Transactions on Computer-Aided Design of Integrated Circuits and Systems

Quantitative Performance Evaluation of Uncertainty-Aware
Hybrid AADL Designs Using Statistical Model Checking

Yongxiang Bao, Mingsong Chen* Member, IEEE, Qi Zhu Member, IEEE, Tongquan Wei Member, IEEE,
Frederic Mallet Member, IEEE and Tingliang Zhou

Abstract—Hybrid Architecture Analysis and Design Language
(AADL) has been proposed to model the interactions between
embedded control systems and continuous physical environment.
However, the worst-case performance analysis of Hybrid AADL
designs often leads to overly pessimistic estimations, and is not
suitable for accurate reasoning about overall system perfor-
mance, in particular when the system closely interacts with an
uncertain external environment. To address this challenge, this
paper proposes a statistical model checking based framework
that can perform quantitative evaluation of uncertainty-aware
Hybrid AADL designs against various performance queries. Qur
approach extends Hybrid AADL to support the modeling of
environment uncertainties. Furthermore, we propose a set of
transformation rules that can automatically translate AADL
designs together with designers’ requirements into Networks of
Priced Timed Automata (NPTA) and performance queries, re-
spectively. Comprehensive experimental results on the Movement
Authority (MA) scenario of Chinese Train Control System Level
3 (CTCS-3) demonstrate the effectiveness of our approach.

Index Terms—Hybrid AADL, Uncertainty, Statistical model
checking, Quantitative performance evaluation.

I. INTRODUCTION

O promptly and accurately sense and control the physical
world, more and more real-time embedded systems are
deployed into our surrounding environment. As a result, the
stringent safety-critical requirements coupled with increasing
interactions with uncertain physical environments make the
design complexity of Cyber-Physical Systems (CPS) skyrock-
eting [1], [2]. Unfortunately, due to the lack of architecture-
level performance evaluation approaches considering uncertain
environments, the required performance of integrated CPS
implementations can be easily violated. Therefore, how to
model the uncertain behaviors of both cyber and physical
elements and how to guarantee meeting the critical functional
and real-time requirements have become major challenges in
CPS architecture design.
Architecture Analysis and Design Language (AADL) [3],
[4], [5] has been widely adopted for the design and analysis

The authors Yongxiang Bao, Mingsong Chen, and Tongquan Wei are with
Shanghai Key Laboratory of Trustworthy Computing at East China Normal
University, Shanghai, 200062, China. The author Qi Zhu is with Department
of Electrical and Computer Engineering at University of California, Riverside,
CA 92521, USA. The author Frederic Mallet is with Université Nice Sophia
Antipolis, F-06902 Sophia Antipolis Cedex, France. Tingliang Zhou is with
Casco Signal Ltd., Shanghai, 200070, China.

This work was partially supported by the grants from Natural Science
Foundation of China (Nos. 61672230 and 91418203), Shanghai Municipal
NSF 16ZR 1409000, and National Science Foundation of United States (CCF-
1553757 and CCF-1646381).

*Corresponding author. Tel: +(8621) 62235116; fax: +(8621) 62235255;
E-mail: mschen@sei.ecnu.edu.cn.

of safety-critical real-time systems (e.g., automotive, avionics
and railway systems). By defining various modeling constructs
for hardware and software components, AADL core lan-
guage supports the structural description of system partitioning
and connectivity among components, while the semantics of
AADL can be extended via annex sublanguages and user-
defined properties. An AADL specification provides a set of
modeling constructs for the description and verification of
both functional and non-functional properties of interacting
software and hardware components. Since the core AADL
language only supports modeling of hardware and software
components, to model the physical environment we adopt the
Hybrid AADL, which supports continuous behavior modeling
via the Hybrid annex [6].

When modeling a safety-critical system using AADL, be-
fore the design refinement, there is a rigorous certification pro-
cess to verify whether the AADL design satisfies the required
safety properties. Although existing AADL IDE tools such
as OSATE [7] can be used to check timing properties (e.g.,
flow latency), most of existing approaches adopt the worst-
case timing analysis without considering performance varia-
tions, which can easily lead to overly pessimistic performance
estimations. To extend the performance analysis capability of
AADL designs, various model transformation approaches [8],
[9] have been proposed to verify AADL models based on exist-
ing verification and analysis tools. For quantitative analysis of
AADL designs with uncertain environment, designers would
like to ask questions such as “What is the probability that a
specified scenario can be achieved within time x?”. However,
existing approaches focus on checking safety properties that
only have an answer of “yes” or “no” without considering
uncertain environments. Few of them can quantitatively reason
why a given performance requirement cannot be achieved
and answer how to improve the design performance. Clearly,
the bottleneck is the lack of powerful quantitative evaluation
approaches that can help AADL designers to make decisions
during the architecture design.

To enable the quantitative analysis for Hybrid AADL de-
signs, we propose a novel framework based on Statistical
Model Checking (SMC) [10] which relies on the monitoring
of random simulation runs of systems. By analyzing the
simulation results using statistical approaches (e.g., sequential
hypothesis testing or Monte Carlo simulation), the satisfaction
probability of specified properties (i.e., performance require-
ments) can be estimated. Unlike traditional formal verification
methods, which need to explore all the state space, SMC only
investigates a limited number of simulation runs of systems
and requires far less memory and time. Therefore, SMC is

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

very suitable for the approximate functional validation of
complex AADL designs. We use the statistical model checker
UPPAAL-SMC [10] as the engine of our approach, to leverage
its rich modeling constructs and flexible mapping mechanisms.

Based on UPPAAL-SMC, this paper makes three following
major contributions: i) We extend the syntax and seman-
tics of Hybrid AADL specifications [6] using our proposed
Uncertainty annex, which enables the accurate modeling of
both performance variations caused by uncertain environments
and performance requirements specified by designers. ii) To
automate the quantitative analysis of uncertainty-aware Hybrid
AADL designs, we rely on Network of Priced Timed Automata
(NPTA) [10] as the model of computation in our approach.
We propose a set of mapping rules that can automatically
transform uncertain-aware Hybrid AADL designs into NPTA
models and convert the performance requirements into various
kinds of queries in the form of cost-constrained temporal
logic [11]. iii) Based on our proposed SMC-based evaluation
framework, we implement a tool chain that integrates both
UPPAAL-SMC and the open-source AADL tool environment
OSATE to enable the automated performance evaluation and
comparison of uncertainty-aware Hybrid AADL designs.

The rest of this paper is organized as follows. After intro-
ducing the related work on AADL and SMC-based evaluation
approaches in Section II, Section II presents the details of our
proposal. Based on an industrial CTCS-3 MA design, Sec-
tion IV shows that our proposed approach can be effectively
applied to the quantitative analysis of Uncertain Hybrid AADL
designs. Finally, Section V concludes the paper.

II. RELATED WORK

To facilitate architecture design and analysis of safety-
critical systems, various AADL simulation and verification
tools were investigated [5]. For example, Jahier et al. [15]
proposed an approach that can translate both AADL models
and software components developed in synchronous languages
(i.e., SCADE, Lustre) into executable models, which can be
simulated and validated together. In [13], Yu et al. presented a
co-simulation and co-verification framework for AADL and
Simulink designs. Based on a formal polychronous/multi-
clock model of computation, an original clock-based timing
analysis and validation of the overall system is achieved.
In [16], Larson et el. introduced the Behavioral Language
for Embedded Systems with Software (BLESS) annex for
AADL. The extended AADL language enables engineers to
specify contracts on AADL components that can capture both
functional and timing properties. They also developed the
BLESS proof tool which can check whether AADL behavioral
descriptions conform to specified contracts. Although these
approaches are promising in functional checking, few of them
consider performance issues for AADL designs.

Rather than developing dedicated verification tools for
AADL designs, more and more model transformation-based
AADL analysis approaches resort to the benefits of widely-
used model checking techniques [18]. For instance, Hu et
al. [8] presented a set of formally defined rules that can
translate a subset of AADL to corresponding Timed Abstract

State Machines (TASM) models for the purpose of timing
and resource verification. To ensure completeness and con-
sistency of an AADL specification as well as its conformity
with the end product, Johnsen et al. [9] presented a formal
verification technique by translating AADL designs to timed
automata models. In [12], Bozzano et al. proposed a formal
semantics for AADL that incorporates functional, probabilistic
and hybrid aspects. Based on model checking techniques, they
developed a toolset that can be used for a wide spectrum of
design purposes ranging from requirements validation to per-
formability evaluation and diagnosability analysis. Although
the above model checking-based methods can check the func-
tional correctness of systems in a fully automated manner,
most of them suffer from the state space explosion problem
[18]. Moreover, very few of them take the uncertain physical
environment into account.

Since cyber-physical systems interact with surrounding
physical environment frequently, the behavior modeling and
verification of multirate and hybrid systems have become
important research topics in AADL design. For example, Bae
et al. [14] proposed a modeling language named Multirate
Synchronous AADL, which can be used to specify multirate
synchronous designs using existing AADL modeling stan-
dard. They also defined the formal semantics of Multirate
Synchronous AADL, which enables the formal verification
using Real-Time Maude. Based on BLESS annex [16] and
Hybrid annex [6], Ahmad et al. [20] modeled and analyzed
the movement authority scenario of the Chinese Train Control
System Level 3 (CTCS-3) in AADL. Their approach can
verify both discrete and hybrid behaviors of annotated Hybrid
AADL designs based on the interactive Hybrid Hoare Logic
theorem prover [17]. However, since their approach is based on
theorem proving methods, it cannot be fully automated due to
the required expert knowledge and manual “proof assistants”.
Furthermore, existing theorem proving based methods focus
on proving functional correctness of AADL designs. Few
of them can be used to evaluate design performance within
uncertain physical environment.

Due to its scalability and effectiveness in evaluating stochas-
tic behavior, statistical model checking has become a preferred
option in performance analysis of system designs with un-
certainties [21]. Since statistical model checking is based on
simulation, it requires far less memory and time, which enables
highly scalable validation for AADL designs. For example,
Bruintjes et al. [24] introduced a statistical model checking ap-
proach for timed reachability analysis of extended AADL de-
signs. They developed a simulator that can perform probabilis-
tic analysis of underlying stochastic models using Monte Carlo
simulation. Our approach differs greatly from [24]. In [24], the
extended AADL is based on linear-hybrid models, whereas our
approach supports the modeling of nonlinear behaviors for a
large group of CPSs. In particular, the clock rates in UPPAAL-
SMC can be described using ordinary differential equations
[10], e.g., cl' == sin(c2), cl' == cl *c2+ 3, where cl, 2
and c3 are three clock variables. In addition to the capability of
modeling nonlinear behaviors, our approach focuses on eval-
uating CPS performance under uncertain environments, while
[24] emphasizes on the error behavior modeling of hardware

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Variation Information
i1 _(Acceleration, Delay, etc) !

NPTA Meta-Model

Prf<=TIj(<Train.tv<=0 && Train.ts<EOA)

Property Generation ::{}

UPPAAL-SMC
Quantitative Analysis

Fig. 1. Workflow of our framework

and software components. Moreover, [24] only considers the
probability of event occurrences and delay variations following
either uniform or exponential distributions, while our approach
allows designers to define their own uncertain objects (e.g.,
system parameters, user inputs) following a wide spectrum of
programmable distributions. Furthermore, the method in [24]
only supports the evaluation of time-bounded queries, while
our evaluation approach is based on cost-constrained temporal
logic which is more comprehensive.

To the best of our knowledge, so far there is no approach
that supports the performance evaluation for Hybrid AADL
designs considering the uncertainties caused by physical envi-
ronments. Our proposed approach is the first attempt that not
only supports the uncertainty modeling in AADL, but also en-
ables the quantitative performance reasoning and comparison
of uncertainty-aware designs at the architecture level.

III. OUR APPROACH

Figure 1 shows the workflow of our approach. Since the core
AADL focuses on structural modeling, to describe concrete
execution behaviors of components, we need to resort to
annex modeling which is a mechanism provided by AADL
for the purpose of semantics extension. In this paper, we
focus on uncertain hybrid systems, thus our approach adopts
the Hybrid and BLESS annexes to describe the dynamic and
hybrid behaviors of systems. To extend the semantics of hybrid
systems, we propose the Uncertainty annex to specify various
performance variations (e.g., network delays, sensor inputs)
and performance requirements posed by designers. Based on
our defined AADL and NPTA meta-models, Hybrid AADL
designs with extended performance variation information can
be extracted and transformed into corresponding uncertainty-
aware NPTA models. The specified performance requirements
are also parsed by our developed parser for the generation of
properties, which are in the form of cost-constrained temporal
logic [10]. Based on statistical model checker UPPAAL-SMC,
our approach can conduct the quantitative evaluation of Un-
certain Hybrid AADL designs against various properties (i.e.,
performance and safety queries). In the following subsections,
we explain the major steps of our approach in details.

A. Uncertainty-Aware Modeling of Hybrid AADL

To model a hierarchical real-time system, a typical AADL
[3], [4] design comprises both software components and their
corresponding execution platform. Software components such
as thread, thread group, process, data and subprogram can
be used to construct the software architecture of systems.
Execution platform components including processor, memory,
device and bus can be used for hardware modeling. Within
a system, all these components communicate with each other
through connections to accomplish specific functions.

Definition 3.1: An Uncertain Hybrid AADL design is a 9-
tuple < Comp, Pyrt,Conn,Mp,D, X, My, Appex, My > where: i)
Comp is a finite set of hardware/software components includ-
ing their declarations and implementations; ii) P, is a finite
set of component ports including data ports, event ports and
event data ports; iii) Cupy C Py X P,y denotes a finite set
of connections between ports; iv) M), : P,; — Comp assigns
ports to corresponding components; v) D is a finite set of
data which can be transferred via connections; vi) X is a finite
set of AADL properties; vii) My : £ — Comp assigns AADL
properties to corresponding components; viii) A,,e, s a finite
set of annex declarations, i.e., BLESS annex, Hybrid annex,
and Uncertainty annex; ix) M, : Appex — Comp maps annexes
to their components. []

To enable the quantitative evaluation of Hybrid AADL
designs considering uncertain environments, Definition 3.1
gives the formal definition of our Uncertain Hybrid AADL. In
AADL, the definitions of both hardware and software compo-
nents contain two parts, i.e., declaration and implementation.
To enable interactions with other components, declaration de-
fines ports for components which can be used to transmit and
receive data or events, whereas implementation provides the
details of a component including its subcomponents, properties
and the connections between ports. In addition to basic data
types, AADL allows designers to define their own data types
to enrich AADL designs.

By using annexes, designers can precisely define and inter-
pret behaviors of components by themselves. Different from
traditional AADL designs, our Uncertain Hybrid AADL is
based on a combination of BLESS, Hybrid and Uncertainty

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

annex declarations. Our approach adopts BLESS annexes and
Hybrid annexes to model the discrete and continuous behav-
iors of AADL components, respectively. To model various
uncertainties caused by external environment, we introduce
the Uncertainty annex.

1) Background of BLESS and Hybrid Annexes: Based on
state machine like semantics, BLESS annex [16] provides
a set of notations which can be used to formally define
discrete component behaviors, while the BLESS assertions can
be used to specify and check the desired system properties.
Definition 3.2 gives the formal definition of a BLESS Annex
Instance (BAI) which can be embedded into a component
implementation. Note that a transition of a BAI may have mul-
tiple actions for variable assignments or port communications.
Since our approach does not adopt the assertions provided by
BLESS annex, we did not incorporate it in Definition 3.2.

Definition 3.2: A BLESS Annex Instance [16] is a 6-tuple<
S,s0,BV,Act,G,T > where, i) S is a finite set of states; ii) s¢
is the initial state; iii) BV is a finite set of variables; iv) Act is
a finite set of actions; v) G is a finite set of guard conditions
over BV; and vi) T C S x G x 24¢ x S denotes the finite set of
transitions. [|

Definition 3.3 gives the formal definition of Hybrid annex
instances. Based on semantics of Hybrid CSP (Communi-
cating Sequential Processes) [6], [27], Hybrid annex can be
applied in continuous behavior modeling of AADL device
and abstract component implementations, such as sensors,
actuators and physical processes. When using the Hybrid
annex, both discrete and continuous variables are declared
in the variables section, and the values of constants are
initialized in the constants section. The behavior section
of a Hybrid Annex Instance (HAI) is used to describe the
continuous behaviors of annotated AADL components in terms
of concurrently-executing processes. Such behaviors indicating
continuous process evolutions are specified using differential
expressions. The physical processes communicate with each
other using channels (declared in the channels section) or ports
(i.e., the ports of associated AADL component). Continuous
process evolution may be terminated after a specific time or
on a communication event, which is invoked through timed
and communication interrupts, respectively. A timed interrupt
preempts continuous evolution after a given amount of time.
A communication interrupt preempts continuous evolution
whenever communication takes place along any one of the
named channels or ports. For more details of the processes
and interrupts, please check the examples shown in Listing 1
and the model transformation rules in Section III-BS. Note
that the Hybrid annex also supports assertions which take the
same format as BLESS assertions [16]. Since none of these
assertions are suitable for quantitative analysis, we neglect the
assertion definition in Definition 3.3.

Definition 3.3: A Hybrid Annex Instance is a 6-tuple <
HV ,HC,P,CP,I,M; > where, i) HV is a finite set of discrete
and continuous variables; ii) HC is a finite set of constants
that can only be initialized at declaration; iii) P is a finite
set of processes that are used to specify continuous behaviors
of AADL components; iv) CP is a finite set of channels and

ports for synchronizing processes; v) I is a finite set of time or
communication interrupts; and vi) M; : I — P binds interrupts
to associated processes. W

2) Definition, Syntax and Semantics of Uncertainty Annex:
Although there are many tools that are proposed to check
the performance of AADL designs, most of them assume a
uniform distribution for flow delays. Few of them consider
the variations (e.g., sensor inputs, network delays) caused
by uncertain environments. To support the modeling of such
kinds of uncertainties, based on Definition 3.4, we extend the
semantics and syntax of Hybrid AADL using our proposed
Uncertainty annex.

Definition 3.4: An Uncertainty Annex Instance (UAI) is a
7-tuple < TV,PV,DIST ,M;,,Mp,,Mg;s:,0 > where, i) TV is
a finite set of stochastic time variables; ii) PV is a finite
set of stochastic price variables; iii) DIST is a finite set of
distribution functions; iv) My, : TV — {P,;UT} binds each
time variable v € TV to a port p € P,; or a transition t € T
V) My, : PV — {BV UHC} binds each variable pv € PV
to a variable bv € BV or a constant hc € HC; vi) My :
{TVUPV} — DIST assigns each variable v € {TVUPV } with
a distribution function; and vii) Q is a finite set of queries for
the quantitative performance evaluation.]

Unlike existing approaches, our Uncertainty annex supports
a large spectrum of distributions which can be used to ac-
curately capture the system behaviors within an uncertain
environment. To simplify the stochastic behavior modeling, we
define two kinds of stochastic variables, i.e., time variables
which denote the time variations of AADL constructs (e.g.,
ports), and price variables that indicate the value variations
of AADL variables and constants. For example, if a time
variable tv is bound to a port p, the data transmission time
via p follows the specified time distribution My (zv). Note
that Uncertainty annex itself is only a syntactical notation,
which specifies the uncertain values for constants and variables
and uncertain communication delays for ports. It does not
change the semantics of Hybrid AADL designs. To enable the
statistical model checking, the Uncertainty annexes are used
to indicate the value of constants/variables or the delay of
ports at the beginning or during the execution of a simulation
run following the give distributions. During the automated
quantitative evaluation, Uncertainty annex allows the designers
to specify their queries to assess whether an Uncertain Hybrid
AADL design satisfies the requirements.

Uncertainty Annex = {xx

variables {variables_declaration}+

distributions {distribution_declaration}+

queries {query_declaration}+

ok

As an extension, UAIs can be embedded into AADL com-
ponents as a subclause to specify their uncertain behaviors.
To describe the context-free syntax of UA, we explain all the
notations of Uncertainty annex using the Extended Backus-
Naur Form, where literals are printed in bold; alternatives are
separated by “|”; grouping are enclosed with parentheses“()”;

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

square braces “[]” delimit optional elements; and “{ }+”
and “{ }*” are used to signify one-or-more, and zero-or-
more of the enclosed elements, respectively. As shown in the
above production rule, an Uncertainty annex consists of three
parts, i.e., variables section, distributions section and queries
section. Their functions and usages are explained as follows.

Variables section: Instead of modeling the uncertainties of
environment components directly, our approach implicitly re-
flects the environment uncertainties by specifying distributions
for both data transmission time via connections between
interconnected ports and the values of system parameters
(e.g., AADL variables and constants). To model stochastic
behaviors of systems, we define local variables in this section
to indicate the uncertain dynamics of the corresponding AADL
component features. In our approach, all these variables are
associated with specific probability distributions to signify
their possible values within an uncertain environment. The
following rules show the grammar for variables section.

variables_declaration .=
type_prefix {variable_identifier}+
applied to {component_ref}x

type_prefix = time | dynamic price | static price

component_ref = features_ref | annex_subclause

In the above rules, the type prefix fime means that local

variables are used to model the stochastic timing information
of component features. For example, a local time variable can
be bound to a component port to specify uncertain communica-
tion delays on the connection via this port. The local variables
with type prefix static/dynamic price can be used to specify
the uncertain value assignment for variables and constants
declared in annotated components or their annexes. In our
approach, we consider two kinds of local price variables, i.e.,
static price variables and dynamic price variables. Here, static
price means that the initial value of the associated AADL
(or annex) variables and constants are assigned stochastically
at the beginning of system execution. Unlike static price
variables which only conduct the initialization of variables
or constants once, local dynamic price variables are usually
bound to AADL (or annex) variables to model their random
value updates when newly referred.
Distributions section: The distributions section is to specify
the probability distributions of the variables defined in the
variables section. To allow the modeling of various stochastic
behaviors, our Uncertainty annex has a built-in distribution
functional library that supports a large spectrum of widely
used distributions, such as uniform, exponential and normal
distributions. The following production rules show how to bind
a variable with a specific distribution function.

distribution_declaration ::=
varable_identifier_reference = distribution
distribution ::= Normal‘(’const, const*)’
| Uniform‘(’const,const‘)’

| Exponential‘(’const®)’ | ...

Queries section: To quantify the performance of Uncertain
Hybrid AADL models during the architecture level design,
designers would like to ask questions such as “what is the
probability that a scenario can happen or a condition can be
satisfied with limited resources?”. Uncertainty annex provides
the queries section that can be used for declaring such queries
to enable safety and performance evaluation of AADL designs.
As an effective way to check the quality and performance of
AADL designs, the designers can put their design requirements
in this section. Only when all the evaluated requirements meet
design targets, the AADL design can be used as a reference
for the implementation.

query_declaration ::=
query_identifier = query_target under constraint
query_target := expr {&& expr}x

expr ;= condition | ‘(* condition (&& | ||) expr)’

condition ::= identifier operation (const | identifier)
constraint ::= [identifier | operation const
operation::=< | < |==|!1=|>| >

When specifying a query, designers should provide two
things: i) a query target that denotes a safety scenario or
performance metric in the form of a predicate expression;
and ii) a constraint indicating the available resources to
achieve the target. The above production rules present how to
declare queries. Here, identifier denotes the name of AADL
features (e.g., ports) or annex variables declared in annotated
component implementations, and const denotes a constant
value. The target of a query is a predicate represented by
a conjunction of expressions. The query constraint is in the
form of “res op lim”, where res, op and lim denote resource,
operation and resource limit, respectively. If the resource is
not specified explicitly, the system time will be used as the
resource by default.

Listing 1 presents a Hybrid AADL design example anno-
tated with an uncertainty annex instance, which describes the
uncertain behaviors of the train component within the CTCS-
3 Movement Authority scenario (see details in Section IV).
To operate safely, the train periodically sends its current loca-
tion and velocity information to the on-board train controller
through ports ts, tv and receives the acceleration instruction
directed by the controller from the port fa. All these ports
are defined in the Train declaration. To model the continuous
behaviors, the train design adopts the Hybrid annex. Within the
Hybrid annex, the system time is modeled using the continuous
variable r whose rate is 1 (indicated by notation 'DT 1 =1’
which means the derivation of ¢ is 1). In the Hybrid annex
behavior section, the notation DT 1 s=v’ defines train speed
and the notation DT 1 v=a+ fr’ denotes the acceleration of
the train. During the running, the traction control force is deter-
mined by the value of a calculated by the controller, while the
resistance is determined by the friction coefficient of the track.
In this example, we consider two kinds of uncertainties. The
first one represents uncertain communication delays between
trains and controllers. The second one is the track friction
which is highly dependent on the external environment (e.g.,

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

weather, temperature). Therefore, we define two local variables
in the variables section of the uncertainty annex. The time
variable v_delay is bound to the port ts with a distribution
Normal(0.15,0.04) (defined in the distributions section). We
set the variable v_fr as a static price variable, since we assume
that the coefficient for the whole track and its value is only
updated once at the beginning of each system run. In the
queries section, query pl tries to figure out the probability
that the train can stop before the end of authority (denoted
by EOA) within 300 seconds, and query p2 tries to reason
whether the train can run 4 kilometers within 200 seconds.

abstract Train
features
ts: out data port CTCS_Types::Position;
tv: out data port CTCS_Types::Velocity;
ta: in data port CTCS_Types::Acceleration;
end Train;

© N U AW —

abstract implementation Train.impl

9 annex Uncertainty {xx*

10 variables

11 time v_delay applied to Train.ts
12 —-— modeling connection delay

13 static price v_fr applied to Train.fr
14 —-— modeling track friction

15 distributions

16 v_delay = Normal(0.15,0.04)

17 v_fr = Normal (-0.1,0.05)

18 queries

19 pl = Train.v<=0 && Train.s<EOA

20 && Train.s>0 under <=300

21 p2 = Train.s >= 4000 under <=200

22 | *x};

24 | annex hybrid {**

25 variables

26 s : CTCS_Types::Position -- train position

27 v : CTCS_Types::Velocity -- train velocity

28 a : CTICS_Types::Acceleration -- train acceleration
29 t : CTCS_Types::Time —-- system time

30 fr : CTCS_Types::Deceleration -- track friction

31 behavior

32 Train ::= ’DT 1 s=v’ & ’'DT 1 v=a+tfr’ & 'DT 1 t=1’'
33 [[> ts! (s), tv!(v),ta?(a)]]> Continue

34 Continue ::= skip

35 RunningTrain ::= s:=0 & v:=0 & a:=0 & REPEAT (Train)
36 | x%};

37 |end Train.impl;

Listing 1. Uncertain Hybrid AADL Design for Train in CTCS-3 MA

B. NPTA Generation from Uncertain Hybrid AADL

To formalize the semantics of Uncertain Hybrid AADL, we
adopt NPTA as the model of computation. This subsection
presents our model transformation approach in detail.

1) Preliminary Knowledge of NPTA: Unlike traditional
timed automata, the clocks of a Priced Timed Automaton
(PTA) [25] can evolve with different rates. To simplify the
formal definition, we skip the introduction to the richer flavors
of PTAs supported by UPPAAL-SMC, e.g., urgent locations
[25]. Let C be a clock set. A clock valuation is a function
v:C — R-—o which maps C to the set of non-negative reals
R-_o. Let vy be the initial valuation where vo(c) = 0 for all
c €C. Let U(C) (L(C)) be the set of upper-bound (lower-
bound) guards which are in the form x ~ k or x —y ~ k&,
where x,y € C, k € R and ~€ {<,<,==} (~€ {>,>,==}).
Assuming g € L(C)U U(C), v(C) = g denotes that valuation
v(C) satisfies the constraint g. Definition 3.5 presents the
formal definition of a PTA.

Definition 3.5: A PTA is a 8-tuple A= (L,ly,C,X,E,R,I,T)
where: 1) L is a finite set of locations; ii) /y € L is the initial
location; iii) C is a finite set of clocks; iv) ¥ =X; UL, is a finite
set of actions where X; and X, indicate exclusive input actions
and output actions, respectively; v) E C L x L(C) x £ x 26 x L
is a finite set of transitions, where £(C) denotes the transition
guard and 2€ denotes a set of reset clocks of the transition; vi)
R:L— F€ assigns a clock rate vector to each location, where
F(c) specifies the clock rate for ¢ € C in the form of ordinary
differential equations; vii) /: L — U(C) assigns an invariant
to each location; and viii) T is the system clock which is never
reset.]

Let A; = (L', 15, C X E',R\I',t) and A; = (L/,1),C/,
Y EJ R IV 1) (i # j) be two PTAs. The PTAs A; and Aj are
composable into a network only if C'NC/ =0 and £ NX) = 0.
Definition 3.6 presents the formal structure of an NPTA.

Definition 3.6: Let A; = (L',1i,C', £, E",R\,I';t") (1 <i<
n) be a PTA. Their composition (A; |... | A,) is an NPTA
which is a 8-tuple NA = (NL,NLy,NC,NX,NE ,NR,NI,0),
where: i) NL = x;L’; ii) NLy = x;{l}}; iii) NC = U;C; iv)
N =UZh v) ((ll,...,lj,...,ln),gh‘a,rj,(ll,...,l},...,ln)) S
NE whenever (Ij,gj,a,rj,l5) € E’5 vi) NR(li...I,)(x) =
Ri(;)(x) when x € C'; vii) NI(ly,...,1,) = NI (L) (I; € LY);
and viii) 0 is the system clock shared by all the PTAs.]

Let (I,v) € NL x R¥C, be an NPTA state where [=
(h,...,I,) is a composite of locations from different PTAs and
v |E NI(I). Let v[X] indicate the reset operation on the clock
set X. That is if ¢ € X, v(c) is set to 0, otherwise v(c) keeps
its value. Following the composition rules [25], the semantics
of an NPTA is mainly based on the following two kinds of
transitions: i) a discrete transition (I,v) —= (I',v') can be
triggered if there is a transition (/,g,a,X,l’) such that v =g
and v = v[X]; ii) a delay transition (I,v) N (1,v') can be
triggered if v = v+fv‘&g)+dNR(l)d9 such that v = NI(l) and
v = NI(1), where v(8) indicates the system time of entering
state (/,v). Within an NPTA, PTAs communicate with each
other using broadcast channels or shared variables. For more
details about NPTA, please refer to [10].

c1<=t1 && ca'==3

A0 A1l A2 c1>=t1 A3
@ a? O c1=0 ()
& t1=Normal(1.0,0.3) =~ bl
ca'==0 ca'==0
(a) PTA A
BO _ B1 B2 B3
O t2—NormaI(4,‘I)/.\ al @ b? O
c2=0 N\ co>=t2
c2<=t2 && cb'==2 cb'==0 cb'==0

(b) PTA B

Fig. 2. An NPTA (A|B)

2) An Example of NPTA with Uncertainties: Figure 2
shows an NPTA consisting of two PTAs A and B, where each
PTA has four locations and two clocks (e.g., ¢; and ¢, in
A). The locations here marked with symbol “U” are urgent
locations which can freeze time. In other words, time is not
allowed to pass when a PTA is in an urgent location [10].
Note that clocks can evolve with different rates in different

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

locations. The rate of a clock is 1 by default. To change the
rate of a clock, we need to modify the rate value of the primed
version of the clock. For example, ¢/, == 3 in A, denotes
that the rate of ¢, is 3 in this location. Since UPPAAL-SMC
supports the modeling of clock rates using expressions in the
form of ordinary differential equations, UPPAAL-SMC can be
used to model non-linear hybrid systems. Note that although
UPPAAL-SMC only supports the uniform and exponential
distributions explicitly, based on the C-like programming con-
structs and built-in function random() provided by UPPAAL-
SMC various distributions can be constructed. For example,
we can construct the normal distribution based on the Box-
Muller approach [19]. Assume that the values of two variables
#; and 1, follow the normal distributions N(7,0.32) and N(4,12),
respectively. The action #;=Normal(1,0.3) on the outgoing
edge of A assigns #; with a random value following N(1,0.3%).
Since the invariant in A is ¢y < t; and the guard on the
outgoing edge of A, is ¢y > #1, PTA A is stuck at A, for a
time of #;. If the NPTA is simulated for numerous times, the
sojourn time at location A, follows the distribution N(1,0.3%).
In this example, PTAs are synchronized by two complementary
action pairs (“!” indicating sending and “?” denotes receiving)
via urgent channels a and b. While simulating (A|B) with
a large number of runs, we can find that the reaching time
of the composite location (A3, B3) follows the normal distri-
bution N(4+1,1240.32), since the sojourn time of (A|B) at
composite locations (A0,B1) and (A2,B2) follows the normal
distributions N(4,1%) and N(1,0.32), respectively. By adopting
the NPTA template like the above example, arbitrarily complex
stochastic behaviors can be modeled.

3) Mapping from Uncertain Hybrid AADL to NPTA: To
facilitate the detailed modeling of system architectures, AADL
provides more types of syntax modeling constructs than
NPTA. Since our approach focuses on quantitative analysis
of stochastic behaviors of Uncertain Hybrid AADL designs,
during the model transformation we neglect all the AADL
constructs which cannot affect the system behaviors. Table I
shows the structural mappings from uncertain Hybrid AADL
constructs to NPTA constructs. Note that we only list a
subset of AADL constructs that have a strong correlation with
uncertainty-aware hybrid features. This subset can essentially
be used to fully describe the behaviors of hybrid systems
within an uncertain environment. In our approach, we use the
BLESS annex to specify the discrete components of systems,
e.g., controller. We use the Hybrid annex to describe both
discrete and continuous behaviors of hybrid components, e.g.,
plants. The instances of both annexes can be described using
PTAs. Note that our proposed uncertainty annex focuses on the
variation modeling of communication delays and parameter
values. It only slightly changes structure of PTAs. To model
the overall uncertain behaviors of the whole hybrid system,
all the generated PTAs are synchronized through the channels,
which are transformed from AADL connections. To guarantee
the correctness of our mappings from AADL to NPTA and
final translation results, we develop a comprehensive test suite
which covers all possible notations of the three annexes.
The testing results show that the NPTA generated by our
transformation rules (templates) can correctly and accurately

reflect the behaviors of Uncertain Hybrid AADL designs. In
Section III-B5, we will show the details of such transformation
rules with concrete examples.

TABLE I
CONSTRUCT MAPPINGS BETWEEN AADL AND NPTA

AADL Constructs NPTA Constructs

system (PTA,]... | PTA,)
thread / device PTA template
(event) data port variable

connection
property set / type
BLESS annex subclause
Hybrid annex subclause
Uncertainty annex subclause

urgent channel
global variable
PTA template
PTA template
PTA actions/invariants/guards

Our approach relies on the meta-models of AADL and
its annexes to guide AADL model parsing as well as the
construct mapping. Similar to the formal definitions presented
in Section III-A, the meta-models define a set of correlated
sub-constructs of the model, which can be used to extract the
necessary information for the model transformation. Due to
the space limitation, we do not introduce the meta-models
used in our approach here. The meta-model for the AADL
without annex can be found in [4], and the meta-models
for BLESS and Hybrid annexes can be obtained from [16]
and [6], respectively. Similar to BLESS and Hybrid annex,
the meta-model of Uncertainty annex can be inferred from
Definition 3.4.

In our approach, the generated NPTA model can be divided
into two parts: i) back-end configurations that are used to
declare necessary data structures (e.g., variables, channels) and
functions (e.g., distributions, actions) for the stochastic mod-
eling of NPTA modes, and ii) front-end models that are used
to model the behaviors of hardware, software and environment
components. Our approach assigns each of AADL components
annotated by BLESS and Hybrid annex subclauses with a
front-end model and a back-end configuration. Moreover, there
is a global back-end configuration for the whole system whose
information are shared by all the front-end models.

4) Back-end Configuration Generation: As a textual file, a
back-end configuration mainly consists of: i) a set of decla-
rations of variable and channels, and ii) a set of distribution
and action functions. By using our approach, such information
can be automatically extracted from AADL designs. Listing 2
shows the back-end configuration generated from the train
AADL shown in Listing 1. To save the space, we put both
the global configuration and the local configuration for the
train within the same file.

For a back-end configuration, the global declarations of
variable and channels are generated from the top level of
AADL designs, i.e., hardware/software components and their
interconnections. For each port of an AADL component,
we create an wurgent channel' which indicates the AADL
connection associated with the port. For example, assuming
that the connection name bound by the port #v in the AADL

'An urgent channel does not allow a delay if it is possible to trigger a
synchronization over it. We only use urgent channels in our translation, since
the timing behavior of NPTA using urgent channels is deterministic. We use
urgent locations in the transformation for the same reason.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

design is _tv, we will declare two things for this port in the
global configuration. The first one is an urgent channel c_tv
that is used for the synchronization with other components.
Since tv is a data port for the velocity of trains, we declare a
variable v_tv of type double to hold data value during the data
transmission via the connection. The constants defined in the
global NPTA configuration correspond to the constants (e.g.,
EOA) defined in top level of AADL designs. For each NPTA
model, a clock systime is defined in the global configuration to
model the system time. To model different stochastic behaviors
of PTAs, the global back-end configuration comprises a library
of distribution functions, which can be used by front-end
NPTA models or the local configurations.

1 //global declarations & distribution function lib.
2 |urgent chan c_tv, c_ts, c_ta;

3 double v_tv, v_ts, v_ta;
4 | const double EOA=6000;

5 | clock systime;

6 | double Normal (double mean, double deviation) {
7 | // Box-Muller method

8 }

9 | double Uniform(double min, double max) {

11 }

12 //local configuration for Train.

13 clock s, v, a, t, d_t;

14 | double v_delay, fr;

15 | void initialize () {

16 fr=Normal (-0.1,0.05);

17 }

18 //local configurations for other components.
19

Listing 2. Back-end configuration of Train

The local back-end configuration mainly deals with the def-
inition of data structures for specific AADL components and
annexes. During the model transformation, all the continuous
AADL variables are converted to clock typed variables, and
other AADL variables are converted to non-clock variables
with different types. For each local configuration of PTAs,
we define one built-in function initialize() which is used to
initialize the values of variables. To enable the reset operation
in a PTA, for each local configuration, we define one clock
d_t. For the uncertainty annex in Listing 1, there are two
variables declared, i.e., v_delay and v_fr. Note that only
v_delay has a counterpart in the back-end configuration, since
it is a time variable. The price variables have no counterparts,
since they are used as intermediate variables during the model
transformation. Note that the transformation rules for static
and dynamic price variables are different. Since static price
variables only take effect at the beginning of the simulation,
we assign their random values to associated variables in
the function initialize() of local back-end configurations. For
example, we initialize the variable fr with a value following
normal distribution N(—0.1,0.05%) in the back-end function
initialize() of the train example. Unlike static price variables,
the dynamic price variables generate random values during
the execution when necessary. It is widely used in front-end
modeling to indicate the random value change of variables. For
example, it can be used to model time-varying port delays.

5) Front-end Model Generation: As a graphical representa-
tion, front-end models are used in UPPAAL-SMC to describe
the stochastic behaviors of PTAs. To describe the hybrid

behaviors of systems, our approach adopts two kinds of an-
nexes. We model the discrete behaviors of AADL components
(e.g., thread component) using the BLESS annex. To describe
continuous behaviors of components (e.g., device and abstract
components), we use the Hybrid annex that is based on Hybrid
CSP. For an AADL component without any annotated annexes,
we assume a simplified semantics for its behavior, where the
component periodically receives the data from its input ports
and sends the data to its output ports. Therefore, the major
task of front-end model generation is to transform uncertainty-
aware BLESS and Hybrid annexes to their NPTA counterparts.
Uncertainty Modeling of Front-end Model: For front-end
model transformation, we consider two kinds of uncertainties
in the Uncertainty annex. The first one is described by time
variables which are used to model the delay variations of
network communication or task execution. To model such
stochastic timing behaviors of system, we use the transforma-
tion pattern as shown in Figure 3. Figure 3(a) shows a scenario
that the PTA tries to send something via the channel using the
action channel!. Without annotated Uncertainty annexes, the
sending time of the action is fixed. However, by using our
Uncertainty annex, we can associate a time variable v_delay
following normal distribution (i.e., N(1,0.2%)) with this chan-
nel. By splitting the transition in Figure 3(a) and introducing a
temporary location to indicate the waiting, we can model the
scenario that the action time follows the distribution N(1,0.22)
as shown in Figure 3(b). On the incoming edge of the newly
added location temp, we assign v_delay with a random value
following N(1,0.2%) and we reset the clock d_t. Note that the
invariant of location temp is d_t<=v_delay and the guard on
the outgoing edge of temp is d_t>=v_delay. Therefore, the
PTA remains at location femp for a time of v_delay following
the normal distribution N(1,0.22). The second uncertainty in
the front-end model is specified by dynamic price variables
in the uncertainty annex, which mimics the random values of
parameters (e.g., sensor inputs). The transformation of such
uncertainty only needs to assign or replace the applied variable
with the given distribution function.

S S

v_delay=Normal(1,0.2),

chapnel! d_t=0
_ P
p temp d_t>=v_delay
!
d_t<=v_delay channel!
(a) Certain (b) Uncertain

Fig. 3. Transformation pattern for uncertain PTA models

BLESS Annex Based PTA Generation: Listing 3 presents
an AADL example annotated with both BLESS and Uncer-
tainty annex instances, which describes the uncertain behaviors
of the controller component within the CTCS-3 Movement
Authority scenario (see details in Section IV). Meanwhile,
Figure 4 shows the corresponding PTA generated using our
transformation rules. Due to the space limitation, we only give
the partial AADL specification and corresponding PTA for the
controller.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

1 | thread Controller

2 features

3 r: out event port;

4 m: in event data port CTCS_Types::MovementAuthority;
5 ea: in data port CTCS_Types::EOA;

6 properties

7 Dispatch_Protocol => Periodic;

8 Period => 200 ms;

9 |end Controller;

11 | thread implementation Controller.impl
12 | annex BLESS{x*x*

13 variables

14 e : CTCS_Types::EQOA;

15 iMA : CTCS_Types::MovementAuthority:=null;
16 states

17 READY : initial state;

18 GMA : complete state;

19 CMA : state;

20 RETRY : state;

21 MFR : complete state;

22 —-- other state declarations

23 transitions

24 TO_go: READY —[]-> GMA {r!};

25 T1_MA_Check: GMA-[on dispatch]->CMA{m? (iMA);ea? (e) };
26 T2_MA_Ok: CMA -[not (iMA=null)]-> MFR{ };
27 T3_MA_NotOk: CMA-[iMA=null]-> RETRY {};

28 T4_MA_Retry: RETRY —[]-> GMA {r!};

29 —-— other transition declarations

30 | xx};

32 | annex Uncertainty {xx

33 variables

34 time t_delay applied to Controller.r
35 distributions

36 t_delay = Normal(0.2,0.07)

37 * %}
33 |end Controller.impl;

Listing 3. Uncertain AADL Design for Controller in CTCS-3 MA

From this example, we can find that the BLESS annex
shares a large overlap of the modeling constructs with PTA.
In BLESS annex, there are four kinds of states: initial state,
complete state, execution state, and final state. Based on the
definition [16], the initial state and execution state (with
keyword “state”) are only used for the initialization and branch
operation, respectively. Therefore, they are converted into
urgent states in corresponding PTA, since they do not consume
any time. Conversely, the state machine of BLESS annex
leaves complete state upon periodical dispatch events, and
will stay at the final state forever when the whole controller
task finishes. Therefore, these two kinds of states will be
directly mapped to general PTA locations. Since the definition
of BLESS transitions is more complex than the one of PTA
transitions, we need to use some specific transformation pat-
tern to generate PTA counterparts with equivalent semantics.
In BLESS annex, a transition allows for a sequence of send
(denoted by “!”’) and receive (denoted by “?”) actions. As an
example shown in Listing 3, the transition T/_MA_Check has
two receive actions, i.e., m?(iMA) and ea?(e). Therefore, after
staying in the state GMA for 200 milliseconds (indicated by
the guard dispatch>=0.2), the machine starts to receive the
message from the input event port m and input data port ea
in a sequential order. However, PTA models only allow one
such action on a transition. To model such combined send and
receive actions, for each action on the BLESS transition, we
introduce one auxiliary transition and one temporary location
to trigger the action in the order of their occurrences on the

BLESS transition. For example, in Figure 4 two temporary
locations (templ and temp2) are introduced for the two con-
sequent receive actions. Moreover, BLESS annex provides the
assert section and invariant section to specify the behavior
constraints of an AADL component. Such information can be
directly parsed and used as the transition guards and location
invariants in the generated PTA models. Since the AADL
design of the controller does not contain such information,
we do not show the corresponding translation in Figure 4.

t_delay)
- MA==null
=Normal(0.2,0.07)} not (IMA==null)
d_t=0 dispatch=0
te MA
d_t<=t_delay . u)
d_t>=t_delay c_ea?
c_r! _
dispatch=0 v_ea=e
C) temp2
cm?
READY v_m=iMA
templ
t_delay= - O
Normal(0.2,0.07), 9-t<=t-delay
d_t=0

Fig. 4. PTA model of Controller (partial)

Note that, to model the network delay, in Uncertainty
annex there may be some time variables associated with the
ports/channels used by the send actions. In this case, for
each send action we need to set the delay information on the
newly introduced location and transition pair. For example, in
the Uncertainty annex of Listing 3, the time variable ¢_delay
following the normal distribution N(0.2,0.07%) is applied to
the port r of the controller. Since there are two transitions
(TO_go and T4_MA_Regry in Listing 3) that conduct the send
action, we need to set the delay information on both the PTA
locations femp0 and temp3 and their outgoing transitions using
the transformation template as shown in Figure 3.

Hybrid Annex Based PTA Generation: When transforming a
Hybrid annex annotated AADL [6], the front-end PTA model
is mainly extracted from the behavior section. Since Hybrid
annex adopts the process algebra notations, the behavior of
component is described by a set of CSP process, e.g., Train
defined in the hybrid behavior section of Listing 1.

During the transformation, each CSP process is converted
to a location except for the skip process (e.g., Continue in
Listing 1). The continuous evolution of a CSP process is
expressed using differential expressions, which are translated
and used as the invariant of the corresponding non-urgent
location. As an example shown in Listing 1, the differential
expression ‘DT [s=v’ indicates that the derivative of s is v. It
can be translated into the derivative expression s’=v and used
as a part of invariant for the location Train.

To enable the communication between computation com-
ponents and physical environments, the semantics of Hybrid
AADL allows two kinds of interruptions, i.e., timed interrupts
and communication interrupts. In the behavior section of
Hybrid annex, a timed interrupt is defined as a part of CSP
process in the form of [> time_val] >, which will preempt the

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

continuous evolution after an amount of time (i.e., time_val).
By using the similar transformation pattern shown in Figure 3,
we can assure that the continuous evolution of CSP process
can be interrupted after a time of time_val. The communication
interrupts enable the preemption of continuous evolutions by
communication events via AADL ports. For example, the
communication interrupt in the form of [[> pout!(v)]] > EV
denotes that whenever a value of v is sent out the port pout,
the current evolution will be terminated and the CSP process
EV will be adopted as the subsequent behavior of the process.

Generally, a communication interrupt may contain a se-
quence of send or receive actions. During the PTA transforma-
tion, we model the actions based on their occurrence order in
the interrupt. For each action, we generate a new PTA location
together with a new transition with the corresponding action
on it. Note that in the generated PTA a location should be
set as urgent if the action on next edge is a send action.
When translating the choice operator of a CSP process, we
will create a new adjacent location in the generated PTA for
each alternative. The subsequent behavior of the process is
determined by the Boolean expression associated with the
alternative. To model the behavior of a repeating process
defined in the behavior section, we connect the last location
to the first location of the process in the PTA to form a loop.

Train c_ta? a=v_ta int1

v'==a+fr && s'==v &&
t'==1

s=0,
a=0,
v=0

y_delay=Normal(0.15,0.04);

d_t=0
RunningTrain

c_tv!

s'==v && {emp0

initialize()
@ Start Vv'==a+fr &&
t'==1 && d_t<=v_delay

PTA model of Train

d_t>=v_delay

c_ts! v_ts=s

Fig. 5.

Figure 5 shows the PTA of the Train example defined
in the behavior section of Listing 1. To enable the exe-
cution of function initialize() defined in the local back-end
configuration, we introduce an urgent location start. On the
outgoing transition of location RunningTrain, the continuous
variables s, a and v are initialized. Since the first action in the
communication interrupt is a send action (i.e., ts/(s)), we make
the location Train urgent. As defined in the uncertainty annex,
the channel associated with the port ts has a communication
delay following N[0.15,0.04?]. Based on the pattern shown
in Figure 3, we need to create a new location (i.e., temp0)
to model the delay information. Note that since s is a data
port, we need to sent the value of s via this port. However,
the corresponding action c_ts/ on the outgoing edge of temp0
cannot hold the value information. Therefore we use the
variable v_ts which corresponds to the channel c¢_ts to hold the
data value during the communication via the channel. Since
an urgent location allows no invariants, we move the invariant
derived from the different expression of CSP process Train
to the new location temp0. Since there are three actions in
the communication interrupt of the CSP process Train, we
create two new locations to perform the actions according to
their occurrence order. Note that the newly introduced three

locations (i.e., femp0, int0 and intl) can be considered as the
sub-locations of CSP process Train. Therefore, they should
have the same location invariant. For the action ta?(a) of the
communication interrupt, we need to get the data value from
port ta. Therefore, we use the action a=v_ta to update the
value of a.

C. Property Generation for Quantitative Analysis

To enable the quantitative evaluation of Uncertain Hybrid
AADL designs, our proposed Uncertainty annex allows de-
signers to specify design requirements as performance queries.
These performance queries will be transformed as properties
in the form of cost-constrained temporal logic to reason the
performance of the NPTA models generated from Uncertain
Hybrid AADL designs. Since we focus on the reasoning of
stochastic behaviors of AADL systems, the designers can
conduct following two kinds of queries.

« Performance query: The performance query can be used
to check the probability that an expected performance
metric can be achieved under a given resource limit. The
performance metric can be expressed as the predicate and
the resource limit can be specified as the constraint using
the keyword under.

o Safety query: The safety query can be used to check
the probability that an unexpected scenario can happen
eventually with a given resource limit. In the query, the
unexpected scenario can be expressed as the predicate
and the resource limit can be specified as the constraint
using the keyword under.

Although safety queries and performance queries have
different meaning, they share the same template during the
property generation. In the queries section, a query consists
of two parts, i.e., predicate ¢ and resource constraint . The
predicate ¢ can be used to denote either an unexpected scenario
or an expected performance metric.

To evaluate the performance of generated NPTA models,
UPPAAL-SMC adopts cost-constrained temporal logic [11]
based performance queries in the form of Pr[bound](<>
expr), where [bound] indicates the bound of the cost and
the expression <> expr asserts that the scenario expr should
happen eventually. By using our approach, the queries will be
transformed into properties in the form of Pry](<> ¢). For
example, the performance query p2 in Listing 1 intends to
check the probability that the travel length of the train exceeds
4 kilometers within 200 seconds. In order to conduct the
quantitative evaluation using UPPAAL-SMC, the query will
be converted to a property Pr[<=200](<> Train.ts >=4000)
in the form of cost-constrained temporal logic. Based on the
specified probability of false negatives (i.e., o) and probability
uncertainty (i.e., €), UPPAAL-SMC will simulate a specific
number of stochastic runs which are terminated when either
bound or <> expr holds. The success rate p of <> expr
satisfying bound will be reported in the form of a probability
range [p —¢€, p+¢€] with a specified confidence 1— a.

IV. CASE STUDY

To show the efficacy of our approach in analyzing sys-
tem performance within uncertain environments, this section

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

presents the experimental results of verifying the Movement
Authority (MA) control of Chinese Train Control System Level
3 (CTCS-3) [20], [28]. By using our proposed Uncertainty
annex, we extended the hybrid CTCS-3 AADL model pre-
sented in [20] using the tool OSATE2 [7]. The uncertainty
information in the model is suggested by railway experts
from our industrial partner Casco Signal Ltd. Based on our
XMI parser and NPTA model generator implemented using
JAVA?, we can obtain the corresponding NPTA model as
well as performance queries. We employed the model checker
UPPAAL-SMC (version 4.1.19, = 0.02, € = 0.02) to conduct
the evaluation. All the experimental results were obtained on
a desktop with 3.3GHz AMD CPU and 12GB RAM.

A. System Model of CTCS-3 MA Scenario

As one of the fourteen basic scenarios of CTCS-3 System
Requirements Specification (SRS), the MA control plays an
important role in prohibiting trains from colliding with each
other. Typically an MA scenario involves three major compo-
nents as follows: i) frains that periodically (every 500 millisec-
onds) send their status information (i.e., current location and
velocity) to the controller and receive acceleration information
directed by the controller; ii) Radio Block Centers (RBCs)
that provide MAs to trains based on information exchange
with trackside subsystems and the on-board controller; and
iii) on-board controller subsystems which control the velocity
of trains by changing their accelerations.

Radio Block Center
(((l »)))
» s AN a
N SR A
E’Q‘ j«———>pIopETe

|

I Mo t |

Authority EoA

Fig. 6. MA scenario of CTCS-3 [20]

As shown in Figure 6, the RBC assigns a dynamic MA to
the left train based on the track situation and the movement of
the right train. Here, EOA stands for the End of Authorization.
When a train reaches a specific distance (i.e., SR) away from
EOA, it needs to apply for a new MA. If the authorization is
not granted in time, according to SRS the train should stop
before the EOA. According to SRS [28], an MA comprises
a sequence of segments, where each segment has two speed
limits v and v» (vi > v2). In this example, we set the speed
limits v; and v, for each segment to 73m/s and 66m/s,
respectively. If the train speed exceeds v; (v2), an emergency
(normal) brake will be performed to slow down the train. Upon
receiving an MA request from controller, RBC will reply
a new MA together with all the segment information (e.g.,
speed limits, operation mode). More details can be found in

2We have shared our tool (including the source code of Uncer-
tain Hybrid AADL parser and NPTA model generator) and the un-
certain CTCS-3 MA example on Github. The download address is
https://github.com/tony 1123 1/aadl2uppaal.

[20], [28]. In this example, we set the length of an MA to 6
kilometers, and set the length of SR to 1 kilometer. The train
starts with a speed of Om/s. All the segments have the same
length and speed limits. Note that the SRS requirements cannot
be guaranteed within an uncertain environment. For example,
due to the mutual interference between varying communication
delays and friction coefficient of tracks, inaccurate estimation
of locations can make the train pass the EOA. Although train
drivers can perform emergency brake manually, proper quan-
titative analysis of these unsafe scenarios should be studied at
architecture level to make the train movement more safe.

pController

Fig. 7. AADL model for CTCS-3 MA

Figure 7 shows the graphical AADL model for CTCS-3
MA design, where the controller plays a central role. Within
the MA scenario, the controller sends the MA request to
RBC via the port r and receives the segment and EOA
information from the ports m and ea, respectively. To achieve
the train status, the controller receives the location and speed
information from the ports c¢s and cv every 500 milliseconds.
It also controls the train by specifying the newly calculated
acceleration for the train via port ca. Although this figure
does not explicitly present any uncertainty information, in this
example we consider various uncertainties that may affect the
performance of the MA control, e.g., communication delays
between RBC and controllers, computation time variations of
both software/hardware components of controllers, and varied
coefficient of friction of tracks. The cumulative variations by
all these uncertainties strongly affect the performance and
safety of the CTCS-3 MA. In other words, the risk of train
collisions is high within an uncertain environment.

B. Uncertainties in CTCS-3 MA Scenario

As shown in Table II, this experiment took nine uncertain
aspects of CTCS-3 MA into consideration. Similar to the work
in [21], [26], this paper adopts normal distributions to model
the performance variations in the CTCS-3 MA scenario. All
such variation information was collected from historical data
of train operations. Note that our approach supports a variety
of distributions, which can be used to accurately model the
Uncertain Hybrid AADL designs. In this table, the first column
presents the category of the uncertainties. The second column
presents the AADL constructs that cause the uncertainties.
For example, when controller sends a MA request to RBC
via port Controller.r, there is a delay variation caused by the
connection conn_req following the distribution N(0.1,0.03?),
where the expected execution time is 0.1 seconds and the
standard deviation is 0.03 seconds. Note that during the
statistical model checking the network delay of 0.1 seconds

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

with standard deviation of 0.03 may lead to a negative value.
In our approach, if the variable with type “time” is randomly
assigned with a negative value, we will set it to 0. According to
the three-sigma rule, this approximation will still be accurate
in this case. The last two columns provide the variation
distributions and value unit, respectively. By using our tool
chain, the NPTA model of the Uncertain Hybrid AADL design
can be obtained automatically.

TABLE 11
UNCERTAINTIES OF MA COMPONENTS

[Causes | Constructs | Variations | Unit |
Controller.r N(0.1,0.03%) Seconds
RBC.m N(0.1,0.037) | Seconds
Network RBC.ea N(0.1,0.03%) Seconds
Delay Train.tv N(0.15,0.04%) | Seconds
Train.ts N(0.15,0.04%) | Seconds
Controllerca | N(0.17,0.04%) | Seconds
Parameter Trainfr | N(=0.1,0.05%) [MPSS*
Execution RBC.TO N(0.1,0.037) | Seconds
Time ControllerT5 | N(0.2,0.07%) | Seconds

*MPSS indicates Meter Per Second Squared.

C. Performance Analysis for CTCS-3 MA Scenario

To focus on quantitative analysis of the MA scenario
influenced by uncertain factors, we investigated stochastic
behaviors of a train within an MA as shown in Figure 6. We
assume that the train will fail to get the next MA when entering
SR. Therefore, it should stop before EOA. By using our tool,
three queries are generated to analyze the performance of
Uncertain Hybrid AADL design for CTCS-3 MA.

To investigate the probability that a train can stop safely
before the end of authorization within 300 seconds, we
adopt the performance query Pr[<= 300](<> Train.v <=
0 && Train.s < 6000 && Train.s > 0), where Train.v denotes
velocity of the train and Train.s indicates the location of the
train. Figure 8 presents the evaluation results for the query in
the form of Cumulative Probability Distribution (CPD). In this
figure, the x-axis denotes the time limit, and the y-axis indi-
cates success rate of the performance requirement indicated by
the query. In this evaluation, we considered three Uncertain
Hybrid AADL designs, where the accelerations directed by
the controller are different. We set the accelerations of three
designs to 0.3 MPSS (Meter Per Second Squared), 0.4 MPSS
and 0.7 MPSS, respectively. By running 868 runs, we can get
a probability interval [0.91,0.95] with a confidence 98% for
the query of the AADL design with an acceleration of 0.3
MPSS. The SMC simulation for this query costs around 132
seconds. For the AADL designs with acceleration of 0.4 MPSS
and 0.7 MPSS, we can get probability intervals [0.88,0.92]
and [0.81,0.85] with a confidence of 98%, respectively. From
this figure, we can find that the CPD of the design with 0.7
MPSS rises earlier (i.e., 173 seconds), since it has a larger
acceleration and can reach the speed limit v, more quickly
than the other two designs. However, the larger acceleration
indicates the higher difficulty in managing the train speed. In
other words, the chance that the train exceeds EOA becomes
higher. Therefore, we can find that the AADL design with
0.3 MPSS can achieve the highest success rate to stop before

reaching EOA. Moreover, we can find that the success rate
will not increase significantly after a time threshold, since the
train has stopped before the time limit, i.e., 300 seconds.

, Cumulative Probability Distribution

a=0.3 MPSS ——
0.9fa=0.4 MPSS -
0.812=07 MPSS -=-

0.7 @
06 8
05 a

0.4
03
0.2
0.1 8
] Vs
450 165780 195 210 225 240 255 270 285 300

Running Time

Probability

Fig. 8. Performance query results with different accelerations

The interaction frequency between trains and the controller
plays an important role in CTCS-3 MA design, since it
strongly affects the cost and performance of train designs.
Although longer control periods cost less communication
bandwidth, the infrequent updates of train accelerations make
the train hard to be controlled. To investigate the effects
of different control periods, we assume that the acceleration
(without consider frictions) sent from the controller is fixed
(i.e., 0.4 MPSS) for the train design. Figure 9 shows the
evaluation results of using the same query as the one used
in Figure 8. We consider three designs with different control
periods, i.e., 0.2, 0.5 and 0.7 seconds, respectively. From this
figure, we find that the design with the smallest control period
(i.e., 0.2S) can achieve the highest rate of success. By running
266 runs, we can achieve a probability interval [0.95,0.99] with
a confidence 98% for the query of the AADL design with a
control period of 0.2 seconds.

Cumulative Probability Distribution

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Probability

0190 200 210 220 230 240 250 260 270 260 290 300
Time Limit

Fig. 9. Performance query results with different control periods

To determine the performance of the AADL design, we used
the query Pr[<= 200](<> Train.s >= 4000) which checks
whether the train can run a distance of 4.0 kilometers within
200 seconds. As shown in Figure 10, we adopted three designs
with different accelerations. We can find that the performance
difference among these three designs is quite small. The
design with an acceleration of 0.3 MPSS achieves the worst
performance, since it needs a worst-case time of 193 seconds
to reach the specified location. Interestingly, the design with
1.0 MPSS does not win the comparison. It needs longer time
to hit the specified location than the design with 0.6 MPSS,
since the design with a larger acceleration will have a more
drastic speed update near the speed limits.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

, Cumulative Probability Distribution
T K

e

Probability

Running Time

Fig. 10. Performance query results for reaching a location

From the above experimental results, we can find that our
approach can be used to effectively reason about the per-
formance of designs within complex uncertain environments.
Our approach can not only support the quantitative evaluation
of specified design using performance queries, but also can
be used for the purpose of design optimization based on
parameter tuning.

D. Quantitative Safety Analysis for CTCS-3 MA Scenario

During the running of the train, we expect the train speed
not to exceed the upper speed limit v, since it can easily
make the train derailed. Therefore, when the train reaches
the speed v;, we need to apply the urgent brake to reduce
the train speed drastically. To check the probability of over-
speed of trains, we used the safety query in the form of
Pr[Tran.s <= 5000](<> Train.v >=73), which indicates that
within a distance of |[EOA — SR| the train speed cannot be
larger than or equal to vy (i.e., 73m/s).

, Cumulative Probability Distribution

[a=0.3 MPSS —
0.09 Ha=0.6 MPSS -
0.08 |B=1:0 MPSS -~

y
o
o
N1

®

0.06
0.05
0.04
0.03
0.02
0.01

Probabilit

o

0 ."
3000 3300 3600 3900 4200 4500
Distance Limit

Fig. 11. Safety query results for overspeed

Figure 11 shows the evaluation results for the three AADL
designs with different accelerations. For the design with an
acceleration of 0.3 MPSS, UPPAAL-SMC uses 17 seconds to
obtain a probability interval [0.009, 0.049] for the query. From
this figure, we can find that the larger the acceleration is, the
higher chance the train can exceed the upper speed limit. To
achieve a 2% chance of overspeed, the design with 1.0 MPSS
needs an average travel distance of 3.0 kilometers, whereas the
designs with 0.3 MPSS and 0.6 MPSS need an average of 3.5
kilometers and 4.1 kilometers, respectively. From the above
evaluation results generated by our approach, we can clearly
figure out the safety information for the designs within un-
certain environment. Based on the comparison among designs
with different parameter values, we can achieve reasonable
design settings under a given safety requirement.

V. CONCLUSIONS

This paper proposed a novel SMC-based framework that
enables quantitative performance evaluation of Hybrid AADL
designs considering various uncertain factors caused by phys-
ical environments. We introduced a lightweight language ex-
tension to AADL called Uncertainty annex for the stochastic
behavior modeling. By using our proposed transformation
rules, the uncertainty-aware Hybrid AADL designs can be
automatically converted into NPTA models. Based on the
statistical model checker UPPAAL-SMC, our framework en-
ables automated evaluation of Uncertain Hybrid AADL de-
signs against various complex performance and safety queries.
Comprehensive experiment results carried on the CTCS-3 MA
scenario demonstrate the efficacy of our approach.

REFERENCES

[1]1 E. A. Lee, “Cyber Physical Systems: Design Challenges”, in Proc. of Int.
Symp. on Object Oriented Real-Time Distributed Computing (ISORC),
2008, pp. 363-369.

J. Delange and P. H. Feiler, “Incremental Latency Analysis of Heteroge-

neous Cyber-Physical Systems”, in Proc. of Int. Workshop on Real-Time

and Distributed Computing in Emerging Applications (REACTION),

2014, pp. 21-27.

[3] P. H. Feiler and D. P. Gluch, “Model-Based Engineering with AADL:

An Introduction to the SAE Architecture Analysis & Design Language”,

Addison-Wesley, 2012.

SAE Aerospace, “SAE AS5506B: Architecture Analysis & Design

Language (AADL) Standard Document”, SAE International, 2012.

[5] J. Delange and P. H. Feiler, “Architecture Fault Modeling with the

AADL Error-Model Annex”, in Proc. of EUROMICRO Conference

on Software Engineering and Advanced Applications (EUROMICRO-

SEAA), 2014, pp. 361-368.

E. Ahmad, B. R. Larson, S. C. Barrett, N. Zhan, and Y. Dong, “Hybrid

Annex: An AADL Extension for Continuous Behavior and Cyber-

Physical Interaction Modeling”, in Proc. of ACM Annual Conference

on High Integrity Language Technology (HILT), 2014, pp. 29-38.

[71 OSATE2, http://osate.github.io/.

[8] K. Hu, T. Zhang, Z. Yang, and W.-T. Tsai, “Exploring AADL Ver-
ification Tool Through Model Transformation”, Journal of Systems
Architecture, vol. 61, no. 3, pp. 141-156, 2015.

[9]1 A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, “Automated

Verification of AADL-Specifications using UPPAAL”, in Proc. of Int.

Conf. on High-Assurance Systems Engineering (HASE), 2012, pp. 130-

138.

A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen,

“UPPAAL SMC Tutorial”, International Journal on Software Tools for

Technology Transfer (STTT), vol. 17, no. 4, pp. 1-19, 2015.

A. David, K. G. Larsen, A. Legay, M. Mikucionis, and Z. Wang, “Time

for Statistical Model Checking of Real-Time Systems”, in Proc. of Int.

Conf. on Computer Aided Verification (CAV), 2011, pp. 349-355.

M. Bozzano, A. Cimatti, J. Katoen, V. Y. Nguyen, T. Noll, M. Roveri,

and R. Wimmer, “Safety, Dependability and Performance Analysis of

Extended AADL Models”, The Computer Journal, vol. 54, no. 5, pp.

7547175, 2011.

H. Yu, Y. Ma, T. Gautier, L. Besnard, P. L. Guernic, and J. P. Talpin,

“Polychronous Modeling, Analysis, Verification and Simulation for

Timed Software Architectures”, Journal of Systems Architecture, vol. 59,

no. 10, pp. 1157-1170, 2013.

K. Bae, P. C. Olveczky, and J. Meseguer, “Definition, Semantics, and

Analysis of Multirate Synchronous AADL”, in Proc. of International

Conference on Formal Methods (FM), 2014, pp. 94-109.

E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and D. Lesens,

“Virtual Execution of AADL Models Via a Translation into Synchronous

Programs”, in Proc. of International Conference on Embedded Software

(EMSOFT), 2007, pp. 134-143.

B. R. Larson, P. Chalin, and J. Hatcliff, “BLESS: Formal Specification

and Verification of Behaviors for Embedded Systems with Software”,

in Proc. of NASA Formal Methods, 2013, pp. 276-290.

[2

—

[4

flnar

[6

=

(10]

(11]

[12]

[13]

[14]

[15]

[16]

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

[17] L.Zou,J. Ly, S. Wang, N. Zhan, T. Tang, L. Yuan, and Y. Liu, “Verifying
Chinese Train Control System Under a Combined Scenario by Theorem
Proving”, in Proc. of Verified Software: Theories, Tools, Experiments
(VSTTE), 2013, pp. 262-280.

E. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press,
1999.

G. Box, and M. E. Muller, “A Note on the Generation of Random
Normal Deviates”, The Annals of Mathematical Statistics, vol. 29, no. 2,
pp. 601-611, 1958.

E. Ahmad, Y. Dong, B. R. Larson, J. Lv, T. Tang, and N. Zhan, “Behavior
Modeling and Verification of Movement Authority Scenario of Chinese
Train Control System Using AADL”, Science China Information Sci-
ences, vol. 58, no. 11, pp. 1-20, 2015.

M. Chen, D. Yue, X. Qin, X. Fu, and P. Mishra, “Variation-Aware
Evaluation of MPSoC Task Allocation and Scheduling Strategies using
Statistical Model Checking”, in Proc. of Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2015, pp. 199-204.

F. Gu, X. Zhang, M. Chen, D. Grof3e, and R. Drechsler, “Quantitative
Timing Analysis of UML Activity Diagrams Using Statistical Model
Checking”, in Proc. of Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2016, pp. 780-785.

M. Chen, S. Huang, X. Fu, X. Liu, and J. He, “Statistical Model
Checking-Based Evaluation and Optimization for Cloud Workflow Re-
source Allocation”, IEEE Transactions on Cloud Computing, accepted.
H. Bruintjes, J. Katoen, and D. Lesens, “A Statistical Approach for
Timed Reachability in AADL Models”, in Proc. of International Con-
ference on Dependable Systems and Networks (DSN), 2015, pp. 81-88.
A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen,
J. Vliet, and Z. Wang. “Statistical Model Checking for Networks of
Priced Timed Automata”, in Proc. of Int. Conf. on Formal Modeling
and Analysis of Timed Systems (FORMATS), 2011, pp. 80-96.

P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar,
S. Mitra, A. Nicolau, T. S. Rosing, M. B. Srivastava, S. Swanson, and
D. Sylvester, “Underdesigned and opportunistic computing in presence
of hardware variability”, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 31, no. 1, pp. 8-23, 2013.
P. J. L. Cuijpers and M. A. Reniers, “Hybrid Process Algebra”, The
Journal of Logic and Algebraic Programming, vol. 62, no. 2, pp. 191—
245, 2005.

The Ministry of Railways of The People’s Republic of China, “System
Requirements Specification of the CTCS-3 Train Control System”,
Beijing: China Railway Publishing House, 2008.

[18]

(191

(20]

[21]

(22]

[23]

[24]

[25]

[26]

[27])

(28]

Yongxiang Bao received the B.E. degree from the
Department of Computer Science and Technology,
Anhui University of Technology, Anhui, China, in
2014. He is currently a master student in the Depart-
ment of Embedded Software and System, East China
Normal University, Shanghai, China. His research
interests are in the area of design automation of
embedded systems, statistical model checking, and
4 software engineering.

Mingsong Chen (S’08-M’11) received the B.S.
and ML.E. degrees from Department of Computer
Science and Technology, Nanjing University, Nan-
jing, China, in 2003 and 2006 respectively, and the
Ph.D. degree in Computer Engineering from the
University of Florida, Gainesville, in 2010. He is
currently a Professor with the Computer Science and
Software Engineering Institute at East China Normal
University. His research interests are in the area of
design automation of cyber-physical systems, formal
verification techniques and cloud computing. He is
an Associate Editor of IET Computers & Digital Techniques, and Journal of
Circuits, Systems and Computers.

Qi Zhu (M’12) is an Assistant Professor of Elec-
trical and Computer Engineering at the University
of California, Riverside (UCR). He received his
B.E. degree in Computer Science from the Tsinghua
University, China in 2003, and his Ph.D. degree in
Electrical Engineering and Computer Sciences from
the University of California, Berkeley in 2008. Prior
to joining UCR, He was a research scientist at the
Strategic CAD Labs in Intel from 2008 to 2011.
His research interests include model-based design
and software synthesis for cyber-physical systems,
CPS security, energy-efficient buildings and infrastructures, and system-on-
chip design. He is a recipient of the 2016 CAREER award from the National
Science Foundation, and best paper awards of ACM Transactions on Design
Automation of Electronic Systems 2016, International Conference on Cyber-
Physical Systems 2013, Design Automation Conference 2007 and 2006.

Tongquan Wei (S’06-M’11) received his Ph.D. de-
gree in Electrical Engineering from Michigan Tech-
nological University in 2009. He is currently an
Associate Professor in the Department of Computer
Science and Technology at the East China Normal
University. His research interests are in the areas
of green and reliable embedded computing, cyber-
physical systems, parallel and distributed systems,
and cloud computing. He serves as a Regional Editor
for Journal of Circuits, Systems, and Computers
since 2012. He also served as Guest Editors for
several special sections of IEEE TII and ACM TECS.

Frederic Mallet (M’01) is a Professor of Computer
Science in Université Nice Sophia Antipolis. He
works on the definition of sound models and tools
for the design and analysis of embedded systems and
cyber-physical systems. He is a permanent member
of the Aoste team, a joint team between Inria Sophia
Antipolis research center and I3S Laboratory (Cnrs
UMR). During several years, he has been a voting
member of the OMG Revision Task Forces for
MARTE and SysML, where he was leading the
definition of the allocation subprofile and had a key
role in the definition of MARTE Time Model and MARTE/CCSL. He has
also contributed to the working group between MARTE RTF and AADL
committee.

Tingliang Zhou received his B.E. degree from
Tongji University, China in 2012, and M.E. degree
from Shanghai Jiaotong University, China in 2005
— all in computer science. He is currently a senior
engineer and division manager of the Casco Signal
Ltd., Shanghai, China. His research interests are in
the area of trustworthy design of communication-
based train control system, and formal verification
techniques.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

