
0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Quantitative Performance Evaluation of Uncertainty-Aware

Hybrid AADL Designs Using Statistical Model Checking

Yongxiang Bao, Mingsong Chen∗ Member, IEEE, Qi Zhu Member, IEEE, Tongquan Wei Member, IEEE,

Frederic Mallet Member, IEEE and Tingliang Zhou

Abstract—Hybrid Architecture Analysis and Design Language
(AADL) has been proposed to model the interactions between
embedded control systems and continuous physical environment.
However, the worst-case performance analysis of Hybrid AADL
designs often leads to overly pessimistic estimations, and is not
suitable for accurate reasoning about overall system perfor-
mance, in particular when the system closely interacts with an
uncertain external environment. To address this challenge, this
paper proposes a statistical model checking based framework
that can perform quantitative evaluation of uncertainty-aware
Hybrid AADL designs against various performance queries. Our
approach extends Hybrid AADL to support the modeling of
environment uncertainties. Furthermore, we propose a set of
transformation rules that can automatically translate AADL
designs together with designers’ requirements into Networks of
Priced Timed Automata (NPTA) and performance queries, re-
spectively. Comprehensive experimental results on the Movement
Authority (MA) scenario of Chinese Train Control System Level
3 (CTCS-3) demonstrate the effectiveness of our approach.

Index Terms—Hybrid AADL, Uncertainty, Statistical model
checking, Quantitative performance evaluation.

I. INTRODUCTION

TO promptly and accurately sense and control the physical

world, more and more real-time embedded systems are

deployed into our surrounding environment. As a result, the

stringent safety-critical requirements coupled with increasing

interactions with uncertain physical environments make the

design complexity of Cyber-Physical Systems (CPS) skyrock-

eting [1], [2]. Unfortunately, due to the lack of architecture-

level performance evaluation approaches considering uncertain

environments, the required performance of integrated CPS

implementations can be easily violated. Therefore, how to

model the uncertain behaviors of both cyber and physical

elements and how to guarantee meeting the critical functional

and real-time requirements have become major challenges in

CPS architecture design.

Architecture Analysis and Design Language (AADL) [3],

[4], [5] has been widely adopted for the design and analysis

The authors Yongxiang Bao, Mingsong Chen, and Tongquan Wei are with
Shanghai Key Laboratory of Trustworthy Computing at East China Normal
University, Shanghai, 200062, China. The author Qi Zhu is with Department
of Electrical and Computer Engineering at University of California, Riverside,
CA 92521, USA. The author Frederic Mallet is with Université Nice Sophia
Antipolis, F-06902 Sophia Antipolis Cedex, France. Tingliang Zhou is with
Casco Signal Ltd., Shanghai, 200070, China.

This work was partially supported by the grants from Natural Science
Foundation of China (Nos. 61672230 and 91418203), Shanghai Municipal
NSF 16ZR1409000, and National Science Foundation of United States (CCF-
1553757 and CCF-1646381).

∗Corresponding author. Tel: +(8621) 62235116; fax: +(8621) 62235255;
E-mail: mschen@sei.ecnu.edu.cn.

of safety-critical real-time systems (e.g., automotive, avionics

and railway systems). By defining various modeling constructs

for hardware and software components, AADL core lan-

guage supports the structural description of system partitioning

and connectivity among components, while the semantics of

AADL can be extended via annex sublanguages and user-

defined properties. An AADL specification provides a set of

modeling constructs for the description and verification of

both functional and non-functional properties of interacting

software and hardware components. Since the core AADL

language only supports modeling of hardware and software

components, to model the physical environment we adopt the

Hybrid AADL, which supports continuous behavior modeling

via the Hybrid annex [6].

When modeling a safety-critical system using AADL, be-

fore the design refinement, there is a rigorous certification pro-

cess to verify whether the AADL design satisfies the required

safety properties. Although existing AADL IDE tools such

as OSATE [7] can be used to check timing properties (e.g.,

flow latency), most of existing approaches adopt the worst-

case timing analysis without considering performance varia-

tions, which can easily lead to overly pessimistic performance

estimations. To extend the performance analysis capability of

AADL designs, various model transformation approaches [8],

[9] have been proposed to verify AADL models based on exist-

ing verification and analysis tools. For quantitative analysis of

AADL designs with uncertain environment, designers would

like to ask questions such as “What is the probability that a

specified scenario can be achieved within time x?”. However,

existing approaches focus on checking safety properties that

only have an answer of “yes” or “no” without considering

uncertain environments. Few of them can quantitatively reason

why a given performance requirement cannot be achieved

and answer how to improve the design performance. Clearly,

the bottleneck is the lack of powerful quantitative evaluation

approaches that can help AADL designers to make decisions

during the architecture design.

To enable the quantitative analysis for Hybrid AADL de-

signs, we propose a novel framework based on Statistical

Model Checking (SMC) [10] which relies on the monitoring

of random simulation runs of systems. By analyzing the

simulation results using statistical approaches (e.g., sequential

hypothesis testing or Monte Carlo simulation), the satisfaction

probability of specified properties (i.e., performance require-

ments) can be estimated. Unlike traditional formal verification

methods, which need to explore all the state space, SMC only

investigates a limited number of simulation runs of systems

and requires far less memory and time. Therefore, SMC is

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

very suitable for the approximate functional validation of

complex AADL designs. We use the statistical model checker

UPPAAL-SMC [10] as the engine of our approach, to leverage

its rich modeling constructs and flexible mapping mechanisms.

Based on UPPAAL-SMC, this paper makes three following

major contributions: i) We extend the syntax and seman-

tics of Hybrid AADL specifications [6] using our proposed

Uncertainty annex, which enables the accurate modeling of

both performance variations caused by uncertain environments

and performance requirements specified by designers. ii) To

automate the quantitative analysis of uncertainty-aware Hybrid

AADL designs, we rely on Network of Priced Timed Automata

(NPTA) [10] as the model of computation in our approach.

We propose a set of mapping rules that can automatically

transform uncertain-aware Hybrid AADL designs into NPTA

models and convert the performance requirements into various

kinds of queries in the form of cost-constrained temporal

logic [11]. iii) Based on our proposed SMC-based evaluation

framework, we implement a tool chain that integrates both

UPPAAL-SMC and the open-source AADL tool environment

OSATE to enable the automated performance evaluation and

comparison of uncertainty-aware Hybrid AADL designs.

The rest of this paper is organized as follows. After intro-

ducing the related work on AADL and SMC-based evaluation

approaches in Section II, Section II presents the details of our

proposal. Based on an industrial CTCS-3 MA design, Sec-

tion IV shows that our proposed approach can be effectively

applied to the quantitative analysis of Uncertain Hybrid AADL

designs. Finally, Section V concludes the paper.

II. RELATED WORK

To facilitate architecture design and analysis of safety-

critical systems, various AADL simulation and verification

tools were investigated [5]. For example, Jahier et al. [15]

proposed an approach that can translate both AADL models

and software components developed in synchronous languages

(i.e., SCADE, Lustre) into executable models, which can be

simulated and validated together. In [13], Yu et al. presented a

co-simulation and co-verification framework for AADL and

Simulink designs. Based on a formal polychronous/multi-

clock model of computation, an original clock-based timing

analysis and validation of the overall system is achieved.

In [16], Larson et el. introduced the Behavioral Language

for Embedded Systems with Software (BLESS) annex for

AADL. The extended AADL language enables engineers to

specify contracts on AADL components that can capture both

functional and timing properties. They also developed the

BLESS proof tool which can check whether AADL behavioral

descriptions conform to specified contracts. Although these

approaches are promising in functional checking, few of them

consider performance issues for AADL designs.

Rather than developing dedicated verification tools for

AADL designs, more and more model transformation-based

AADL analysis approaches resort to the benefits of widely-

used model checking techniques [18]. For instance, Hu et

al. [8] presented a set of formally defined rules that can

translate a subset of AADL to corresponding Timed Abstract

State Machines (TASM) models for the purpose of timing

and resource verification. To ensure completeness and con-

sistency of an AADL specification as well as its conformity

with the end product, Johnsen et al. [9] presented a formal

verification technique by translating AADL designs to timed

automata models. In [12], Bozzano et al. proposed a formal

semantics for AADL that incorporates functional, probabilistic

and hybrid aspects. Based on model checking techniques, they

developed a toolset that can be used for a wide spectrum of

design purposes ranging from requirements validation to per-

formability evaluation and diagnosability analysis. Although

the above model checking-based methods can check the func-

tional correctness of systems in a fully automated manner,

most of them suffer from the state space explosion problem

[18]. Moreover, very few of them take the uncertain physical

environment into account.

Since cyber-physical systems interact with surrounding

physical environment frequently, the behavior modeling and

verification of multirate and hybrid systems have become

important research topics in AADL design. For example, Bae

et al. [14] proposed a modeling language named Multirate

Synchronous AADL, which can be used to specify multirate

synchronous designs using existing AADL modeling stan-

dard. They also defined the formal semantics of Multirate

Synchronous AADL, which enables the formal verification

using Real-Time Maude. Based on BLESS annex [16] and

Hybrid annex [6], Ahmad et al. [20] modeled and analyzed

the movement authority scenario of the Chinese Train Control

System Level 3 (CTCS-3) in AADL. Their approach can

verify both discrete and hybrid behaviors of annotated Hybrid

AADL designs based on the interactive Hybrid Hoare Logic

theorem prover [17]. However, since their approach is based on

theorem proving methods, it cannot be fully automated due to

the required expert knowledge and manual “proof assistants”.

Furthermore, existing theorem proving based methods focus

on proving functional correctness of AADL designs. Few

of them can be used to evaluate design performance within

uncertain physical environment.

Due to its scalability and effectiveness in evaluating stochas-

tic behavior, statistical model checking has become a preferred

option in performance analysis of system designs with un-

certainties [21]. Since statistical model checking is based on

simulation, it requires far less memory and time, which enables

highly scalable validation for AADL designs. For example,

Bruintjes et al. [24] introduced a statistical model checking ap-

proach for timed reachability analysis of extended AADL de-

signs. They developed a simulator that can perform probabilis-

tic analysis of underlying stochastic models using Monte Carlo

simulation. Our approach differs greatly from [24]. In [24], the

extended AADL is based on linear-hybrid models, whereas our

approach supports the modeling of nonlinear behaviors for a

large group of CPSs. In particular, the clock rates in UPPAAL-

SMC can be described using ordinary differential equations

[10], e.g., c1′ == sin(c2), c1′ == c1 ∗ c2+ c3, where c1, c2

and c3 are three clock variables. In addition to the capability of

modeling nonlinear behaviors, our approach focuses on eval-

uating CPS performance under uncertain environments, while

[24] emphasizes on the error behavior modeling of hardware

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

Fig. 1. Workflow of our framework

and software components. Moreover, [24] only considers the

probability of event occurrences and delay variations following

either uniform or exponential distributions, while our approach

allows designers to define their own uncertain objects (e.g.,

system parameters, user inputs) following a wide spectrum of

programmable distributions. Furthermore, the method in [24]

only supports the evaluation of time-bounded queries, while

our evaluation approach is based on cost-constrained temporal

logic which is more comprehensive.

To the best of our knowledge, so far there is no approach

that supports the performance evaluation for Hybrid AADL

designs considering the uncertainties caused by physical envi-

ronments. Our proposed approach is the first attempt that not

only supports the uncertainty modeling in AADL, but also en-

ables the quantitative performance reasoning and comparison

of uncertainty-aware designs at the architecture level.

III. OUR APPROACH

Figure 1 shows the workflow of our approach. Since the core

AADL focuses on structural modeling, to describe concrete

execution behaviors of components, we need to resort to

annex modeling which is a mechanism provided by AADL

for the purpose of semantics extension. In this paper, we

focus on uncertain hybrid systems, thus our approach adopts

the Hybrid and BLESS annexes to describe the dynamic and

hybrid behaviors of systems. To extend the semantics of hybrid

systems, we propose the Uncertainty annex to specify various

performance variations (e.g., network delays, sensor inputs)

and performance requirements posed by designers. Based on

our defined AADL and NPTA meta-models, Hybrid AADL

designs with extended performance variation information can

be extracted and transformed into corresponding uncertainty-

aware NPTA models. The specified performance requirements

are also parsed by our developed parser for the generation of

properties, which are in the form of cost-constrained temporal

logic [10]. Based on statistical model checker UPPAAL-SMC,

our approach can conduct the quantitative evaluation of Un-

certain Hybrid AADL designs against various properties (i.e.,

performance and safety queries). In the following subsections,

we explain the major steps of our approach in details.

A. Uncertainty-Aware Modeling of Hybrid AADL

To model a hierarchical real-time system, a typical AADL

[3], [4] design comprises both software components and their

corresponding execution platform. Software components such

as thread, thread group, process, data and subprogram can

be used to construct the software architecture of systems.

Execution platform components including processor, memory,

device and bus can be used for hardware modeling. Within

a system, all these components communicate with each other

through connections to accomplish specific functions.

Definition 3.1: An Uncertain Hybrid AADL design is a 9-

tuple < Comp,Port ,Conn,Mp,D,Σ,MΣ,Annex,Ma > where: i)

Comp is a finite set of hardware/software components includ-

ing their declarations and implementations; ii) Port is a finite

set of component ports including data ports, event ports and

event data ports; iii) Conn ⊆ Port × Port denotes a finite set

of connections between ports; iv) Mp : Port → Comp assigns

ports to corresponding components; v) D is a finite set of

data which can be transferred via connections; vi) Σ is a finite

set of AADL properties; vii) MΣ : Σ → Comp assigns AADL

properties to corresponding components; viii) Annex is a finite

set of annex declarations, i.e., BLESS annex, Hybrid annex,

and Uncertainty annex; ix) Ma : Annex →Comp maps annexes

to their components.

To enable the quantitative evaluation of Hybrid AADL

designs considering uncertain environments, Definition 3.1

gives the formal definition of our Uncertain Hybrid AADL. In

AADL, the definitions of both hardware and software compo-

nents contain two parts, i.e., declaration and implementation.

To enable interactions with other components, declaration de-

fines ports for components which can be used to transmit and

receive data or events, whereas implementation provides the

details of a component including its subcomponents, properties

and the connections between ports. In addition to basic data

types, AADL allows designers to define their own data types

to enrich AADL designs.

By using annexes, designers can precisely define and inter-

pret behaviors of components by themselves. Different from

traditional AADL designs, our Uncertain Hybrid AADL is

based on a combination of BLESS, Hybrid and Uncertainty

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

annex declarations. Our approach adopts BLESS annexes and

Hybrid annexes to model the discrete and continuous behav-

iors of AADL components, respectively. To model various

uncertainties caused by external environment, we introduce

the Uncertainty annex.

1) Background of BLESS and Hybrid Annexes: Based on

state machine like semantics, BLESS annex [16] provides

a set of notations which can be used to formally define

discrete component behaviors, while the BLESS assertions can

be used to specify and check the desired system properties.

Definition 3.2 gives the formal definition of a BLESS Annex

Instance (BAI) which can be embedded into a component

implementation. Note that a transition of a BAI may have mul-

tiple actions for variable assignments or port communications.

Since our approach does not adopt the assertions provided by

BLESS annex, we did not incorporate it in Definition 3.2.

Definition 3.2: A BLESS Annex Instance [16] is a 6-tuple<

S,s0,BV,Act,G,T > where, i) S is a finite set of states; ii) s0

is the initial state; iii) BV is a finite set of variables; iv) Act is

a finite set of actions; v) G is a finite set of guard conditions

over BV; and vi) T ⊆ S×G×2Act ×S denotes the finite set of

transitions.

Definition 3.3 gives the formal definition of Hybrid annex

instances. Based on semantics of Hybrid CSP (Communi-

cating Sequential Processes) [6], [27], Hybrid annex can be

applied in continuous behavior modeling of AADL device

and abstract component implementations, such as sensors,

actuators and physical processes. When using the Hybrid

annex, both discrete and continuous variables are declared

in the variables section, and the values of constants are

initialized in the constants section. The behavior section

of a Hybrid Annex Instance (HAI) is used to describe the

continuous behaviors of annotated AADL components in terms

of concurrently-executing processes. Such behaviors indicating

continuous process evolutions are specified using differential

expressions. The physical processes communicate with each

other using channels (declared in the channels section) or ports

(i.e., the ports of associated AADL component). Continuous

process evolution may be terminated after a specific time or

on a communication event, which is invoked through timed

and communication interrupts, respectively. A timed interrupt

preempts continuous evolution after a given amount of time.

A communication interrupt preempts continuous evolution

whenever communication takes place along any one of the

named channels or ports. For more details of the processes

and interrupts, please check the examples shown in Listing 1

and the model transformation rules in Section III-B5. Note

that the Hybrid annex also supports assertions which take the

same format as BLESS assertions [16]. Since none of these

assertions are suitable for quantitative analysis, we neglect the

assertion definition in Definition 3.3.

Definition 3.3: A Hybrid Annex Instance is a 6-tuple <

HV,HC,P,CP, I,Mi > where, i) HV is a finite set of discrete

and continuous variables; ii) HC is a finite set of constants

that can only be initialized at declaration; iii) P is a finite

set of processes that are used to specify continuous behaviors

of AADL components; iv) CP is a finite set of channels and

ports for synchronizing processes; v) I is a finite set of time or

communication interrupts; and vi) Mi : I → P binds interrupts

to associated processes.

2) Definition, Syntax and Semantics of Uncertainty Annex:

Although there are many tools that are proposed to check

the performance of AADL designs, most of them assume a

uniform distribution for flow delays. Few of them consider

the variations (e.g., sensor inputs, network delays) caused

by uncertain environments. To support the modeling of such

kinds of uncertainties, based on Definition 3.4, we extend the

semantics and syntax of Hybrid AADL using our proposed

Uncertainty annex.

Definition 3.4: An Uncertainty Annex Instance (UAI) is a

7-tuple < TV,PV,DIST,Mtv,Mpv,Mdist ,Q > where, i) TV is

a finite set of stochastic time variables; ii) PV is a finite

set of stochastic price variables; iii) DIST is a finite set of

distribution functions; iv) Mtv : TV → {Port ∪ T} binds each

time variable tv ∈ TV to a port p ∈ Port or a transition t ∈ T ;

v) Mpv : PV → {BV ∪ HC} binds each variable pv ∈ PV

to a variable bv ∈ BV or a constant hc ∈ HC; vi) Mdist :

{TV ∪PV}→DIST assigns each variable v∈ {TV ∪PV} with

a distribution function; and vii) Q is a finite set of queries for

the quantitative performance evaluation.

Unlike existing approaches, our Uncertainty annex supports

a large spectrum of distributions which can be used to ac-

curately capture the system behaviors within an uncertain

environment. To simplify the stochastic behavior modeling, we

define two kinds of stochastic variables, i.e., time variables

which denote the time variations of AADL constructs (e.g.,

ports), and price variables that indicate the value variations

of AADL variables and constants. For example, if a time

variable tv is bound to a port p, the data transmission time

via p follows the specified time distribution Mdist(tv). Note

that Uncertainty annex itself is only a syntactical notation,

which specifies the uncertain values for constants and variables

and uncertain communication delays for ports. It does not

change the semantics of Hybrid AADL designs. To enable the

statistical model checking, the Uncertainty annexes are used

to indicate the value of constants/variables or the delay of

ports at the beginning or during the execution of a simulation

run following the give distributions. During the automated

quantitative evaluation, Uncertainty annex allows the designers

to specify their queries to assess whether an Uncertain Hybrid

AADL design satisfies the requirements.

Uncertainty Annex ::= {∗∗

variables {variables declaration}+

distributions {distribution declaration}+

queries {query declaration}+

∗∗}

As an extension, UAIs can be embedded into AADL com-

ponents as a subclause to specify their uncertain behaviors.

To describe the context-free syntax of UA, we explain all the

notations of Uncertainty annex using the Extended Backus-

Naur Form, where literals are printed in bold; alternatives are

separated by “|”; grouping are enclosed with parentheses“()”;

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

square braces “[]” delimit optional elements; and “{ }+”

and “{ }∗” are used to signify one-or-more, and zero-or-

more of the enclosed elements, respectively. As shown in the

above production rule, an Uncertainty annex consists of three

parts, i.e., variables section, distributions section and queries

section. Their functions and usages are explained as follows.

Variables section: Instead of modeling the uncertainties of

environment components directly, our approach implicitly re-

flects the environment uncertainties by specifying distributions

for both data transmission time via connections between

interconnected ports and the values of system parameters

(e.g., AADL variables and constants). To model stochastic

behaviors of systems, we define local variables in this section

to indicate the uncertain dynamics of the corresponding AADL

component features. In our approach, all these variables are

associated with specific probability distributions to signify

their possible values within an uncertain environment. The

following rules show the grammar for variables section.

variables declaration ::=

type pre f ix {variable identi f ier}+

applied to {component re f}∗

type pre f ix ::= time | dynamic price | static price

component re f ::= f eatures re f | annex subclause

In the above rules, the type prefix time means that local

variables are used to model the stochastic timing information

of component features. For example, a local time variable can

be bound to a component port to specify uncertain communica-

tion delays on the connection via this port. The local variables

with type prefix static/dynamic price can be used to specify

the uncertain value assignment for variables and constants

declared in annotated components or their annexes. In our

approach, we consider two kinds of local price variables, i.e.,

static price variables and dynamic price variables. Here, static

price means that the initial value of the associated AADL

(or annex) variables and constants are assigned stochastically

at the beginning of system execution. Unlike static price

variables which only conduct the initialization of variables

or constants once, local dynamic price variables are usually

bound to AADL (or annex) variables to model their random

value updates when newly referred.

Distributions section: The distributions section is to specify

the probability distributions of the variables defined in the

variables section. To allow the modeling of various stochastic

behaviors, our Uncertainty annex has a built-in distribution

functional library that supports a large spectrum of widely

used distributions, such as uniform, exponential and normal

distributions. The following production rules show how to bind

a variable with a specific distribution function.

distribution declaration ::=

varable identi f ier re f erence = distribution

distribution ::= Normal‘(’const,const‘)’

| Uniform‘(’const,const‘)’

| Exponential‘(’const‘)’ | ...

Queries section: To quantify the performance of Uncertain

Hybrid AADL models during the architecture level design,

designers would like to ask questions such as “what is the

probability that a scenario can happen or a condition can be

satisfied with limited resources?”. Uncertainty annex provides

the queries section that can be used for declaring such queries

to enable safety and performance evaluation of AADL designs.

As an effective way to check the quality and performance of

AADL designs, the designers can put their design requirements

in this section. Only when all the evaluated requirements meet

design targets, the AADL design can be used as a reference

for the implementation.

query declaration ::=

query identi f ier = query target under constraint

query target ::= expr {&& expr}∗

expr ::= condition | ‘(’ condition (&& | ‖) expr ‘)’

condition ::= identi f ier operation (const | identi f ier)

constraint ::= [identi f ier] operation const

operation ::=< | ≤ | == | != | ≥ | >

When specifying a query, designers should provide two

things: i) a query target that denotes a safety scenario or

performance metric in the form of a predicate expression;

and ii) a constraint indicating the available resources to

achieve the target. The above production rules present how to

declare queries. Here, identifier denotes the name of AADL

features (e.g., ports) or annex variables declared in annotated

component implementations, and const denotes a constant

value. The target of a query is a predicate represented by

a conjunction of expressions. The query constraint is in the

form of “res op lim”, where res, op and lim denote resource,

operation and resource limit, respectively. If the resource is

not specified explicitly, the system time will be used as the

resource by default.

Listing 1 presents a Hybrid AADL design example anno-

tated with an uncertainty annex instance, which describes the

uncertain behaviors of the train component within the CTCS-

3 Movement Authority scenario (see details in Section IV).

To operate safely, the train periodically sends its current loca-

tion and velocity information to the on-board train controller

through ports ts, tv and receives the acceleration instruction

directed by the controller from the port ta. All these ports

are defined in the Train declaration. To model the continuous

behaviors, the train design adopts the Hybrid annex. Within the

Hybrid annex, the system time is modeled using the continuous

variable t whose rate is 1 (indicated by notation ’DT 1 t=1’

which means the derivation of t is 1). In the Hybrid annex

behavior section, the notation ’DT 1 s=v’ defines train speed

and the notation ’DT 1 v=a+ f r’ denotes the acceleration of

the train. During the running, the traction control force is deter-

mined by the value of a calculated by the controller, while the

resistance is determined by the friction coefficient of the track.

In this example, we consider two kinds of uncertainties. The

first one represents uncertain communication delays between

trains and controllers. The second one is the track friction

which is highly dependent on the external environment (e.g.,

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

weather, temperature). Therefore, we define two local variables

in the variables section of the uncertainty annex. The time

variable v delay is bound to the port ts with a distribution

Normal(0.15,0.04) (defined in the distributions section). We

set the variable v fr as a static price variable, since we assume

that the coefficient for the whole track and its value is only

updated once at the beginning of each system run. In the

queries section, query p1 tries to figure out the probability

that the train can stop before the end of authority (denoted

by EOA) within 300 seconds, and query p2 tries to reason

whether the train can run 4 kilometers within 200 seconds.

1 abstract Train

2 features

3 ts: out data port CTCS_Types::Position;

4 tv: out data port CTCS_Types::Velocity;

5 ta: in data port CTCS_Types::Acceleration;

6 end Train;

7

8 abstract implementation Train.impl

9 annex Uncertainty {**
10 variables

11 time v_delay applied to Train.ts

12 -- modeling connection delay

13 static price v_fr applied to Train.fr

14 -- modeling track friction

15 distributions

16 v_delay = Normal(0.15,0.04)

17 v_fr = Normal(-0.1,0.05)

18 queries

19 p1 = Train.v<=0 && Train.s<EOA

20 && Train.s>0 under <=300

21 p2 = Train.s >= 4000 under <=200

22 **};

23

24 annex hybrid {**
25 variables

26 s : CTCS_Types::Position -- train position

27 v : CTCS_Types::Velocity -- train velocity

28 a : CTCS_Types::Acceleration -- train acceleration

29 t : CTCS_Types::Time -- system time

30 fr : CTCS_Types::Deceleration -- track friction

31 behavior

32 Train ::= ’DT 1 s=v’ & ’DT 1 v=a+fr’ & ’DT 1 t=1’

33 [[> ts!(s), tv!(v),ta?(a)]]> Continue

34 Continue ::= skip

35 RunningTrain ::= s:=0 & v:=0 & a:=0 & REPEAT(Train)

36 **};

37 end Train.impl;

Listing 1. Uncertain Hybrid AADL Design for Train in CTCS-3 MA

B. NPTA Generation from Uncertain Hybrid AADL

To formalize the semantics of Uncertain Hybrid AADL, we

adopt NPTA as the model of computation. This subsection

presents our model transformation approach in detail.

1) Preliminary Knowledge of NPTA: Unlike traditional

timed automata, the clocks of a Priced Timed Automaton

(PTA) [25] can evolve with different rates. To simplify the

formal definition, we skip the introduction to the richer flavors

of PTAs supported by UPPAAL-SMC, e.g., urgent locations

[25]. Let C be a clock set. A clock valuation is a function

v : C → R>=0 which maps C to the set of non-negative reals

R>=0. Let v0 be the initial valuation where v0(c) = 0 for all

c ∈ C. Let U(C) (L(C)) be the set of upper-bound (lower-

bound) guards which are in the form x ∼ k or x − y ∼ k,

where x,y ∈C, k ∈ R and ∼∈ {<,≤,==} (∼∈ {>,≥,==}).

Assuming g ∈ L(C)∪U(C), v(C) |= g denotes that valuation

v(C) satisfies the constraint g. Definition 3.5 presents the

formal definition of a PTA.

Definition 3.5: A PTA is a 8-tuple A = (L, l0,C,Σ,E,R, I,τ)
where: i) L is a finite set of locations; ii) l0 ∈ L is the initial

location; iii) C is a finite set of clocks; iv) Σ=Σi∪Σo is a finite

set of actions where Σi and Σo indicate exclusive input actions

and output actions, respectively; v) E ⊆ L×L(C)×Σ×2C ×L

is a finite set of transitions, where L(C) denotes the transition

guard and 2C denotes a set of reset clocks of the transition; vi)

R : L → FC assigns a clock rate vector to each location, where

F(c) specifies the clock rate for c ∈C in the form of ordinary

differential equations; vii) I : L → U(C) assigns an invariant

to each location; and viii) τ is the system clock which is never

reset.

Let Ai = (Li, li
0,C

i,Σi,E i,Ri, Ii,τi) and A j = (L j, l
j
0,C

j,

Σ
j,E j,R j, I j,τ j) (i *= j) be two PTAs. The PTAs Ai and A j are

composable into a network only if Ci∩C j = /0 and Σ
i
o∩Σ

j
o = /0.

Definition 3.6 presents the formal structure of an NPTA.

Definition 3.6: Let Ai = (Li, li
0,C

i,Σi,E i,Ri, Ii,τi) (1 ≤ i ≤

n) be a PTA. Their composition (A1 | . . . | An) is an NPTA

which is a 8-tuple NA = (NL,NL0,NC,NΣ,NE,NR,NI,θ),
where: i) NL = ×iL

i; ii) NL0 = ×i{li
0}; iii) NC = ∪iC

i; iv)

NΣ = ∪iΣ
i; v) ((l1, . . . , l j, . . . , ln),g j,a,r j,(l1, . . . , l

′
j, . . . , ln)) ∈

NE whenever (l j,g j,a,r j, l
′
j) ∈ E j; vi) NR(l1 . . . ln)(x) =

Ri(li)(x) when x ∈ Ci; vii) NI(l1, . . . , ln) = ∧iI
i(li) (li ∈ Li);

and viii) θ is the system clock shared by all the PTAs.

Let (l,v) ∈ NL × RNC
>=0 be an NPTA state where l =

(l1, . . . , ln) is a composite of locations from different PTAs and

v |= NI(l). Let v[X] indicate the reset operation on the clock

set X . That is if c ∈ X , v(c) is set to 0, otherwise v(c) keeps

its value. Following the composition rules [25], the semantics

of an NPTA is mainly based on the following two kinds of

transitions: i) a discrete transition (l,v)
a

−→ (l′,v′) can be

triggered if there is a transition (l,g,a,X , l′) such that v |= g

and v′ = v[X]; ii) a delay transition (l,v)
d

−→ (l,v′) can be

triggered if v′ = v+
∫ v(θ)+d

v(θ) NR(l)dθ such that v |= NI(l) and

v′ |= NI(l), where v(θ) indicates the system time of entering

state (l,v). Within an NPTA, PTAs communicate with each

other using broadcast channels or shared variables. For more

details about NPTA, please refer to [10].

(a) PTA A

(b) PTA B

Fig. 2. An NPTA (A|B)

2) An Example of NPTA with Uncertainties: Figure 2

shows an NPTA consisting of two PTAs A and B, where each

PTA has four locations and two clocks (e.g., c1 and ca in

A). The locations here marked with symbol “U” are urgent

locations which can freeze time. In other words, time is not

allowed to pass when a PTA is in an urgent location [10].

Note that clocks can evolve with different rates in different

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

locations. The rate of a clock is 1 by default. To change the

rate of a clock, we need to modify the rate value of the primed

version of the clock. For example, c′a == 3 in A2 denotes

that the rate of ca is 3 in this location. Since UPPAAL-SMC

supports the modeling of clock rates using expressions in the

form of ordinary differential equations, UPPAAL-SMC can be

used to model non-linear hybrid systems. Note that although

UPPAAL-SMC only supports the uniform and exponential

distributions explicitly, based on the C-like programming con-

structs and built-in function random() provided by UPPAAL-

SMC various distributions can be constructed. For example,

we can construct the normal distribution based on the Box-

Muller approach [19]. Assume that the values of two variables

t1 and t2 follow the normal distributions N(1,0.32) and N(4,12),

respectively. The action t1=Normal(1,0.3) on the outgoing

edge of A1 assigns t1 with a random value following N(1,0.32).

Since the invariant in A2 is c1 ≤ t1 and the guard on the

outgoing edge of A2 is c1 ≥ t1, PTA A is stuck at A2 for a

time of t1. If the NPTA is simulated for numerous times, the

sojourn time at location A2 follows the distribution N(1,0.32).

In this example, PTAs are synchronized by two complementary

action pairs (“!” indicating sending and “?” denotes receiving)

via urgent channels a and b. While simulating (A|B) with

a large number of runs, we can find that the reaching time

of the composite location (A3,B3) follows the normal distri-

bution N(4+1,12 + 0.32), since the sojourn time of (A|B) at

composite locations (A0,B1) and (A2,B2) follows the normal

distributions N(4,12) and N(1,0.32), respectively. By adopting

the NPTA template like the above example, arbitrarily complex

stochastic behaviors can be modeled.

3) Mapping from Uncertain Hybrid AADL to NPTA: To

facilitate the detailed modeling of system architectures, AADL

provides more types of syntax modeling constructs than

NPTA. Since our approach focuses on quantitative analysis

of stochastic behaviors of Uncertain Hybrid AADL designs,

during the model transformation we neglect all the AADL

constructs which cannot affect the system behaviors. Table I

shows the structural mappings from uncertain Hybrid AADL

constructs to NPTA constructs. Note that we only list a

subset of AADL constructs that have a strong correlation with

uncertainty-aware hybrid features. This subset can essentially

be used to fully describe the behaviors of hybrid systems

within an uncertain environment. In our approach, we use the

BLESS annex to specify the discrete components of systems,

e.g., controller. We use the Hybrid annex to describe both

discrete and continuous behaviors of hybrid components, e.g.,

plants. The instances of both annexes can be described using

PTAs. Note that our proposed uncertainty annex focuses on the

variation modeling of communication delays and parameter

values. It only slightly changes structure of PTAs. To model

the overall uncertain behaviors of the whole hybrid system,

all the generated PTAs are synchronized through the channels,

which are transformed from AADL connections. To guarantee

the correctness of our mappings from AADL to NPTA and

final translation results, we develop a comprehensive test suite

which covers all possible notations of the three annexes.

The testing results show that the NPTA generated by our

transformation rules (templates) can correctly and accurately

reflect the behaviors of Uncertain Hybrid AADL designs. In

Section III-B5, we will show the details of such transformation

rules with concrete examples.

TABLE I
CONSTRUCT MAPPINGS BETWEEN AADL AND NPTA

AADL Constructs NPTA Constructs

system (PTA1 | . . . | PTAn)
thread / device PTA template

(event) data port variable
connection urgent channel

property set / type global variable
BLESS annex subclause PTA template
Hybrid annex subclause PTA template

Uncertainty annex subclause PTA actions/invariants/guards

Our approach relies on the meta-models of AADL and

its annexes to guide AADL model parsing as well as the

construct mapping. Similar to the formal definitions presented

in Section III-A, the meta-models define a set of correlated

sub-constructs of the model, which can be used to extract the

necessary information for the model transformation. Due to

the space limitation, we do not introduce the meta-models

used in our approach here. The meta-model for the AADL

without annex can be found in [4], and the meta-models

for BLESS and Hybrid annexes can be obtained from [16]

and [6], respectively. Similar to BLESS and Hybrid annex,

the meta-model of Uncertainty annex can be inferred from

Definition 3.4.

In our approach, the generated NPTA model can be divided

into two parts: i) back-end configurations that are used to

declare necessary data structures (e.g., variables, channels) and

functions (e.g., distributions, actions) for the stochastic mod-

eling of NPTA modes, and ii) front-end models that are used

to model the behaviors of hardware, software and environment

components. Our approach assigns each of AADL components

annotated by BLESS and Hybrid annex subclauses with a

front-end model and a back-end configuration. Moreover, there

is a global back-end configuration for the whole system whose

information are shared by all the front-end models.

4) Back-end Configuration Generation: As a textual file, a

back-end configuration mainly consists of: i) a set of decla-

rations of variable and channels, and ii) a set of distribution

and action functions. By using our approach, such information

can be automatically extracted from AADL designs. Listing 2

shows the back-end configuration generated from the train

AADL shown in Listing 1. To save the space, we put both

the global configuration and the local configuration for the

train within the same file.

For a back-end configuration, the global declarations of

variable and channels are generated from the top level of

AADL designs, i.e., hardware/software components and their

interconnections. For each port of an AADL component,

we create an urgent channel1 which indicates the AADL

connection associated with the port. For example, assuming

that the connection name bound by the port tv in the AADL

1An urgent channel does not allow a delay if it is possible to trigger a
synchronization over it. We only use urgent channels in our translation, since
the timing behavior of NPTA using urgent channels is deterministic. We use
urgent locations in the transformation for the same reason.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

design is tv, we will declare two things for this port in the

global configuration. The first one is an urgent channel c tv

that is used for the synchronization with other components.

Since tv is a data port for the velocity of trains, we declare a

variable v tv of type double to hold data value during the data

transmission via the connection. The constants defined in the

global NPTA configuration correspond to the constants (e.g.,

EOA) defined in top level of AADL designs. For each NPTA

model, a clock systime is defined in the global configuration to

model the system time. To model different stochastic behaviors

of PTAs, the global back-end configuration comprises a library

of distribution functions, which can be used by front-end

NPTA models or the local configurations.

1 //global declarations & distribution function lib.

2 urgent chan c_tv, c_ts, c_ta;

3 double v_tv, v_ts, v_ta;

4 const double EOA=6000;

5 clock systime;

6 double Normal(double mean, double deviation){

7 // Box-Muller method

8 }

9 double Uniform(double min, double max){

10 ...

11 }

12 //local configuration for Train.

13 clock s, v, a, t, d_t;

14 double v_delay, fr;

15 void initialize(){

16 fr=Normal(-0.1,0.05);

17 }

18 //local configurations for other components.

19 ...

Listing 2. Back-end configuration of Train

The local back-end configuration mainly deals with the def-

inition of data structures for specific AADL components and

annexes. During the model transformation, all the continuous

AADL variables are converted to clock typed variables, and

other AADL variables are converted to non-clock variables

with different types. For each local configuration of PTAs,

we define one built-in function initialize() which is used to

initialize the values of variables. To enable the reset operation

in a PTA, for each local configuration, we define one clock

d t. For the uncertainty annex in Listing 1, there are two

variables declared, i.e., v delay and v fr. Note that only

v delay has a counterpart in the back-end configuration, since

it is a time variable. The price variables have no counterparts,

since they are used as intermediate variables during the model

transformation. Note that the transformation rules for static

and dynamic price variables are different. Since static price

variables only take effect at the beginning of the simulation,

we assign their random values to associated variables in

the function initialize() of local back-end configurations. For

example, we initialize the variable fr with a value following

normal distribution N(−0.1,0.052) in the back-end function

initialize() of the train example. Unlike static price variables,

the dynamic price variables generate random values during

the execution when necessary. It is widely used in front-end

modeling to indicate the random value change of variables. For

example, it can be used to model time-varying port delays.

5) Front-end Model Generation: As a graphical representa-

tion, front-end models are used in UPPAAL-SMC to describe

the stochastic behaviors of PTAs. To describe the hybrid

behaviors of systems, our approach adopts two kinds of an-

nexes. We model the discrete behaviors of AADL components

(e.g., thread component) using the BLESS annex. To describe

continuous behaviors of components (e.g., device and abstract

components), we use the Hybrid annex that is based on Hybrid

CSP. For an AADL component without any annotated annexes,

we assume a simplified semantics for its behavior, where the

component periodically receives the data from its input ports

and sends the data to its output ports. Therefore, the major

task of front-end model generation is to transform uncertainty-

aware BLESS and Hybrid annexes to their NPTA counterparts.

Uncertainty Modeling of Front-end Model: For front-end

model transformation, we consider two kinds of uncertainties

in the Uncertainty annex. The first one is described by time

variables which are used to model the delay variations of

network communication or task execution. To model such

stochastic timing behaviors of system, we use the transforma-

tion pattern as shown in Figure 3. Figure 3(a) shows a scenario

that the PTA tries to send something via the channel using the

action channel!. Without annotated Uncertainty annexes, the

sending time of the action is fixed. However, by using our

Uncertainty annex, we can associate a time variable v delay

following normal distribution (i.e., N(1,0.22)) with this chan-

nel. By splitting the transition in Figure 3(a) and introducing a

temporary location to indicate the waiting, we can model the

scenario that the action time follows the distribution N(1,0.22)
as shown in Figure 3(b). On the incoming edge of the newly

added location temp, we assign v delay with a random value

following N(1,0.22) and we reset the clock d t. Note that the

invariant of location temp is d t<=v delay and the guard on

the outgoing edge of temp is d t>=v delay. Therefore, the

PTA remains at location temp for a time of v delay following

the normal distribution N(1,0.22). The second uncertainty in

the front-end model is specified by dynamic price variables

in the uncertainty annex, which mimics the random values of

parameters (e.g., sensor inputs). The transformation of such

uncertainty only needs to assign or replace the applied variable

with the given distribution function.

(a) Certain (b) Uncertain

Fig. 3. Transformation pattern for uncertain PTA models

BLESS Annex Based PTA Generation: Listing 3 presents

an AADL example annotated with both BLESS and Uncer-

tainty annex instances, which describes the uncertain behaviors

of the controller component within the CTCS-3 Movement

Authority scenario (see details in Section IV). Meanwhile,

Figure 4 shows the corresponding PTA generated using our

transformation rules. Due to the space limitation, we only give

the partial AADL specification and corresponding PTA for the

controller.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

1 thread Controller

2 features

3 r: out event port;

4 m: in event data port CTCS_Types::MovementAuthority;

5 ea: in data port CTCS_Types::EOA;

6 properties

7 Dispatch_Protocol => Periodic;

8 Period => 200 ms;

9 end Controller;

10

11 thread implementation Controller.impl

12 annex BLESS{**
13 variables

14 e : CTCS_Types::EOA;

15 iMA : CTCS_Types::MovementAuthority:=null;

16 states

17 READY : initial state;

18 GMA : complete state;

19 CMA : state;

20 RETRY : state;

21 MFR : complete state;

22 -- other state declarations

23 transitions

24 T0_go: READY -[]-> GMA {r!};

25 T1_MA_Check: GMA-[on dispatch]->CMA{m?(iMA);ea?(e)};

26 T2_MA_Ok: CMA -[not (iMA=null)]-> MFR{ };

27 T3_MA_NotOk: CMA-[iMA=null]-> RETRY {};

28 T4_MA_Retry: RETRY -[]-> GMA {r!};

29 -- other transition declarations

30 **};

31

32 annex Uncertainty {**
33 variables

34 time t_delay applied to Controller.r

35 distributions

36 t_delay = Normal(0.2,0.07)

37 **}

38 end Controller.impl;

Listing 3. Uncertain AADL Design for Controller in CTCS-3 MA

From this example, we can find that the BLESS annex

shares a large overlap of the modeling constructs with PTA.

In BLESS annex, there are four kinds of states: initial state,

complete state, execution state, and final state. Based on the

definition [16], the initial state and execution state (with

keyword “state”) are only used for the initialization and branch

operation, respectively. Therefore, they are converted into

urgent states in corresponding PTA, since they do not consume

any time. Conversely, the state machine of BLESS annex

leaves complete state upon periodical dispatch events, and

will stay at the final state forever when the whole controller

task finishes. Therefore, these two kinds of states will be

directly mapped to general PTA locations. Since the definition

of BLESS transitions is more complex than the one of PTA

transitions, we need to use some specific transformation pat-

tern to generate PTA counterparts with equivalent semantics.

In BLESS annex, a transition allows for a sequence of send

(denoted by “!”) and receive (denoted by “?”) actions. As an

example shown in Listing 3, the transition T1 MA Check has

two receive actions, i.e., m?(iMA) and ea?(e). Therefore, after

staying in the state GMA for 200 milliseconds (indicated by

the guard dispatch>=0.2), the machine starts to receive the

message from the input event port m and input data port ea

in a sequential order. However, PTA models only allow one

such action on a transition. To model such combined send and

receive actions, for each action on the BLESS transition, we

introduce one auxiliary transition and one temporary location

to trigger the action in the order of their occurrences on the

BLESS transition. For example, in Figure 4 two temporary

locations (temp1 and temp2) are introduced for the two con-

sequent receive actions. Moreover, BLESS annex provides the

assert section and invariant section to specify the behavior

constraints of an AADL component. Such information can be

directly parsed and used as the transition guards and location

invariants in the generated PTA models. Since the AADL

design of the controller does not contain such information,

we do not show the corresponding translation in Figure 4.

Fig. 4. PTA model of Controller (partial)

Note that, to model the network delay, in Uncertainty

annex there may be some time variables associated with the

ports/channels used by the send actions. In this case, for

each send action we need to set the delay information on the

newly introduced location and transition pair. For example, in

the Uncertainty annex of Listing 3, the time variable t delay

following the normal distribution N(0.2,0.072) is applied to

the port r of the controller. Since there are two transitions

(T0 go and T4 MA Regry in Listing 3) that conduct the send

action, we need to set the delay information on both the PTA

locations temp0 and temp3 and their outgoing transitions using

the transformation template as shown in Figure 3.

Hybrid Annex Based PTA Generation: When transforming a

Hybrid annex annotated AADL [6], the front-end PTA model

is mainly extracted from the behavior section. Since Hybrid

annex adopts the process algebra notations, the behavior of

component is described by a set of CSP process, e.g., Train

defined in the hybrid behavior section of Listing 1.

During the transformation, each CSP process is converted

to a location except for the skip process (e.g., Continue in

Listing 1). The continuous evolution of a CSP process is

expressed using differential expressions, which are translated

and used as the invariant of the corresponding non-urgent

location. As an example shown in Listing 1, the differential

expression ’DT 1 s=v’ indicates that the derivative of s is v. It

can be translated into the derivative expression s’=v and used

as a part of invariant for the location Train.

To enable the communication between computation com-

ponents and physical environments, the semantics of Hybrid

AADL allows two kinds of interruptions, i.e., timed interrupts

and communication interrupts. In the behavior section of

Hybrid annex, a timed interrupt is defined as a part of CSP

process in the form of [> time val]>, which will preempt the

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

continuous evolution after an amount of time (i.e., time val).

By using the similar transformation pattern shown in Figure 3,

we can assure that the continuous evolution of CSP process

can be interrupted after a time of time val. The communication

interrupts enable the preemption of continuous evolutions by

communication events via AADL ports. For example, the

communication interrupt in the form of [[> pout!(v)]] > EV

denotes that whenever a value of v is sent out the port pout,

the current evolution will be terminated and the CSP process

EV will be adopted as the subsequent behavior of the process.

Generally, a communication interrupt may contain a se-

quence of send or receive actions. During the PTA transforma-

tion, we model the actions based on their occurrence order in

the interrupt. For each action, we generate a new PTA location

together with a new transition with the corresponding action

on it. Note that in the generated PTA a location should be

set as urgent if the action on next edge is a send action.

When translating the choice operator of a CSP process, we

will create a new adjacent location in the generated PTA for

each alternative. The subsequent behavior of the process is

determined by the Boolean expression associated with the

alternative. To model the behavior of a repeating process

defined in the behavior section, we connect the last location

to the first location of the process in the PTA to form a loop.

Fig. 5. PTA model of Train

Figure 5 shows the PTA of the Train example defined

in the behavior section of Listing 1. To enable the exe-

cution of function initialize() defined in the local back-end

configuration, we introduce an urgent location start. On the

outgoing transition of location RunningTrain, the continuous

variables s, a and v are initialized. Since the first action in the

communication interrupt is a send action (i.e., ts!(s)), we make

the location Train urgent. As defined in the uncertainty annex,

the channel associated with the port ts has a communication

delay following N[0.15,0.042]. Based on the pattern shown

in Figure 3, we need to create a new location (i.e., temp0)

to model the delay information. Note that since ts is a data

port, we need to sent the value of s via this port. However,

the corresponding action c ts! on the outgoing edge of temp0

cannot hold the value information. Therefore we use the

variable v ts which corresponds to the channel c ts to hold the

data value during the communication via the channel. Since

an urgent location allows no invariants, we move the invariant

derived from the different expression of CSP process Train

to the new location temp0. Since there are three actions in

the communication interrupt of the CSP process Train, we

create two new locations to perform the actions according to

their occurrence order. Note that the newly introduced three

locations (i.e., temp0, int0 and int1) can be considered as the

sub-locations of CSP process Train. Therefore, they should

have the same location invariant. For the action ta?(a) of the

communication interrupt, we need to get the data value from

port ta. Therefore, we use the action a=v ta to update the

value of a.

C. Property Generation for Quantitative Analysis

To enable the quantitative evaluation of Uncertain Hybrid

AADL designs, our proposed Uncertainty annex allows de-

signers to specify design requirements as performance queries.

These performance queries will be transformed as properties

in the form of cost-constrained temporal logic to reason the

performance of the NPTA models generated from Uncertain

Hybrid AADL designs. Since we focus on the reasoning of

stochastic behaviors of AADL systems, the designers can

conduct following two kinds of queries.

• Performance query: The performance query can be used

to check the probability that an expected performance

metric can be achieved under a given resource limit. The

performance metric can be expressed as the predicate and

the resource limit can be specified as the constraint using

the keyword under.

• Safety query: The safety query can be used to check

the probability that an unexpected scenario can happen

eventually with a given resource limit. In the query, the

unexpected scenario can be expressed as the predicate

and the resource limit can be specified as the constraint

using the keyword under.

Although safety queries and performance queries have

different meaning, they share the same template during the

property generation. In the queries section, a query consists

of two parts, i.e., predicate φ and resource constraint ψ. The

predicate φ can be used to denote either an unexpected scenario

or an expected performance metric.

To evaluate the performance of generated NPTA models,

UPPAAL-SMC adopts cost-constrained temporal logic [11]

based performance queries in the form of Pr[bound](<>

expr), where [bound] indicates the bound of the cost and

the expression <> expr asserts that the scenario expr should

happen eventually. By using our approach, the queries will be

transformed into properties in the form of Pr[ψ](<> φ). For

example, the performance query p2 in Listing 1 intends to

check the probability that the travel length of the train exceeds

4 kilometers within 200 seconds. In order to conduct the

quantitative evaluation using UPPAAL-SMC, the query will

be converted to a property Pr[<= 200](<> Train.ts>= 4000)
in the form of cost-constrained temporal logic. Based on the

specified probability of false negatives (i.e., α) and probability

uncertainty (i.e., ε), UPPAAL-SMC will simulate a specific

number of stochastic runs which are terminated when either

bound or <> expr holds. The success rate p of <> expr

satisfying bound will be reported in the form of a probability

range [p− ε, p+ ε] with a specified confidence 1−α.

IV. CASE STUDY

To show the efficacy of our approach in analyzing sys-

tem performance within uncertain environments, this section

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

presents the experimental results of verifying the Movement

Authority (MA) control of Chinese Train Control System Level

3 (CTCS-3) [20], [28]. By using our proposed Uncertainty

annex, we extended the hybrid CTCS-3 AADL model pre-

sented in [20] using the tool OSATE2 [7]. The uncertainty

information in the model is suggested by railway experts

from our industrial partner Casco Signal Ltd. Based on our

XMI parser and NPTA model generator implemented using

JAVA2, we can obtain the corresponding NPTA model as

well as performance queries. We employed the model checker

UPPAAL-SMC (version 4.1.19, α= 0.02, ε= 0.02) to conduct

the evaluation. All the experimental results were obtained on

a desktop with 3.3GHz AMD CPU and 12GB RAM.

A. System Model of CTCS-3 MA Scenario

As one of the fourteen basic scenarios of CTCS-3 System

Requirements Specification (SRS), the MA control plays an

important role in prohibiting trains from colliding with each

other. Typically an MA scenario involves three major compo-

nents as follows: i) trains that periodically (every 500 millisec-

onds) send their status information (i.e., current location and

velocity) to the controller and receive acceleration information

directed by the controller; ii) Radio Block Centers (RBCs)

that provide MAs to trains based on information exchange

with trackside subsystems and the on-board controller; and

iii) on-board controller subsystems which control the velocity

of trains by changing their accelerations.

Fig. 6. MA scenario of CTCS-3 [20]

As shown in Figure 6, the RBC assigns a dynamic MA to

the left train based on the track situation and the movement of

the right train. Here, EOA stands for the End of Authorization.

When a train reaches a specific distance (i.e., SR) away from

EOA, it needs to apply for a new MA. If the authorization is

not granted in time, according to SRS the train should stop

before the EOA. According to SRS [28], an MA comprises

a sequence of segments, where each segment has two speed

limits v1 and v2 (v1 ≥ v2). In this example, we set the speed

limits v1 and v2 for each segment to 73m/s and 66m/s,

respectively. If the train speed exceeds v1 (v2), an emergency

(normal) brake will be performed to slow down the train. Upon

receiving an MA request from controller, RBC will reply

a new MA together with all the segment information (e.g.,

speed limits, operation mode). More details can be found in

2We have shared our tool (including the source code of Uncer-
tain Hybrid AADL parser and NPTA model generator) and the un-
certain CTCS-3 MA example on Github. The download address is
https://github.com/tony11231/aadl2uppaal.

[20], [28]. In this example, we set the length of an MA to 6

kilometers, and set the length of SR to 1 kilometer. The train

starts with a speed of 0m/s. All the segments have the same

length and speed limits. Note that the SRS requirements cannot

be guaranteed within an uncertain environment. For example,

due to the mutual interference between varying communication

delays and friction coefficient of tracks, inaccurate estimation

of locations can make the train pass the EOA. Although train

drivers can perform emergency brake manually, proper quan-

titative analysis of these unsafe scenarios should be studied at

architecture level to make the train movement more safe.

Fig. 7. AADL model for CTCS-3 MA

Figure 7 shows the graphical AADL model for CTCS-3

MA design, where the controller plays a central role. Within

the MA scenario, the controller sends the MA request to

RBC via the port r and receives the segment and EOA

information from the ports m and ea, respectively. To achieve

the train status, the controller receives the location and speed

information from the ports cs and cv every 500 milliseconds.

It also controls the train by specifying the newly calculated

acceleration for the train via port ca. Although this figure

does not explicitly present any uncertainty information, in this

example we consider various uncertainties that may affect the

performance of the MA control, e.g., communication delays

between RBC and controllers, computation time variations of

both software/hardware components of controllers, and varied

coefficient of friction of tracks. The cumulative variations by

all these uncertainties strongly affect the performance and

safety of the CTCS-3 MA. In other words, the risk of train

collisions is high within an uncertain environment.

B. Uncertainties in CTCS-3 MA Scenario

As shown in Table II, this experiment took nine uncertain

aspects of CTCS-3 MA into consideration. Similar to the work

in [21], [26], this paper adopts normal distributions to model

the performance variations in the CTCS-3 MA scenario. All

such variation information was collected from historical data

of train operations. Note that our approach supports a variety

of distributions, which can be used to accurately model the

Uncertain Hybrid AADL designs. In this table, the first column

presents the category of the uncertainties. The second column

presents the AADL constructs that cause the uncertainties.

For example, when controller sends a MA request to RBC

via port Controller.r, there is a delay variation caused by the

connection conn req following the distribution N(0.1,0.032),
where the expected execution time is 0.1 seconds and the

standard deviation is 0.03 seconds. Note that during the

statistical model checking the network delay of 0.1 seconds

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

with standard deviation of 0.03 may lead to a negative value.

In our approach, if the variable with type “time” is randomly

assigned with a negative value, we will set it to 0. According to

the three-sigma rule, this approximation will still be accurate

in this case. The last two columns provide the variation

distributions and value unit, respectively. By using our tool

chain, the NPTA model of the Uncertain Hybrid AADL design

can be obtained automatically.

TABLE II
UNCERTAINTIES OF MA COMPONENTS

Causes Constructs Variations Unit

Controller.r N(0.1,0.032) Seconds

RBC.m N(0.1,0.032) Seconds

Network RBC.ea N(0.1,0.032) Seconds

Delay Train.tv N(0.15,0.042) Seconds

Train.ts N(0.15,0.042) Seconds

Controller.ca N(0.17,0.042) Seconds

Parameter Train.fr N(−0.1,0.052) MPSS∗

Execution RBC.T0 N(0.1,0.032) Seconds

Time Controller.T5 N(0.2,0.072) Seconds

*MPSS indicates Meter Per Second Squared.

C. Performance Analysis for CTCS-3 MA Scenario

To focus on quantitative analysis of the MA scenario

influenced by uncertain factors, we investigated stochastic

behaviors of a train within an MA as shown in Figure 6. We

assume that the train will fail to get the next MA when entering

SR. Therefore, it should stop before EOA. By using our tool,

three queries are generated to analyze the performance of

Uncertain Hybrid AADL design for CTCS-3 MA.

To investigate the probability that a train can stop safely

before the end of authorization within 300 seconds, we

adopt the performance query Pr[<= 300](<> Train.v <=
0 && Train.s< 6000 && Train.s> 0), where Train.v denotes

velocity of the train and Train.s indicates the location of the

train. Figure 8 presents the evaluation results for the query in

the form of Cumulative Probability Distribution (CPD). In this

figure, the x-axis denotes the time limit, and the y-axis indi-

cates success rate of the performance requirement indicated by

the query. In this evaluation, we considered three Uncertain

Hybrid AADL designs, where the accelerations directed by

the controller are different. We set the accelerations of three

designs to 0.3 MPSS (Meter Per Second Squared), 0.4 MPSS

and 0.7 MPSS, respectively. By running 868 runs, we can get

a probability interval [0.91,0.95] with a confidence 98% for

the query of the AADL design with an acceleration of 0.3

MPSS. The SMC simulation for this query costs around 132

seconds. For the AADL designs with acceleration of 0.4 MPSS

and 0.7 MPSS, we can get probability intervals [0.88,0.92]

and [0.81,0.85] with a confidence of 98%, respectively. From

this figure, we can find that the CPD of the design with 0.7

MPSS rises earlier (i.e., 173 seconds), since it has a larger

acceleration and can reach the speed limit v2 more quickly

than the other two designs. However, the larger acceleration

indicates the higher difficulty in managing the train speed. In

other words, the chance that the train exceeds EOA becomes

higher. Therefore, we can find that the AADL design with

0.3 MPSS can achieve the highest success rate to stop before

reaching EOA. Moreover, we can find that the success rate

will not increase significantly after a time threshold, since the

train has stopped before the time limit, i.e., 300 seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 150 165 180 195 210 225 240 255 270 285 300

P
ro

b
ab

il
it

y

Running Time

Cumulative Probability Distribution
 a=0.3 MPSS
 a=0.4 MPSS
 a=0.7 MPSS

Fig. 8. Performance query results with different accelerations

The interaction frequency between trains and the controller

plays an important role in CTCS-3 MA design, since it

strongly affects the cost and performance of train designs.

Although longer control periods cost less communication

bandwidth, the infrequent updates of train accelerations make

the train hard to be controlled. To investigate the effects

of different control periods, we assume that the acceleration

(without consider frictions) sent from the controller is fixed

(i.e., 0.4 MPSS) for the train design. Figure 9 shows the

evaluation results of using the same query as the one used

in Figure 8. We consider three designs with different control

periods, i.e., 0.2, 0.5 and 0.7 seconds, respectively. From this

figure, we find that the design with the smallest control period

(i.e., 0.2S) can achieve the highest rate of success. By running

266 runs, we can achieve a probability interval [0.95,0.99] with

a confidence 98% for the query of the AADL design with a

control period of 0.2 seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

 190 200 210 220 230 240 250 260 270 280 290 300

P
ro

b
a
b
il

it
y

 Time Limit

 Cumulative Probability Distribution
st=0.2 S
st=0.5 S
st=0.7 S

Fig. 9. Performance query results with different control periods

To determine the performance of the AADL design, we used

the query Pr[<= 200](<> Train.s >= 4000) which checks

whether the train can run a distance of 4.0 kilometers within

200 seconds. As shown in Figure 10, we adopted three designs

with different accelerations. We can find that the performance

difference among these three designs is quite small. The

design with an acceleration of 0.3 MPSS achieves the worst

performance, since it needs a worst-case time of 193 seconds

to reach the specified location. Interestingly, the design with

1.0 MPSS does not win the comparison. It needs longer time

to hit the specified location than the design with 0.6 MPSS,

since the design with a larger acceleration will have a more

drastic speed update near the speed limits.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 117 126 135 144 153 162 171 180 189 198

P
ro

b
ab

il
it

y

Running Time

Cumulative Probability Distribution
 a=0.3 MPSS
 a=0.6 MPSS
 a=1.0 MPSS

Fig. 10. Performance query results for reaching a location

From the above experimental results, we can find that our

approach can be used to effectively reason about the per-

formance of designs within complex uncertain environments.

Our approach can not only support the quantitative evaluation

of specified design using performance queries, but also can

be used for the purpose of design optimization based on

parameter tuning.

D. Quantitative Safety Analysis for CTCS-3 MA Scenario

During the running of the train, we expect the train speed

not to exceed the upper speed limit v1, since it can easily

make the train derailed. Therefore, when the train reaches

the speed v1, we need to apply the urgent brake to reduce

the train speed drastically. To check the probability of over-

speed of trains, we used the safety query in the form of

Pr[Tran.s<= 5000](<> Train.v>= 73), which indicates that

within a distance of |EOA − SR| the train speed cannot be

larger than or equal to v1 (i.e., 73m/s).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 3000 3300 3600 3900 4200 4500

P
ro

b
ab

il
it

y

 Distance Limit

Cumulative Probability Distribution
 a=0.3 MPSS
 a=0.6 MPSS
 a=1.0 MPSS

Fig. 11. Safety query results for overspeed

Figure 11 shows the evaluation results for the three AADL

designs with different accelerations. For the design with an

acceleration of 0.3 MPSS, UPPAAL-SMC uses 17 seconds to

obtain a probability interval [0.009, 0.049] for the query. From

this figure, we can find that the larger the acceleration is, the

higher chance the train can exceed the upper speed limit. To

achieve a 2% chance of overspeed, the design with 1.0 MPSS

needs an average travel distance of 3.0 kilometers, whereas the

designs with 0.3 MPSS and 0.6 MPSS need an average of 3.5

kilometers and 4.1 kilometers, respectively. From the above

evaluation results generated by our approach, we can clearly

figure out the safety information for the designs within un-

certain environment. Based on the comparison among designs

with different parameter values, we can achieve reasonable

design settings under a given safety requirement.

V. CONCLUSIONS

This paper proposed a novel SMC-based framework that

enables quantitative performance evaluation of Hybrid AADL

designs considering various uncertain factors caused by phys-

ical environments. We introduced a lightweight language ex-

tension to AADL called Uncertainty annex for the stochastic

behavior modeling. By using our proposed transformation

rules, the uncertainty-aware Hybrid AADL designs can be

automatically converted into NPTA models. Based on the

statistical model checker UPPAAL-SMC, our framework en-

ables automated evaluation of Uncertain Hybrid AADL de-

signs against various complex performance and safety queries.

Comprehensive experiment results carried on the CTCS-3 MA

scenario demonstrate the efficacy of our approach.

REFERENCES

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges”, in Proc. of Int.

Symp. on Object Oriented Real-Time Distributed Computing (ISORC),
2008, pp. 363–369.

[2] J. Delange and P. H. Feiler, “Incremental Latency Analysis of Heteroge-
neous Cyber-Physical Systems”, in Proc. of Int. Workshop on Real-Time

and Distributed Computing in Emerging Applications (REACTION),
2014, pp. 21–27.

[3] P. H. Feiler and D. P. Gluch, “Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language”,
Addison-Wesley, 2012.

[4] SAE Aerospace, “SAE AS5506B: Architecture Analysis & Design
Language (AADL) Standard Document”, SAE International, 2012.

[5] J. Delange and P. H. Feiler, “Architecture Fault Modeling with the
AADL Error-Model Annex”, in Proc. of EUROMICRO Conference

on Software Engineering and Advanced Applications (EUROMICRO-

SEAA), 2014, pp. 361–368.

[6] E. Ahmad, B. R. Larson, S. C. Barrett, N. Zhan, and Y. Dong, “Hybrid
Annex: An AADL Extension for Continuous Behavior and Cyber-
Physical Interaction Modeling”, in Proc. of ACM Annual Conference

on High Integrity Language Technology (HILT), 2014, pp. 29–38.

[7] OSATE2, http://osate.github.io/.

[8] K. Hu, T. Zhang, Z. Yang, and W.-T. Tsai, “Exploring AADL Ver-
ification Tool Through Model Transformation”, Journal of Systems

Architecture, vol. 61, no. 3, pp. 141–156, 2015.

[9] A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, “Automated
Verification of AADL-Specifications using UPPAAL”, in Proc. of Int.

Conf. on High-Assurance Systems Engineering (HASE), 2012, pp. 130-
138.

[10] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen,
“UPPAAL SMC Tutorial”, International Journal on Software Tools for

Technology Transfer (STTT), vol. 17, no. 4, pp. 1–19, 2015.

[11] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and Z. Wang, “Time
for Statistical Model Checking of Real-Time Systems”, in Proc. of Int.

Conf. on Computer Aided Verification (CAV), 2011, pp. 349–355.

[12] M. Bozzano, A. Cimatti, J. Katoen, V. Y. Nguyen, T. Noll, M. Roveri,
and R. Wimmer, “Safety, Dependability and Performance Analysis of
Extended AADL Models”, The Computer Journal, vol. 54, no. 5, pp.
754–775, 2011.

[13] H. Yu, Y. Ma, T. Gautier, L. Besnard, P. L. Guernic, and J. P. Talpin,
“Polychronous Modeling, Analysis, Verification and Simulation for
Timed Software Architectures”, Journal of Systems Architecture, vol. 59,
no. 10, pp. 1157–1170, 2013.

[14] K. Bae, P. C. Ölveczky, and J. Meseguer, “Definition, Semantics, and
Analysis of Multirate Synchronous AADL”, in Proc. of International

Conference on Formal Methods (FM), 2014, pp. 94–109.

[15] E. Jahier, N. Halbwachs, P. Raymond, X. Nicollin, and D. Lesens,
“Virtual Execution of AADL Models Via a Translation into Synchronous
Programs”, in Proc. of International Conference on Embedded Software

(EMSOFT), 2007, pp. 134–143.

[16] B. R. Larson, P. Chalin, and J. Hatcliff, “BLESS: Formal Specification
and Verification of Behaviors for Embedded Systems with Software”,
in Proc. of NASA Formal Methods, 2013, pp. 276–290.

0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

[17] L. Zou, J. Lv, S. Wang, N. Zhan, T. Tang, L. Yuan, and Y. Liu, “Verifying
Chinese Train Control System Under a Combined Scenario by Theorem
Proving”, in Proc. of Verified Software: Theories, Tools, Experiments

(VSTTE), 2013, pp. 262–280.
[18] E. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press,

1999.
[19] G. Box, and M. E. Muller, “A Note on the Generation of Random

Normal Deviates”, The Annals of Mathematical Statistics, vol. 29, no. 2,
pp. 601–611, 1958.

[20] E. Ahmad, Y. Dong, B. R. Larson, J. Lv, T. Tang, and N. Zhan, “Behavior
Modeling and Verification of Movement Authority Scenario of Chinese
Train Control System Using AADL”, Science China Information Sci-

ences, vol. 58, no. 11, pp. 1–20, 2015.
[21] M. Chen, D. Yue, X. Qin, X. Fu, and P. Mishra, “Variation-Aware

Evaluation of MPSoC Task Allocation and Scheduling Strategies using
Statistical Model Checking”, in Proc. of Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2015, pp. 199–204.
[22] F. Gu, X. Zhang, M. Chen, D. Große, and R. Drechsler, “Quantitative

Timing Analysis of UML Activity Diagrams Using Statistical Model
Checking”, in Proc. of Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2016, pp. 780–785.
[23] M. Chen, S. Huang, X. Fu, X. Liu, and J. He, “Statistical Model

Checking-Based Evaluation and Optimization for Cloud Workflow Re-
source Allocation”, IEEE Transactions on Cloud Computing, accepted.

[24] H. Bruintjes, J. Katoen, and D. Lesens, “A Statistical Approach for
Timed Reachability in AADL Models”, in Proc. of International Con-

ference on Dependable Systems and Networks (DSN), 2015, pp. 81–88.
[25] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen,

J. Vliet, and Z. Wang. “Statistical Model Checking for Networks of
Priced Timed Automata”, in Proc. of Int. Conf. on Formal Modeling

and Analysis of Timed Systems (FORMATS), 2011, pp. 80–96.
[26] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar,

S. Mitra, A. Nicolau, T. S. Rosing, M. B. Srivastava, S. Swanson, and
D. Sylvester, “Underdesigned and opportunistic computing in presence
of hardware variability”, IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 31, no. 1, pp. 8–23, 2013.
[27] P. J. L. Cuijpers and M. A. Reniers, “Hybrid Process Algebra”, The

Journal of Logic and Algebraic Programming, vol. 62, no. 2, pp. 191–
245, 2005.

[28] The Ministry of Railways of The People’s Republic of China, “System
Requirements Specification of the CTCS-3 Train Control System”,
Beijing: China Railway Publishing House, 2008.

Yongxiang Bao received the B.E. degree from the
Department of Computer Science and Technology,
Anhui University of Technology, Anhui, China, in
2014. He is currently a master student in the Depart-
ment of Embedded Software and System, East China
Normal University, Shanghai, China. His research
interests are in the area of design automation of
embedded systems, statistical model checking, and
software engineering.

Mingsong Chen (S’08-M’11) received the B.S.
and M.E. degrees from Department of Computer
Science and Technology, Nanjing University, Nan-
jing, China, in 2003 and 2006 respectively, and the
Ph.D. degree in Computer Engineering from the
University of Florida, Gainesville, in 2010. He is
currently a Professor with the Computer Science and
Software Engineering Institute at East China Normal
University. His research interests are in the area of
design automation of cyber-physical systems, formal
verification techniques and cloud computing. He is

an Associate Editor of IET Computers & Digital Techniques, and Journal of
Circuits, Systems and Computers.

Qi Zhu (M’12) is an Assistant Professor of Elec-
trical and Computer Engineering at the University
of California, Riverside (UCR). He received his
B.E. degree in Computer Science from the Tsinghua
University, China in 2003, and his Ph.D. degree in
Electrical Engineering and Computer Sciences from
the University of California, Berkeley in 2008. Prior
to joining UCR, He was a research scientist at the
Strategic CAD Labs in Intel from 2008 to 2011.
His research interests include model-based design
and software synthesis for cyber-physical systems,

CPS security, energy-efficient buildings and infrastructures, and system-on-
chip design. He is a recipient of the 2016 CAREER award from the National
Science Foundation, and best paper awards of ACM Transactions on Design
Automation of Electronic Systems 2016, International Conference on Cyber-
Physical Systems 2013, Design Automation Conference 2007 and 2006.

Tongquan Wei (S’06-M’11) received his Ph.D. de-
gree in Electrical Engineering from Michigan Tech-
nological University in 2009. He is currently an
Associate Professor in the Department of Computer
Science and Technology at the East China Normal
University. His research interests are in the areas
of green and reliable embedded computing, cyber-
physical systems, parallel and distributed systems,
and cloud computing. He serves as a Regional Editor
for Journal of Circuits, Systems, and Computers
since 2012. He also served as Guest Editors for

several special sections of IEEE TII and ACM TECS.

Frederic Mallet (M’01) is a Professor of Computer
Science in Université Nice Sophia Antipolis. He
works on the definition of sound models and tools
for the design and analysis of embedded systems and
cyber-physical systems. He is a permanent member
of the Aoste team, a joint team between Inria Sophia
Antipolis research center and I3S Laboratory (Cnrs
UMR). During several years, he has been a voting
member of the OMG Revision Task Forces for
MARTE and SysML, where he was leading the
definition of the allocation subprofile and had a key

role in the definition of MARTE Time Model and MARTE/CCSL. He has
also contributed to the working group between MARTE RTF and AADL
committee.

Tingliang Zhou received his B.E. degree from
Tongji University, China in 2012, and M.E. degree
from Shanghai Jiaotong University, China in 2005
– all in computer science. He is currently a senior
engineer and division manager of the Casco Signal
Ltd., Shanghai, China. His research interests are in
the area of trustworthy design of communication-
based train control system, and formal verification
techniques.

