub-

lished work has described the ability of this model structure

to predict variation in Rs with annual precipitation (Chen

et al., 2010, 2014), the direct relationship with soil moisture at

the global scale has not been previously tested. Because many

studies have described a parabolic moisture function which

dampens respiration rates at higher soil moisture levels, we

repeated the above-described process to fit moisture coeffi-

cients within a model structure based on the Carnegie-Ames-

Stanford Approach (CASA), a set of functions used to scale

soil carbon decomposition in several major earth-system mod-

els (Potter et al., 1993; Melillo et al., 2000; Wang et al., 2010;

Fung et al., 2015; ). In addition to an exponential temperature

function, the CASA model framework scales the response rate

by a quadratic soil moisture function. These NLS regression

models were validated using k-fold cross-validation on five

testing and training datasets, each containing 20% of the origi-

nal data. Additionally, we calculated total global Rs estimates

for each of these models by multiplying the predicted Rs rate

in each grid cell by its area and summing grid cells for global

estimates. Error in these global estimates was calculated by

propagating the site error and again multiplying by the area

of the cells: Rserror ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � RMSE2=n
q

Þ � cell area. Importantly,

these global estimates were calculated only where spatially

delineated by the biomes in this study; wetland areas, which

are known to contribute to global Rs but had too few Rs obser-

vations, were not considered in our global predictions and

excluded from our spatial models.

Data processing and availability

To process the spatial and temporal components of the source

data, we used both ArcGIS (distributed by ESRI) and NOAA’s

Weather and Climate Toolkit (www.ncdc.noaa.gov/wct). All

statistical analyses were performed using RSTUDIO (Version

0.98.1091, rstudio.com). Principal components analysis was

performed using the devtools and ggbiplot packages. Regression

tree analysis was performed using the rpart and plyr packages.

Statistical modeling was performed with the gam, mgcv, and

nls packages. Raster analysis and modeling were performed

using the raster and rgdal packages. Our dataset, supplemental

information, and sample code are available in supporting doc-

uments online.T
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Results

Consistent with previous studies (Raich et al., 2002;

Bond-Lamberty & Thomson, 2010a,b; Chen et al., 2010),

we find that temperature is the most important factor

regulating global Rs. Mean annual soil temperature

estimates derived from ERA-Interim re-analysis and

MAT measurements from the SRDB are highly corre-

lated (Table 2) and show similar controls on Rs (Fig. 2);

we therefore address mean soil temperature for the

remainder of the analysis. At the global scale, mean soil

temperature shows a strong positive linear relationship

with biome mean Rs (Fig. 2). In the regression tree

analysis, mean soil temperature is the dominant factor

explaining global Rs variability (Fig. 5). However,

within biomes, the role of soil temperature is not

always as dominant as some global land models have

assumed (Chen & Tian, 2005). In biome-specific regres-

sion tree analyses, soil temperature is a secondary or

tertiary factor in temperate evergreen forests, temperate

deciduous forests, and boreal forests (supplemental

information). The biplot shown in Fig. 6 reports the

eigenvectors and proportion of variance explained by

the first two principal components in the PCA. The

variables included in each analysis are plotted as vec-

tors representative of the strength and direction to

which they load each component. Soil temperature and

soil carbon content are the strongest loaders of the first

Fig. 2 Global Temperature Relationships. Biome mean soil respiration values and temperature variables. Error bars represent �1 stan-

dard deviation in each plot. Color = temperature data source. Mean Annual Temperature is from SRDB_V2. Soil Temperature is from

ERA-Interim. (a) Mean Annual Temperature (C), y = 34.99x + 439.1; P < 0.01; R2
= 0.89; (b) Mean Soil Temperature (C),

y = 39.5x + 327.2; P < 0.01; R2
= 0.91. [Colour figure can be viewed at wileyonlinelibrary.com].

Fig. 3 Global Moisture Relationships. Biome mean soil respiration values and moisture variables. Error bars represent �1 standard

deviation in each plot. Color = moisture data source. Mean Annual Precipitation is from SRDB_V2. Soil Moisture is from ERA-Interim.

(a) Mean Annual Precipitation (mm), y = 270.33 + 0.43x. P < 0.05; R2
= 0.88; (b) Mean Soil Moisture (m3 m�3),

y = 150803.45x � 277187.14x2 � 19562.43; P < 0.1; R2
= 0.45. [Colour figure can be viewed at wileyonlinelibrary.com].

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 2090–2103
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principal component (�0.61 and 0.62, respectively,

Fig. 6), each explaining over half the variability in the

Rs data but in opposite directions, and appear to be the

strongest drivers of Rs differences between biomes.

Our analysis indicates significant soil moisture con-

trols on global Rs. Soil moisture from ERA-Interim dis-

plays a much different relationship to Rs than mean

annual precipitation. Mean annual precipitation (MAP)

shows a strong positive and linear relationship with Rs

at the global scale (Fig. 3), as has been shown in previ-

ous studies (Raich & Schlesinger, 1992; Davidson et al.,

2012), but the relationship with mean annual soil mois-

ture is much more variable. The highest Rs values occur

around 27% volumetric water content (Fig. 3), but Rs

values are variable throughout the soil moisture range.

Arctic and tropical soils show the greatest coefficient of

variation in mean annual soil moisture. In tests for lin-

ear correlation with other variables, soil moisture

shows the strongest relationship with soil carbon con-

tent when accounting for the influence of other vari-

ables (Pearson correlation = 0.53).

Within individual biomes, soil moisture is the domi-

nant predictor in the regression tree analysis only in

temperate evergreen and temperate deciduous forests

(Supporting Information). In mixed forests, savannas

and shrublands, and boreal forests, it is a dominant sec-

ondary or tertiary predictor of Rs after accounting for

high soil temperatures. In the global PCA, soil moisture

largely explains the residual variability in PC2 (load-

ing = 0.64, Fig. 6). Importantly, it appears to describe

more Rs variability within individual biomes, such as

in arctic or tropical forest with high moisture variation,

than across biomes. Soil moisture can help to further

explain or more accurately predict Rs variability in

these instances where temperature or precipitation is

less variable within a biome’s dataset.

Fig. 4 Global Carbon Supply Relationships. Biome mean soil respiration values and carbon supply variables. Error bars represent �1

standard deviation in each plot. (a) BLUE: Net Primary Productivity (g C m�2 yr�1), y = 1.22x � 170.5. P < 0.05; R2
= 0.9; RED: Gross

Primary Productivity (g C m�2 yr�1), y = 0.532x + 112.68. P < 0.05; R2
= 0.9. Dashed line = 1 : 1. (b) BLUE: Total Soil Carbon (ton-

nes ha�1), y = 7.382 � 0.002*log(x). P < 0.05; R2
= 0.34; RED: Topsoil Carbon (tonnes ha�1), y = 2702.7 � 465.8*log(x). P < 0.05;

R2
= 0.49. [Colour figure can be viewed at wileyonlinelibrary.com].
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Our use of GPP and NPP modeled from satellite

observations further corroborates the early relationship

described by Raich and Schlesinger. At the global scale,

NPP is a strong positive and linear predictor of Rs

(Fig. 4a), with a slope of 1.22. NPP also shows a signifi-

cant positive Rs control within most biomes, except in

forested biomes where NPP values are the least variable

relative to those of Rs. NPP emerges as an important

predictor of within-biome Rs only in croplands and

grasslands, where it remains secondary to soil tempera-

ture. NPP plays a similar role as soil moisture in the

PCA, where it loads the second principal component the

most strongly (0.71, Fig. 6) and the direction of its vector

parallels cropland and grassland data specifically.

Soil carbon estimates show a strong negative and

nonlinear relationship with Rs at the global scale

(Fig. 4b). Arctic and boreal biomes, with the highest

soil carbon estimates, have the lowest Rs values; this

difference skews the global soil respiration–soil carbon

relationship and may limit our ability to construct

empirical models of Rs based on soil carbon availability

at the global scale. Grasslands, savannas and shrub-

lands, and arctic biomes show the highest coefficients

of variation in soil carbon. In the regression tree analy-

sis, topsoil carbon is the strongest predictor of Rs vari-

ability in temperate evergreen and boreal forests. Soil

carbon loads the first principal component in the PCA

with equal strength to soil temperature, but in the

opposite direction, negatively for higher Rs values

(Fig. 6), suggesting that total soil carbon reflects the car-

bon remaining in soils as the result of temperature-

mediated respiration rates.

Table 2 Generalized Additive Model statistics for each dataset

Biome # Observations Model parameters P-value r2 RMSE AIC

Globe 1741 Rs_annual = te(STMean, SMMean) +

0.17*NPP � 177.18*pH � 3.12*Soil_C

<0.0001 0.31 410.93 3739.6

Arctic 29 Rs_annual = te(STMean, SMMean) <0.05 0.16 232.54 278.18

Boreal forests 184 Rs_annual = te(STMean, SMMean) +

1.06*NPP

<0.0001 0.55 141.97 299.83

Croplands/mixed 402 Rs_annual = te(STMean, SMMean) <0.05 0.1 393.9 1026.69

Grasslands 163 Rs_annual = te(STMean, SMMean) <0.001 0.34 346.44 427.93

Mixed forest 524 Rs_annual = te(STMean, SMMean) +

0.1*NPP + 4.33Soil_C

<0.0001 0.45 242.53 1208.49

Savannahs/shrublands 110 Rs_annual = te(STMean, SMMean) <0.001 0.39 502.43 327.48

Temperate deciduous forests 65 Rs_annual = te(STMean, SMMean) <0.05 0.12 297.15 376.4

Temperate evergreen forests 123 Rs_annual = te(STMean, SMMean) <0.01 0.29 356.97 342.24

Tropical forests 141 Rs_annual = te(STMean, SMMean) <0.05 0.13 573.01 410.55

STMean, mean soil temperature; SMMean, mean soil moisture; Soil_C, total soil carbon; te, ‘Tecumseh’ smoothing algorithm (cubic-

spline regression); RMSE, root-mean-squared error (g C m�2 yr�1); AIC, Akaike’s information criterion.

Fig. 5 Regression tree for the global dataset. Predictor coefficients and number of observations reported at each node. STMean, mean

annual soil temperature (C); SMMean, mean annual soil moisture (m3 m�3); Soil_C, total soil carbon (tonnes ha�1). NPP (g C m�2 yr�1)

also included as independent variable in model calibration.
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In Fig. 7, we show the results of individual biome

models derived using global gridded ERA-Interim cli-

mate data for 2014, and including the resulting RMSE

for each model. Figure 8 displays three global maps of

predicted Rs using gridded climate data from 2014. At

the scale of annual Rs measurements and coarse global

climatic measurements, each of our statistical or mecha-

nistic modeling efforts captured between 29% and 65%

of the variability in SRDB observed Rs. This is suggestive

not only of the limitations of the driving datasets and

resulting empirical models in accurately predicting glo-

bal Rs spatial patterns, but also of the difficulty in cor-

roborating the mechanistic relationships we model with

observations and climate estimates made at broadscales.

The GAMs developed in this analysis performed best for

boreal forests (r2 = 0.55) and mixed forests (r2 = 0.55),

which were the only biomes in which additional linear

NPP coefficients were statistically significant and

improved the model fit (Table 2). The differences

between these biome-parameterized models and the glo-

bal model are most evident when compared spatially

(Fig. 8). Given the results in Figs 7a and 8a, the relative

contribution of NPP to modeled Rs is likely the strongest

driver of the large differences in predicted Rs in the trop-

ics. Due largely to sparse site observations in this region,

the resulting moisture–temperature functional relation-

ship with Rs has the greatest degree of error in the trop-

ics (RMSE = 573.01) relative to other biomes.

In statistical models, the CASA framework and para-

bolic moisture function explain more Rs variability than

the Michaelis–Menten mechanistic framework when

utilizing either soil moisture or MAP, which has been

shown to be an effective predictor of global Rs in other

studies (Table 3a, b) (Bond-Lamberty & Thomson,

2010a,b); the soil moisture optimum in the strongest of

these (Table 3b-3; r2 = 0.65) is around 38% volumetric

water content. Each of the model structures used in the

NLS process was able to converge on global functions

relating soil moisture, temperature, and NPP, but insuf-

ficient variability in the data within individual biomes

prevented statistically significant models from converg-

ing at the biome scale. Using the Michaelis–Menten

structure, mean annual precipitation performed only

slightly better than mean soil moisture in each model

(Table 3a). NPP as an additional variable improved the

fit of each model, as did soil pH although it added little

explanatory power (r2 = 0.29, 0.3, respectively, Table

3a). Use of the CASA model structure improved explan

atory power both with and without the inclusion of a

linear NPP function (Table 3b). The total soil carbon

model with CASA structure explains nearly half of the

Rs variability in cross-validation, but the spatial analy-

sis shows that it greatly overestimates Rs specifically in

some tropical areas with relatively high NPP and a lack

of Rs observations (Fig. 8). The topsoil carbon model

improved the explained spatial variability even without

the inclusion of an NPP component, yet with a greater

degree of RMSE uncertainty (Table 3b). Total annual

global Rs was 93.9 � 25.11 Pg C yr�1 in the global

GAM. The global Michaelis–Menten model with pre-

cipitation produced an Rs rate of 80.3 � 24.6 Pg C yr�1

globally, and the CASA-framework model with soil

Fig. 6 Principal components analysis biplot of variability in independent variables. Red vectors represent principal component load-

ings of each variable. Point size = Annual Soil Respiration (g C m�2 yr�1): [Colour figure can be viewed at wileyonlinelibrary.com].

- PC1       PC2        PC3        PC4

- STMean -0.6068083 0.2222568 - 0.3864441 -0.6580627

- SMMean 0.3784518 0.6420554 -0.6241701 0.2344158

- SatNPP -0.3254588 0.7067730  0.5997726  0.1866048

- Soil_C 0.6185746 0.1970752  0.3183482 -0.6907831
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moisture and a linear NPP function produced a global

Rs rate of 108.6 � 69.6 Pg C yr�1. Differences in the

resulting model Rs totals and associated error ranges

reflect the compounded error and uncertainty in certain

regions (e.g. the highly productive tropics), which is

evident in the spatial differences seen in Fig. 8.

Discussion

Researchers have identified the need for a comprehen-

sive understanding of the primary environmental fac-

tors controlling soil respiration rates around the globe

(Cox et al., 2000; Cramer et al., 2001; Trumbore, 2006;

Todd-Brown et al., 2013). Benchmarking semi-empirical

models of Rs against available observations has been

shown to help constrain global climatic functions esti-

mating the total Rs flux (Hashimoto et al., 2015). At the

broad spatial and temporal scales explored in this

study, we address important and unfortunate limits to

scaling up predictions of Rs as a function of climatic

and environmental factors with known mechanistic

relationships at finer temporal and spatial scales.

The results of this study are consistent with previous

studies reporting positive global relationships between

mean annual Rs and mean atmospheric temperature

and precipitation (Raich et al., 2002; Chen et al., 2014);

however, our analysis clearly illustrates the importance

of soil moisture in regulating Rs variability in specific

biomes and the relative utility of these data at the glo-

bal scale. Global-scale correlation between tempera-

ture, precipitation, and primary productivity has

shown how environmental drivers regulate total Rs,

but these relationships ‘given available data’ are insuf-

ficient to calibrate models that acknowledge differ-

ences within biomes. Earlier research has shown global

Rs estimates to be approximately 24% greater than

NPP (Raich & Schlesinger, 1992). Our analysis, with

over 1000 additional observations including satellite-

derived NPP, corroborates this finding (22%, Fig. 4a).

The additional variability that results from hetero-

trophic respiration is explained in part by the soil car-

bon and soil moisture estimates.

This investigation highlights two important consider-

ations regarding our ability to accurately assess soil

Fig. 7 The predicted results of Rs_annual in 2014 using biome-specific GAM models. (a) Predicted Rs_annual, (g C m�2 yr�1) (b)

RMSE of model for each biome (g C m�2 yr�1). [Colour figure can be viewed at wileyonlinelibrary.com].
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respiration at these scales. Firstly, when individual

biome datasets are considered independently, they

show contrasting relative degrees of importance among

factors known to regulate soil respiration. Rs variability

within biomes differs significantly according to the

variability of some drivers. For example, NPP is a poor

predictor of Rs variability globally and within forested

biomes (tropical, temperate, and boreal), likely due to

the low spatial variability exhibited by estimated NPP,

which is unable to account for the observed Rs variabil-

ity within these biomes. Soil moisture, however, is

much more variable in temperate and boreal forests

and indeed appears to be more important in regulating

Rs within these biomes. Secondly, in most biomes there

are insufficient data in this scaled-up approach to refine

the fine-scaled details and incorporate such factors into

biome-specific mechanistic models. Therefore, global

models incorporating temperature, moisture, and car-

bon supply relationships averaged over large areas

inherently miss the underlying spatial differences that

these factors have at finer scales. This is highlighted, for

example, by a disproportionate influence of NPP in the

highest-productivity tropics (where we had little Rs

data) influencing likely overestimates of global Rs

Fig. 8 The predicted results of Rs_annual in 2014 using global models. Left: predicted total annual Rs (g C m�2 yr�1). Center: RMSE/

Rs_annual represents the model error as a percent of predicted flux. Right: Mean annual Rs rate by latitude (g C m�2 yr�1). (a) Global

generalized additive model (Table 3) RMSE; 410.93 g C m�2 yr�1; R2
= 0.31. (b) Global NLS model with total soil carbon, CASA struc-

ture, and NPP coefficient (Table 3b-3). RMSE = 1140.22 g C m�2 yr�1; R2
= 0.41. (c) Global NLS model with total soil carbon, CASA

structure, and no NPP coefficient (Table 3b-1). RMSE = 576.243 g C m�2 yr�1; R2
= 0.65. [Colour figure can be viewed at wileyonline-

library.com].
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(Fig. 8b). The rates of error in predicting annual Rs in

global models are disproportionately large, relative to

total Rs rates, for arctic and boreal regions where total

Rs is low (Fig. 8). These complications highlight limits

toward the accuracy of global mechanistic model struc-

tures and the need for larger observational datasets that

provide a more accurate reconstruction of the underly-

ing variability necessary to allow biome-scale model

structures to be better calibrated.

At the global scale, the highest annual Rs rates seem

to occur where mean annual volumetric soil water con-

tent approaches ~27% (Fig. 3), which could corroborate

the functions of recently constructed models (Falloon

et al., 2011; Davidson et al., 2012; Yi et al. 2011), but the

high degrees of spatial variation and difference in tem-

poral scale that our models illustrate globally demon-

strate the limits of a focused understanding. Our NLS

procedure which incorporated a parabolic moisture

function as used in several earth-system models

(Melillo et al., 2000; Exbrayat et al., 2013) performed

remarkably better than models which relied upon pre-

cipitation as seen in previous studies (Table 3a, b)

(Chen et al., 2010, 2014).

Soil moisture appears to explain more Rs variability in

all forested biomes. This could be due in part to a rela-

tive lack of spatial variability in temperature and NPP

within these ecosystems and in part to the mediating

influence of snowpack and thaw dynamics on soil mois-

ture variability (Brooks et al., 2005, 2011; Monson et al.,

2006a,b; €Oquist et al., 2009), especially in the boreal for-

ests (Dunn et al., 2007; Du et al., 2013). Because of the

strong correlation between precipitation and NPP, soil

moisture may help to better explain climatic variability

which drives the heterotrophic component of soil respi-

ration, as it integrates the effects of precipitation and

temperature on soil conditions. The Rs response to soil

moisture may attenuate expected Q10 responses to

warming, and soil moisture may become a more impor-

tant variable where increasing temperatures coincide

with reductions in precipitation changes in its character.

Table 3 Model Summaries for Nonlinear Least Squares fit procedure using (a) Arrhenius temperature function and Michaelis–

Menten soil moisture, precipitation, and carbon parameters. (b) CASA model framework. Procedure calibrated only 1st Soil Mois-

ture function numerator, regulating optimum of parabolic curve

# Observations Model parameters P-value r2 RMSE AIC

(a)

1 1366 Rs_annual = 446.8e0.053STMean (SMMean/

(SMMean � 0.006))(SoilC/SoilC + 71.1)) + 0.16NPP

<0.0001 0.3 411.9 14712.93

2 1725 Rs_annual = 104.2e0.025STMean (SMMean/

(SMMean � 0.003))(SoilC/SoilC + 10.01)) � 96.6pH

<0.0001 0.29 412.27 14714.71

3 1366 Rs_annual = 447.3e0.054STMean (MAP/(MAP � 14.9))

(SoilC/SoilC + 83.59)) + 0.11NPP

<0.0001 0.31 403.82 11913.62

4 1725 Rs_annual = 808.8e0.033STMean (MAP/(MAP � 11.4))

(SoilC/SoilC + 27.42)) � 60pH

<0.0001 0.3 404.6753 11917

(b)

1 1366 Rs_annual = Topsoil_C*1.94*(1.720.189STMean)

((SMMean � 0.748)/(0.55 � 0.748))6.6481

((SMMean + 0.007)/(0.55 � 0.007))3.22 + 0.495NPP

<0.0001 0.49 438.981 18513.4

2 1725 Rs_annual = Topsoil_C*24*(1.720.11STMean)

((SMMean � 1.1)/(0.55 � 1.1))6.6481

((SMMean + 0.007)/(0.55 � 0.007))3.22

<0.0001 0.37 564.4527 19131.34

3 1366 Rs_annual = Soil_C*68*(1.720.22STMean)

((SMMean � 2.2)/(0.55 � 2.2))6.6481

((SMMean + 0.007)/(0.55 � 0.007))3.22 + 1.36NPP

<0.0001 0.41 1140.223 20867.26

4 1725 Rs_annual = Soil_C*64*(1.720.21STMean)

((SMMean � 2.1)/(0.55 � 2.1))6.6481

((SMMean + 0.007)/(0.55 � 0.007))3.22

<0.0001 0.65 576.243 19182.32

STMean, mean soil temperature (C); SMMean, mean soil moisture (m3 m�3); Soil C, soil carbon (tonnes ha�1); AP, mean annual pre-

cipitation (mm); Topsoil C, soil carbon in upper 20 cm (tonnes ha�1); RMSE, root-mean-squared error (g C m�2 yr�1); AIC,

Akaike’s information criterion. Annual global soil respiration = Σ(cell rate*cell area); Error = ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � RMSE2=n
q

Þ � cell area.

a: (1) Global model using soil moisture and an additional linear NPP parameter; (2) global model using soil moisture and an addi-

tional linear pH parameter; (3) global model using precipitation and an additional linear NPP parameter; (4) global model using

precipitation and an additional linear pH parameter. b: (1) Global model using topsoil carbon and an additional linear NPP parame-

ter; (2) global model using topsoil carbon and no additional linear NPP parameter; (3) global model using total soil carbon and an

additional linear NPP parameter; (4) global model using total soil carbon and no additional linear pH parameter.
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The climatic influence on soil respiration is most

evident when considering the negative relationship

between soil carbon stocks and Rs at the global scale.

That biomes with the highest mean soil carbon con-

tent show the lowest mean Rs values indicates that

respiration can be less limited by carbon supply than

by the interactive effects of soil moisture and temper-

ature. Climate is the primary factor regulating the

release or retention of significant soil carbon in

regions like the arctic and boreal forests (Brooks et al.,

2005; Hartley et al., 2008; Du et al., 2013). There is sig-

nificant uncertainty regarding climate change’s poten-

tial to drive the mobilization and release of large

amounts of soil organic carbon found in high north-

ern latitudes (Elberling et al., 2008; Schuur et al.,

2008), and changing precipitation and snow dynamics

are likely to affect soil moisture conditions and respi-

ration rates (Lee et al., 2004; Euskirchen et al., 2007; Yi

et al. 2011). Relatively low NPP rates in these colder

biomes amplify the importance of climatic factors in

driving the decomposition of large soil organic carbon

pools derived from past, rather than current, produc-

tivity, especially when considering that error in global

models is a greater percentage of total Rs estimates at

high latitudes.

Other important factors relevant to the relationship

between precipitation, soil moisture, and carbon supply

are difficult to disentangle at these broad scales. Soil

texture is an important factor in determining the effect

of varying levels of soil moisture as well as the quality

of the soil carbon content in various locations, a factor

emphasized by other researchers but not explicitly eval-

uated at the global scale in our study (Davidson et al.,

2000). Precipitation dynamics, as they relate to tempera-

ture, may be better addressed using data representing

actual evapotranspiration or the ratio of actual to poten-

tial evapotranspiration. Each of these calculations, how-

ever, requires an increase in the detail, magnitude, and

consistency of data across a very large number of stud-

ies that rendered them inadequate measures for a study

at this scale. Similarly, strategies used to model primary

productivity at scales suitable for this analysis require

the acceptance of certain model assumptions and lack

of mechanistic detail. Models of NPP, for example, do

not include rates of root respiration, and this unac-

counted component of autotrophic respiration could

help explain differences between total Rs estimates and

mean NPP or GPP rates across biomes.

In forested biomes, high rates of NPP and high Rs

relative to model error may overwhelm the tempera-

ture and moisture influences on Rs uncertainty (Jans-

sens et al., 2001). Overestimates of Rs in our statistical

models are underscored by relatively large uncertainty

in the tropics, especially in regions with the highest

NPP (Figs 7 and 8). Prior research has shown local soil

moisture characteristics to affect Rs variability within

tropical forests and has stressed the need to measure

both soil moisture and soil properties at varying depths

(Davidson et al., 2000). Furthermore, primary produc-

tivity in tropical forests is exceedingly difficult to esti-

mate (Cleveland et al., 2015). Seasonal precipitation

dynamics in tropical ecosystems also likely contribute

to the high soil moisture variability shown in this

study, but at annual timescales this is not captured and

temperature still emerges as the dominant Rs control

despite the control of moisture in some site-scale stud-

ies (Hashimoto et al., 2004).

The general additive model used in this study

describes an overfit statistical relationship between the

satellite-derived variables and the observations in the

SRDB, but it provides an empirically driven benchmark

against which to compare fitted models with mechanis-

tic bases. While the results of the models with

Michaelis–Menten moisture or precipitation parameters

corroborate prior research which is mainly focused on

temperate ecosystems, our research clarifies the inher-

ent errors associated with applying such analyses at

global scales and highlights the spatial nature of these

differences. Models with a quadratic soil moisture func-

tion modeled after CASA improve explained variance

but often at the cost of increased RMSE. The addition of

a fitted NPP coefficient in the total soil carbon model,

for example, leads to significant overprediction of Rs in

areas of high NPP when compared to the GAM (Fig. 8).

These model results help to illustrate that even small

changes in environmental scalars can have notable

impacts on global estimations of soil carbon efflux, as

has been shown in comparisons of major ESMs

(Exbrayat et al., 2013).

Relatively fewer measurements in some ecosystems,

such as in tropical and temperate deciduous forests,

make it difficult to assess climatic relationships and cal-

ibrate models using the empirical record at this scale.

In Fig. 7 and Table 2, smooth functions of soil moisture

and temperature were fit for each biome; relative differ-

ences in the performance of these models and in the Rs

estimates made in Fig. 8 show that without enough

data to explain variability within biomes as a function

of NPP, for example, error in Rs estimates can vary

significantly. Additionally, a global-scale analysis of

soil respiration variability relies upon annual Rs mea-

surements and the scale or location mismatch between

these point data and gridded variables. It is more

important to compare differences in the ranges of

observed and estimated values at these scales than to

make point-by-point comparisons (Shao et al., 2013),

but our analysis demonstrates the utility in benchmark-

ing estimates against global soil respiration
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observations when calibrating model scalars to make

spatially explicit global predictions (Reichstein & Beer,

2008). The influence of climatic variables on Rs calcu-

lated at finer scales in earth-system models must mani-

fest even in annual observations at large scales. The

relative differences in the outputs of these models sug-

gest the importance of considering soil moisture influ-

ences on respiration and where areas of uncertainty in

our global understanding of soil respiration necessitate

further broadscale research.

This study illustrates the importance of soil moisture

as a metric predicting Rs with other climatic and envi-

ronmental variables that have been investigated as fac-

tors driving soil respiration rates at the global scale. By

combining observations from the empirical record with

satellite-derived measurements of soil moisture, tem-

perature, and NPP, we are able to interpret the relation-

ship between these factors and Rs across spatial scales

and explore areas of uncertainty and areas where the

relative dominance of one or more of these variables

calls for further research. In general, we note that a lim-

ited number of observations in tropical regions with the

highest predicted Rs rates and in arctic regions with the

highest estimated soil carbon stocks are one obstacle to

better constraining global-scale estimates of Rs. With-

out proper correction of the effects of spatial sampling,

the heterogeneous distribution of the measurements

may also bias global respiration estimates toward the

rates of the most sampled biomes. We also note that

much of the uncertainty in global-scale Rs modeling

derives from the integration of instantaneous effects

and seasonal dynamics of these variables at annual

timescales. A bridge between the necessity for a large

number of global observations and the need to incorpo-

rate smaller-scale temporal dynamics will require more

studies such as this which integrate remote-sensing

measurements and field observations to gain new

insight into terrestrial ecosystem carbon dynamics at

the global scale.
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