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Abstract

It is well-known that opinions have targets.

Extracting such targets is an important prob-

lem of opinion mining because without know-

ing the target of an opinion, the opinion is of

limited use. So far many algorithms have been

proposed to extract opinion targets. However,

an opinion target can be an entity or an as-

pect (part or attribute) of an entity. An opinion

about an entity is an opinion about the entity

as a whole, while an opinion about an aspect

is just an opinion about that specific attribute

or aspect of an entity. Thus, opinion targets

should be separated into entities and aspects

before use because they represent very dif-

ferent things about opinions. This paper pro-

poses a novel algorithm, called Lifelong-RL,

to solve the problem based on lifelong ma-

chine learning and relaxation labeling. Ex-

tensive experiments show that the proposed

algorithm Lifelong-RL outperforms baseline

methods markedly.

1 Introduction

A core problem of opinion mining or sentiment anal-

ysis is to identify each opinion/sentiment target and

to classify the opinion/sentiment polarity on the tar-

get (Liu, 2012). For example, in a review sen-

tence for a car, one wrote “Although the engine is

slightly weak, this car is great.” The person is posi-

tive (opinion polarity) about the car (opinion target)

as a whole, but slightly negative (opinion polarity)

about the car’s engine (opinion target).

Past research has proposed many techniques to

extract opinion targets (we will just call them targets

hereafter for simplicity) and also to classify senti-

ment polarities on the targets. However, a target can

be an entity or an aspect (part or attribute) of an en-

tity. “Engine” in the above sentence is just one as-

pect of the car, while “this car” refers to the whole

car. Note that in (Liu, 2012), an entity is called a

general aspect. For effective opinion mining, we

need to classify whether a target is an entity or an as-

pect because they refer to very different things. One

can be positive about the whole entity (car) but neg-

ative about some aspects of it (e.g., engine) and vice

versa. This paper aims to perform the target classi-

fication task, which, to our knowledge, has not been

attempted before. Although in supervised extraction

one can annotate entities and aspects with separate

labels in the training data to build a model to extract

them separately, in this paper our goal is to help un-

supervised target extraction methods to classify tar-

gets. Unsupervised target extraction methods are of-

ten preferred because they save the time-consuming

data labeling or annotation step for each domain.

Problem Statement: Given a set of opinion tar-

gets T = {t1, . . . , tn} extracted from an opinion

corpus d, we want to classify each target ti ∈ T into

one of the three classes, entity, aspect, or NIL, which

are called class labels. NIL means that the target is

neither an entity nor an aspect and is used because

target extraction algorithms can make mistakes.

This paper does not propose a new target extrac-

tion algorithm. We use an existing unsupervised

method, called Double Propagation (DP) (Qiu et al.,

2011), for extraction. We only focus on target clas-

sification after the targets have been extracted. Note

that an entity here can be a named entity, a prod-



uct category, or an abstract product (e.g., “this ma-

chine” and “this product”). An named entity can be

the name of a brand, a model, or a manufacturer. An

aspect is a part or attribute of an entity, e.g., “bat-

tery” and “price” of the entity “camera”.

Since our entities not just include the traditional

named entities (e.g., “Microsoft” and “Google”) but

also other expressions that refer to such entities, tra-

ditional named entity recognition algorithms are not

sufficient. Pronouns such as “it,” “they,” etc., are not

considered in this paper as co-reference resolution is

out of the scope of this work.

We solve this problem in an unsupervised manner

so that there is no need for labor-intensive manual

labeling of the training data. One key observation of

the problem is that although entities and aspects are

different, they are closely related because aspects are

parts or attributes of entities and they often have syn-

tactic relationships in a sentence, e.g., “This phone’s

screen is super.” Thus it is natural to solve the prob-

lem using a relational learning method. We employ

the graph labeling algorithm, Relaxation Labeling

(RL) (Hummel and Zucker, 1983), which performs

unsupervised belief propagation on a graph. In our

case, each target extracted from the given corpus d

forms a graph node and each relation identified in

d between two targets forms an edge. With some

initial probability assignments, RL can assign each

target node the most probable class label. Although

some other graph labeling methods can be applied

as well, the key issue here is that just using a propa-

gation method in isolation is far from sufficient due

to lack of information from the given corpus, which

we detail in Section 5. We then employ Lifelong Ma-

chine Learning (LML) (Thrun, 1998; Chen and Liu,

2014b) to make a major improvement.

LML works as follows: The learner has per-

formed a number learning tasks in the past and

has retained the knowledge gained so far. In the

new/current task, it makes use of the past knowledge

to help current learning and problem solving. Since

RL is unsupervised, we can assume that the system

has performed the same task on reviews of a large

number of products/domains (or corpora). It has

also saved all the graphs and classification results

from those past domains in a Knowledge Base (KB).

It then exploits this past knowledge to help clas-

sification in the current task/domain. We call this

combined approach of relaxation labeling and LML

Lifelong-RL. The approach is effective because there

is a significant amount of sharing of targets and tar-

get relations across domains.

LML is different from the classic learning

paradigm (supervised or unsupervised) because

classic learning has no memory. It basically runs a

learning algorithm on a given data in isolation with-

out considering any past learned knowledge (Silver

et al., 2013). LML aims to mimic human learning,

which always retains the learned knowledge from

the past and uses it to help future learning.

Our experimental results show that the pro-

posed Lifelong-RL system is highly promising. The

paradigm of LML helps improve the classification

results greatly.

2 Related Work

Although many target extraction methods exist (Hu

and Liu, 2004; Zhuang et al., 2006; Ku et al., 2006;

Wang and Wang, 2008; Wu et al., 2009; Lin and

He, 2009; Zhang et al., 2010; Mei et al., 2007; Li

et al., 2010; Brody and Elhadad, 2010; Wang et al.,

2010; Mukherjee and Liu, 2012; Fang and Huang,

2012; Zhou et al., 2013; Liu et al., 2013; Poria

et al., 2014), we are not aware of any attempt to

solve the proposed problem. As mentioned in the in-

troduction, although in supervised target extraction,

one can annotate entities and aspects with different

labels, supervised methods need manually labeled

training data, which is time-consuming and labor-

intensive to produce (Jakob and Gurevych, 2010;

Choi and Cardie, 2010; Mitchell et al., 2013). Note

that relaxation labeling was used for sentiment clas-

sification in (Popescu and Etzioni, 2007), but not for

target classification. More details of opinion mining

can be found in (Liu, 2012; Pang and Lee, 2008).

Our work is related to transfer learning (Pan and

Yang, 2010), which uses the source domain labeled

data to help target domain learning, which has lit-

tle or no labeled data. Our work is not just using

a source domain to help a target domain. It is a

continuous and cumulative learning process. Each

new task can make use of the knowledge learned

from all past tasks. Knowledge learned from the

new task can also help improve learning of any past

task. Transfer learning is not continuous, does not



accumulate knowledge over time and cannot im-

prove learning in the source domain. Our work is

also related to multi-task learning (Caruana, 1997),

which jointly optimizes a set of related learning

tasks. Clearly, multi-task learning is different as we

learn and save information which is more realistic

when a large number of tasks are involved.

Our work is most related to Lifelong Machine

Learning (LML). Traditional LML focuses on su-

pervised learning (Thrun, 1998; Ruvolo and Eaton,

2013; Chen et al., 2015). Recent work used LML

in topic modeling (Chen and Liu, 2014a), which is

unsupervised. Basically, they used topics generated

from past domains to help current domain model in-

ference. However, they are just for aspect extrac-

tion. So is the method in (Liu et al., 2016). They

do not solve our problem. Their LML methods are

also different from ours as we use a graph and results

obtained in the past domains to augment the current

task/domain graph to solve the problem.

3 Lifelong-RL: The General Framework

In this section, we present the proposed general

framework of lifelong relaxation labeling (Lifelong-

RL). We first give an overview of the relaxation la-

beling algorithm, which forms the base. We then

incorporate it with the LML capability. The next

two sections detail how this general framework is

applied to our proposed task of separating entities

and aspects in opinion targets.

3.1 Relaxation Labeling

Relaxation Labeling (RL) is an unsupervised graph-

based label propagation algorithm that works iter-

atively. The graph consists of nodes and edges.

Each edge represents a binary relationship between

two nodes. Each node ti in the graph is associated

with a multinomial distribution P (L(ti)) (L(ti) be-

ing the label of ti) on a label set Y . Each edge is

associated with two conditional probability distri-

butions P (L(ti)|L(tj)) and P (L(tj)|L(ti)), where

P (L(ti)|L(tj)) represents how the label L(tj) influ-

ences the label L(ti) and vice versa. The neighbors

Ne(ti) of a node ti are associated with a weight dis-

tribution w(tj |ti) with
∑

tj∈Ne(ti)
w(tj |ti) = 1.

Given the initial values of these quantities as in-

puts, RL iteratively updates the label distribution

of each node until convergence. Initially, we have

P 0(L(ti)). Let ∆P r+1(L(ti)) be the change of

P (L(ti)) at iteration r+ 1. Given P r(L(ti)) at iter-

ation r, ∆P r+1(L(ti)) is computed by:

∆P r+1(L(ti)) =
∑

tj∈Ne(ti)
(w(tj |ti)

·
∑

y∈Y (P (L(ti)|L(tj) = y)P r(L(tj) = y)))
(1)

Then, the updated label distribution for iteration

r + 1, P r+1(L(ti)), is computed as follows:

P r+1(L(ti)) =
P r(L(ti))(1+∆P r+1(L(ti)))∑

y∈Y P r(L(ti)=y)(1+∆P r+1(L(ti)=y))

(2)

Once RL ends, the final label of node ti is its highest

probable label: L(ti) = argmax
y∈Y

(P (L(ti) = y)).

Note that P (L(ti)|L(tj)) and w(tj |ti) are not up-

dated in each RL iteration but only P (L(ti)) is.

P (L(ti)|L(tj)), w(tj |ti) and P 0(L(ti)) are pro-

vided by the user or computed based on the appli-

cation context. RL uses these values as input and

iteratively updates P (L(ti)) based on Equations (1)

and (2) until convergence. Next we discuss how to

incorporate LML in RL.

3.2 Lifelong Relaxation Labeling

For LML, it is assumed that at any time step, the

system has worked on u past domain corpora D =
{d1, . . . , du}. For each past domain corpus d ∈
D, the same Lifelong-RL algorithm was applied

and its results were saved in the Knowledge Base

(KB). Then the algorithm can borrow some useful

prior/past knowledge in the KB to help RL in the

new/current domain du+1. Once the results of the

current domain are produced, they are also added to

the KB for future use.

We now detail the specific types of information

or knowledge that can be obtained from the past do-

mains to help RL in the future, which should thus be

stored in the KB.

1. Prior edges: In many applications, the graph

is not given. Instead, it has to be constructed

based on the data from the new task/domain

data du+1. However, due to the limited data in

du+1, some edges between nodes that should

be present are not extracted from the data. But

such edges between the nodes may exist in



some past domains. Then, those edges and their

associated probabilities can be borrowed.

2. Prior labels: Some nodes in the current new

domain may also exist in some past domains.

Their labels in the past domains are very likely

to be the same as those in the current domain.

Then, those prior labels can give us a better idea

about the initial label probability distributions

of the nodes in the current domain du+1.

To leverage those edges and labels from the past

domains, the system needs to ensure that they are

likely to be correct and applicable to the current task

domain. This is a challenge problem. In the next

two sections, we detail how to ensure these to a large

extent in our application context along with how to

compute those initial probabilities.

4 Initialization of Relaxation Labeling

We now discuss how the proposed Lifelong-RL gen-

eral framework is applied to solve our problem. In

our case, each node in the graph is an extracted tar-

get ti ∈ T , and each edge represents a binary re-

lationship between two targets. T is the given set

of all opinion targets extracted by an extraction al-

gorithm from a review dataset/corpus d. The label

set for each target is Y = {entity, aspect,NIL}. In

this section, we describe how to use text clues in the

corpus d to compute P (L(ti)|L(tj)), w(tj |ti) and

P 0(L(ti)). In the next section, we present how these

quantities are improved using prior knowledge from

the past domains in the LML fashion.

4.1 Text Clues for Initialization

We use two kinds of text clues, called type modifiers

M(t) and relation modifiers MR to compute the ini-

tial label distribution P (L(ti)) and conditional label

distribution P (L(ti)|L(tj)) respectively.

Type Modifier: This has two kinds MT =
{mE ,mA}, where mE and mA represent entity

modifier and aspect modifier respectively. For ex-

ample, the word “this” as in “this camera is great”

indicates that “camera” is probably an entity. Thus,

“this” is a type modifier indicating M(camera) =
mE . “These” is also a type modifier. Aspect mod-

ifier is implicitly assumed when the number of ap-

pearances of entity modifiers is less than or equal to

a threshold (see Section 4.2).

Relation Modifier: Given two targets, ti and tj ,

we use Mtj (ti) to denote the relation modifier that

the label of target ti is influenced by the label of tar-

get tj . Relation modifiers are further divided into 3

kinds: MR = {mc,mA|E ,mE|A}.

Conjunction modifier mc: Conjoined items are

usually of the same type. For example, in “price and

service”, “and service” indicates a conjunction mod-

ifier for “price” and vice versa.

Entity-aspect modifier mA|E : A possessive ex-

pression indicates an entity and an aspect relation.

For example, in “the camera’s battery”, “camera” in-

dicates an entity-aspect modifier for “battery”.

Aspect-entity modifier mE|A: Same as above ex-

cept that “battery” indicates an aspect-entity modi-

fier for “camera”.

Modifier Extraction: These modifiers are iden-

tified from the corpus d using three syntactic rules.

“This” and “these” are used to extract type modifier

M(t) = mE . CmE
(t) is the occurrence count of

that modifier on target t, which is used in determin-

ing the initial label distribution in Section 4.2.

Relation modifiers are identified by dependency

relations conj(ti, tj) and poss(ti, tj) using the Stan-

ford Parser (Klein and Manning, 2003). Each oc-

currence of a relation rule contributes one count of

Mtj (ti) for ti and one count of Mti(tj) for tj . We

use Cmc,tj (ti), CmA|E ,tj (ti) and CmE|A,tj (ti) to de-

note the count of tj modifying ti with conjunction,

entity-aspect and aspect-entity modifiers respec-

tively. For example, “price and service” will con-

tribute one count to Cmc,price(service) and one count

to Cmc,service(price). Similarly, “camera’s battery”

will contribute one count to CmA|E ,camera(battery)
and one count to CmE|A,battery(camera).

4.2 Computing Initial Probabilities

The initial label probability distribution of target t is

computed based on CmE
(t), i.e.,

P 0(L(t)) =

{

PmE
(L(t)) if CmE

(t) > α

PmA
(L(t)) if CmE

(t) ≤ α

(3)

Here, we have two pre-defined distributions: PmE

and PmA
, which have a higher probability on entity

and aspect respectively. The parameter α is a thresh-

old indicating that if the entity modifier rarely oc-

curs, the target is more likely to be an aspect. These



values are set empirically (see Section 6).

Let term q(Mtj (ti) = m) be the normalized

weight on the count for each kind of relation modi-

fier m ∈ MR:

q(Mtj (ti) = m) =
Cm,tj (ti)

Ctj (ti)
(4)

where Ctj (ti) =
∑

m∈MR
Cm,tj (ti).

The conditional label distribution P (L(ti)|L(tj))
of ti given the label of tj is the weighted sum over

the three kinds of relation modifiers:

P (L(ti)|L(tj)) =
q(Mtj (ti) = mc) · Pmc(L(ti)|L(tj))
+q(Mtj (ti) = mA|E) · PmA|E

(L(ti)|L(tj))

+q(Mtj (ti) = mE|A) · PmE|A
(L(ti)|L(tj))

(5)

where Pmc , PmA|E
, and PmE|A

are pre-defined con-

ditional distributions. They are filled with values to

model the label influence from neighbors and can be

found in Section 6.

Finally, target ti’s neighbor weight for target tj ,

i.e., w(tj |ti), is the ratio of the count of relation

modifiers Ctj (ti) over the total of all ti’s neighbors:

w(tj |ti) =
Ctj (ti)

∑

tj′∈Ne(ti)
Ctj′

(ti)
(6)

If Ctj (ti) = 0, ti and tj has no edge between them.

5 Using Past Knowledge in Lifelong-RL

Due to the fact that the review corpus du+1 in the

current task domain may not be very large and that

we use high quality syntactic rules to extract rela-

tions to build the graph to ensure precision, the num-

ber of relations extracted can be small and insuffi-

cient to produce a graph that is information rich with

accurate initial probabilities. We thus apply LML to

help using knowledge learned in the past. The pro-

posed LML process in Lifelong-RL for our task is

shown in Figure 1.

Our prior knowledge includes type modi-

fiers, relation modifiers and labels of targets

obtained from past domains in D. Each

record in the KB is stored as a 9-tuple:

(d, ti, tj ,M
d(ti),M

d(tj), C
d
m,tj

(ti), C
d
m,ti

(tj), L
d(ti), L

d(tj))

where d ∈ D is a past domain; ti and tj are

two targets; Md(ti), Md(tj) are their type

Figure 1: The proposed LML process.

modifiers, Cd
m,tj

(ti) and Cd
m,ti

(tj) are counts

for relation modifiers; Ld(ti) and Ld(tj) are

labels decided by RL. For example, the sen-

tence “This camera’s battery is good” forms:

(d, camera, battery,mE ,mA, CmE|A,battery(camera) = 1,

CmA|E ,camera(battery) = 1, entity, aspect) . It means that

in the past domain d, “camera” and “battery” are

extracted targets. Since “camera” is followed by

“this”, its type modifier is mE . Since “battery” is

not identified by an entity modifier, it is mA. The

pattern “camera’s battery” contributes one count for

both relation modifiers CmE|A,battery(camera) and

CmA|E ,camera(battery). RL has labeled “camera”

as entity and “battery” as aspect in d.

The next two subsections present how to use the

knowledge in the KB to improve the initial assign-

ments for the label distributions, conditional label

distributions and neighborhood weight distributions

in order to achieve better final labeling/classification

results for the current/new domain du+1.

5.1 Exploiting Relation Modifiers in the KB

If two targets in the current domain corpus have no

edge, we can check whether relation modifiers of the

same two targets exist in some past domains. If so,

we may be able to borrow them. But to ensure suit-

ability, two consistency checks are performed.

Label Consistency Check: Since RL makes mis-

takes, we need to ensure that relation modifiers in a

record in the KB are consistent with target labels in

that past domain. For example, “camera’s battery” is

confirmed by “camera” being labeled as entity and

“battery” being labeled as aspect in a past domain

d ∈ D. Without this consistency, the record may not

be reliable and should be discarded from the KB.

We define an indicator variable I
d
m,tj

(ti) to en-



sure that the record r’s relation modifier is consistent

with the labels of its two targets:

I
d
mA|E ,tj

(ti) =















1

if Cd
mA|E ,tj

(ti) > 0

and Ld(ti) = aspect

and Ld(tj) = entity

0 otherwise

(7)

For example, if “camera” is labeled as entity

and “battery” is labeled as aspect in the past do-

main d, we have I
d
mA|E ,camera(battery) = 1 and

I
d
mE|A,battery(camera) = 1.

Type Consistency Check: Here we ensure the

type modifiers for two targets in the current domain

du+1 are consistent with these type modifiers in the

past domain d ∈ D. This is because an item can be

an aspect in one domain but an entity in another. For

example, if the current domain is “Cellphone”, bor-

rowing the relation “camera’s battery” from domain

“Camera” can introduce an error because “camera”

is an aspect in domain “Cellphone”.

Syntactic pattern “this” is a good indicator for this

checking. In the “Cellphone” domain, “its camera”

or “the camera” are often mentioned but not “this

camera”. In the “Camera” domain, “this camera” is

often mentioned. The type modifier of “camera” in

“Cellphone” is mA, but in “Camera” it is mE .

Updating Probabilities in Current Domain

du+1: Edges for RL are in the forms of conditional

label distribution P (L(ti)|L(tj)) and neighborhood

weight distribution w(tj |ti). We now discuss how to

use the KB to estimate them more accurately.

Updating Conditional Label Distribution: Equa-

tion (5) tells that conditional label distribution

P (L(ti)|L(tj)) is the weighted sum of relation mod-

ifiers’ label distributions Pmc , PmA|E
, and PmE|A

.

These 3 label distributions are pre-defined and given

in Table 2. They are not changed. Thus, we up-

date conditional label distribution through updating

the three relation modifiers’ weights q(Mtj (ti)) with

the knowledge in the KB. Recall the three relation

modifiers are MR = {mc,mA|E ,mE|A}.

After consistency check, there can be multiple re-

lation modifiers between two targets in similar past

domains Ds ⊂ D. The number of domains sup-

porting a relation modifier m ∈ MR can tell which

kind of relation modifiers is common and likely to

be correct. For example, given many past domains

like “Laptop”, “Tablet”, “Cellphone”, etc., “camera

and battery” appears more than “camera’s battery”,

“camera” should be modified by “battery” more with

mE|A rather than mc (likely to be an aspect).

Let C
du+1

m,tj
(ti) be the count that target ti modi-

fied by target tj on relation m in the current domain

du+1 (not in KB). The count C(CL) is for updating

the Conditional Label (CL) distributions consider-

ing the information in both the current domain du+1

and the KB. It is calculated as:

C
(CL)
m,tj

(ti) =

{

C
du+1

m,tj
(ti) if C

du+1

m,tj
(ti) > 0

∑

d∈Ds I
d
m,tj

(ti) if
∑

m∈MR
C

du+1

m,tj
(ti)) = 0

This equation says that if there is any relation mod-

ifier existing between the two targets in the new

domain du+1, we do not borrow edges from the

KB; Otherwise, the number of similar past domains

supporting the relation modifier m is used. Recall

that Idm,tj
(ti) is the result calculated by Equation (7)

after label consistency check.

We use count C
(CL)
m,tj

(ti) to update qdu+1(Mtj (ti))
using Equation (4) in Section 4.2. Then the con-

ditional label distribution accommodating relation

modifiers in the KB, P (LL1)(L(ti)|L(tj)), is calcu-

lated by Equation, (5) using qdu+1(Mtj (ti)). LL1

denotes Lifelong Learning 1.

Updating Neighbor Weight Distribution: Equa-

tion (6) says that w(tj |ti) is the importance of target

ti’s neighbor tj to ti among all ti’s neighbors. When

updating conditional label distribution using the KB,

the number of domains can decide which kind of re-

lation modifiers m is more common between the two

targets ti and tj . But we cannot tell that neighbor tj
is more important than another neighbor tj′ to ti.

For example, given the past domains such as

“Laptop”, “Tablet”, “Cellphone”, etc., no matter

how many domains believe “camera” is an aspect

given “battery” is also an aspect, if the current do-

main is “All-in-one desktop computer”, we should

not consider the strong influences from “battery”

in the past domains. We should rely more on the

weights of “camera”’s neighbors provided by “All-

in-one desktop computer”. That means “mouse”,

“keyboard”, “screen” etc., should have strong influ-

ences on “camera” than “battery” because most All-

in-one desktops (e.g. iMac) do not have battery.

We introduce another indicator variable

I
D
m,tj

(ti) =
⋃

d∈Ds I
d
m,tj

(ti), to indicate whether

target tj modified ti on relation m in past similar



domains Ds. It only considers the existence of a

relation modifier m among domains Ds.

The count C
(w)
tj

(ti) for updating the neighbor

weight (w) distribution considers both the KB

and the current domain du+1. It is as follows:

C
(w)
tj

(ti) =

{

∑

m∈MR
C

du+1

m,tj
(ti) if

∑

m∈MR
C

du+1

m,tj
(ti) > 0

∑

m∈MR
I
Du
m,tj

(ti) if
∑

m∈MR
C

du+1

m,tj
(ti) = 0

This equation tells that if there are relation modifiers

existing between the two targets in the new domain

du+1, we count the total times that tj modifies ti
in the new domain; Otherwise, we count the total

kinds of relation modifiers in MR if a relation

modifier m ∈ MR existed in past domains. Let

w(LL1)(tj |ti) be the neighbor weight distribution

considering knowledge from the KB and du+1. It is

calculated by Equation (6) using C
(w)
tj

(ti).

The initial label distribution P du+1,0 is calculated

by Equation (3) only using type modifiers found in

the new domain du+1. We use Lifelong-RL-1 to de-

note the method that employs P (LL1)(L(ti)|L(tj)),
w(LL1)(tj |ti) and P du+1,0 as inputs for RL.

5.2 Exploiting Target Labels in the KB

Since we have target labels from past domains, we

may have a better idea about the initial label prob-

abilities of targets in the current domain du+1. For

example, after labeling domains like “Cellphone”,

“Laptop”, “Tablet,” and “E-reader”, we may have a

good sense that “camera” is likely to be an aspect.

To use such knowledge, we need to check if the type

modifier of target t in the current domain matches

those in past domains and only keep those domains

that have such a matching type modifier.

Let Ds ⊂ D be the past domains consistent with

target t’s type modifier in the current domain du+1.

Let CDs
(L(t)) be the number of domains in Ds

that target t is labeled as L(t). Let λ be the ratio

that controls how much we trust knowledge from

the KB. Then the initial label probability distribu-

tion P du+1,0 calculated by Equation (3) only using

type modifier found in du+1 is replaced by :

P (LL2),0(L(t)) = |D|×P du+1,0(L(t))+λCDs
(L(t))

|D|+λ|D|

(8)

Similarly, let Ds ⊂ D be the past domains con-

sistent with both targets ti’s and tj’s type modifiers

in du+1. Let CDs
(L(ti), L(tj)) be the number of

domains in Ds that ti and tj are labeled as L(ti) and

L(tj) respectively. The conditional label probabil-

ity distribution accommodating relation modifiers in

the KB, P (LL1)(L(ti)|L(tj)), is further updated to

P (LL2)(L(ti)|L(tj)) by exploiting the target labels

in KB (LL2 denotes Lifelong Learning 2):

P (LL2)(L(ti)|L(tj)) =
|D|×P (LL1)(L(ti)|L(tj))+λCDs

(L(ti),L(tj))
|D|+λ|D|

(9)

For example, given “this camera”, “battery” in

the current domain, we are more likely to consider

domains (e.g. “Film Camera”, “DSLR”, but not

“Cellphone”) that have entity modifiers on “camera”

and aspect modifiers on “battery”. Then we count

the number of those domains that label “camera” as

entity and “battery” as aspect: CDs
(L(camera) =

entity, L(battery) = aspect). Similarly, we count

domains having other types of target labels on “cam-

era” and “battery”. These counts form an updated

conditional label distribution that estimates “cam-

era” as an entity and “battery” as an aspect.

Note that |D − Ds|, the number of past do-

mains not consistent with targets’ type modifiers,

is added to CDs
(L(ti) = NIL) and CDs

(L(ti) =
NIL, L(tj)) for Equations (8) and (9) respec-

tively to make the sum over L(ti) equal to

1. We use Lifelong-RL to denote this method

which uses P (LL2),0(L(t)), P (LL2)(L(ti)|L(tj)) and

w(LL1)(tj |ti) as input for RL.

6 Experiments

We now evaluate the proposed method and compare

with baselines. We use the DP method for target ex-

traction (Qiu et al., 2011). This method uses depen-

dency relations between opinion words and targets

to extract targets using seed opinion words. Since

our paper does not focus on extraction, interested

readers can refer to (Qiu et al., 2011) for details.

6.1 Experiment Settings

Evaluation Datasets: We use two sets of datasets.

The first set consists of eight (8) annotated review

datasets. We use each of them as the new domain

data in LML to compute precision, recall, F1 scores.

Five of them are from (Hu and Liu, 2004), and the

remaining three are from (Liu et al., 2016). They

have been used for target extraction, and thus have

annotated targets, but no annotation on whether a



Dataset Product Type # of Sentence # of entity # of aspect

D1 Computer 531 50 151

D2 Wireless Router 879 97 186

D3 Speaker 689 64 218

D4 DVD Player 740 50 159

D5 Digital Camera 597 70 239

D6 MP3 Player 1716 60 370

D7 Digital Camera 346 28 151

D8 Cell Phone 546 36 188

Table 1: Annotation details of the benchmark datasets.

Distribution L(t) = entity L(t) = aspect L(t) = NIL

PmE
0.45 0.25 0.3

PmA
0.3 0.4 0.3

Pmc
L(tj) = entity L(tj) = aspect L(tj) = NIL

L(ti) = entity 0.8 0.0 0.33
L(ti) = aspect 0.0 0.8 0.33
L(ti) = NIL 0.2 0.2 0.33

PmE|A
L(tj) = entity L(tj) = aspect L(tj) = NIL

L(ti) = entity 0.33 0.8 0.33
L(ti) = aspect 0.33 0.0 0.33
L(ti) = NIL 0.33 0.2 0.33

PmA|E
L(tj) = entity L(tj) = aspect L(tj) = NIL

L(ti) = entity 0.0 0.33 0.33
L(ti) = aspect 0.8 0.33 0.33
L(ti) = NIL 0.2 0.33 0.33

Table 2: Label Distribution for PE and PA and Condi-

tional Label Distribution for Pmc
, PmA|E

and PmE|A

target is an entity or aspect. We made this annota-

tion, which is straightforward. We used two annota-

tors to annotate the datasets. The Cohen’s kappa is

0.84. Through discussion, the annotators got com-

plete agreement. Details of the datasets are listed in

Table 1. Each cell is the number of distinct terms.

These datasets are not very large but they are realis-

tic because many products do not have a large num-

ber of reviews.

The second set consists of unlabeled review

datasets from 100 diverse products or domains

(Chen and Liu 2014). Each domain has 1000 re-

views. They are treated as past domain data in LML

since they are not annotated and thus cannot be used

for computing evaluation measures.

Evaluating Measures: We mainly use precision

P , recall R, and F1-score F1 as evaluation mea-

sures. We take multiple occurrences of the same

target as one count, and only evaluate entities and

aspects. We will also give the accuracy results.

Compared Methods: We compare the following

methods, including our proposed method, Lifelong-

RL.

NER+TM: NER is Named Entity Recognition.

We can regard the extracted terms from a NER sys-

tem as entities and the rest of the targets as as-

pects. However, a NER system cannot identify enti-

ties such as “this car” from “this car is great.” Its re-

sult is rather poor. But our type modifier (TM) does

that, i.e., if an opinion target appears after “this” or

“these” in at least two sentences, TM labels the tar-

get as an entity; otherwise an aspect. However, TM

cannot extract named entities. Its result is also rather

poor. We thus combine the two methods to give

NER+TM as they complement each other very well.

To make NER more powerful, we use two NER sys-

tems: Stanford-NER 1(Manning et al., 2014) and

UIUC-NER2 (Ratinov and Roth, 2009). NER+TM

treats the extracted entities by the three systems as

entities and the rest of the targets as aspects.

NER+TM+DICT: We run NER+TM on the 100

datasets for LML to get a list of entities, which we

call the dictionary (DICT). For a new task, if any

target word is in the list, it is treated as an entity;

otherwise an aspect.

RL: This is the base method described in Section

3. It performs relaxation labeling (RL) without the

help of LML.

Lifelong-RL-1: This performs LML with RL but

the current task only uses the relations in the KB

from previous tasks (Section 5.1).

Lifelong-RL: This is our proposed final method.

It improves Lifelong-RL-1 by further incorporating

target labels in the KB from previous tasks (Section

5.2).

Parameter Settings: RL has 2 initial label distri-

butions PmE
and PmA

and 3 conditional label dis-

tributions Pmc , PmE|A
and PmA|E

. Like other belief

propagation algorithms, these probabilities need to

be set empirically, as shown in Table 2. The parame-

ter α is set to 1. Our LML method has one parameter

λ for Lifelong-RL. We set it to 0.1.

6.2 Results Analysis

Table 3 shows the test results of all systems in pre-

cision, recall and F1-score except NER+TM+DICT.

NER+TM+DICT is not included due to space lim-

itations and because it performed very poorly. The

1http://nlp.stanford.edu/software/CRF-NER.shtml
2https://cogcomp.cs.illinois.edu/page/software view/NETagger



Dataset

Entity Aspect

NER+TM RL Lifelong-RL-1 Lifelong-RL NER+TM RL Lifelong-RL-1 Lifelong-RL

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

D1 56.3 88 68.7 80 56 65.9 76.1 70 72.9 83.1 66 73.6 71.0 74.8 72.9 72.6 74.2 73.4 75.3 71.5 73.4 74.2 72.8 73.5

D2 64.8 75.3 69.7 71.6 42.3 53.2 81.1 62.9 70.9 85.5 78.4 81.8 61.9 90.3 73.5 61.4 85 71.3 67.2 92.5 77.9 70.4 90.9 79.3

D3 56.8 68.6 62.2 63.4 37.5 47.1 79.8 62.5 70.1 76.3 64.1 69.6 76.3 81.7 78.9 76.6 77.5 77.1 73.7 84.4 78.7 73.5 82.6 77.8

D4 76.7 42 54.3 69.3 42 52.3 77.9 70 73.7 78.6 70 74 68.8 71.7 70.2 68.3 70.4 69.3 70.4 65.4 67.8 70.6 66 68.2

D5 62.7 54.3 58.2 62.1 61.4 61.8 78.5 94.3 85.7 86.4 91.4 88.9 85.6 81.6 83.5 85.5 77.8 81.5 87 81.2 84 87.7 82 84.8

D6 69.9 38.3 49.5 67 56.7 61.4 74.7 75 74.8 77.4 73.3 75.3 75.4 83 79 76.2 81.1 78.6 78.8 85.9 82.2 78.9 86.2 82.4

D7 95 64.28 76.7 95.2 67.9 79.2 93.8 92.8 93.3 94.7 92.9 93.8 87.5 86.1 86.8 87.9 86.8 87.3 89.1 88.1 88.6 90.7 88.7 89.7

D8 65.9 41.7 51.1 65.5 72.2 68.7 72.3 83.3 77.4 79.4 86.1 82.6 76.1 81.9 78.9 77.8 80.9 79.3 81.4 89.4 85.2 81.9 89.9 85.7

Average 68.5 59.1 61.3 71.8 54.5 61.2 79.3 76.4 77.4 82.7 77.8 79.9 75.3 81.4 78 75.8 79.2 77.2 77.9 82.3 79.7 78.5 82.4 80.2

Table 3: Comparative results on Entity and Aspect in precision, recall and F1 score: NER+TM+DICT’s

results are very poor and not included (see Section 6.2) for the average results.

reason is that a target can be an entity in one domain

but an aspect in another. Its average F1-score for en-

tity is only 49.2, and for aspect is only 50.2.

Entity Results Comparison: We observe from

the table that although NER+TM combines NER

and TM, its result for entities is still rather poor. We

notice that phrases like “this price” causes low pre-

cision. Since it does not use many other relations

and NER does not recognize many named entities

that are written in lower case letters (e.g., “apple is

good”), its recall is also low.

RL has a higher precision as it considers rela-

tion modifiers. However, its recall is low because

it lacks information in its graph, which causes RL to

make many wrong decisions. Lifelong-RL-1 intro-

duces relation modifiers in KB from past domains

into the current task. Both precision and recall in-

crease markedly.

Lifelong-RL improves Lifelong-RL-1 further by

considering target labels of past domains. Their

counts improve the initial label probability distribu-

tions and conditional label probability distributions.

For example, “this price” may appear in some do-

mains but “price”’s target label is mostly aspect. We

consider their counts in initial label distributions and

thus rectify the initial distribution of “price”. This

makes “price” easier to be classified as aspect and

thus improves the precision for entity.

Aspect Results Comparison: For aspects, the

trend is the same but the improvements are not as

dramatic as for entity. This is because the distribu-

tion of entity and aspect in the data is highly skewed.

There are many more aspects than entities as we

can see from the Table 1. When an entity term is

wrongly classified as an aspect, it has much less im-

pact on the aspect result than on the entity result.

Accuracy Results Comparison: Table 4 gives

Dataset NER+TM RL Lifelong-RL-1 Lifelong-RL

D1 64.93 74.29 75.51 76.34

D2 62.94 63.53 69.8 73.82

D3 70.04 73.74 74.83 74.1

D4 70.81 68.57 73.33 73.63

D5 82.07 81.46 85.22 87.5

D6 74.83 75.06 78 78.63

D7 88.18 88.63 89.68 91.3

D8 74.54 75.43 79.57 81.4

Average 73.55 75.07 78.24 79.59

Table 4: Results in accuracy: NER+TM+DICT’s re-

sults are again very poor and thus not included.

the classification accuracy results considering all

three classes. We can see the similar trend.

NER+TM+DICT’s average accuracy is only 45.89

and is not included in the table.

7 Conclusion

This paper studied the problem of classifying opin-

ion targets into entities and aspects. To the best of

our knowledge, this problem has not been attempted

in the unsupervised opinion target extraction setting.

But this is an important problem because without

separating or classifying them one will not know

whether an opinion is about an entity as a whole

or about a specific aspect of an entity. This paper

proposed a novel method based on relaxation label-

ing and the paradigm of lifelong machine learning to

solve the problem. Experimental results showed the

effectiveness of the proposed method.
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