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Abstract—Aiming at high performance, more and more Cyber-Physical Systems (CPSs) adopt Multiprocessor System-on-Chips
(MPSoCs) as computation units. However, due to increasing integration of transistors on a die, the power densities together with
performance variations of MPSoC chips have been increasing dramatically. Consequently, the MPSoC-based CPSs might become
unsustainable and unreliable. Although various Task Allocation and Scheduling (TAS) heuristics have been proposed to minimize the
hotspot time (i.e., duration of thermal emergency) and energy consumption of MPSoC designs, few of them can guarantee the highest
performance yield under process variations without violating energy, thermal and timing constraints. To address these challenges, this
paper proposes a novel energy- and thermal-aware TAS evaluation and optimization framework. Based on statistical model checking
techniques, our approach enables accurate modeling and reasoning of the performance yield of real-time MPSoC designs under joint
energy and thermal constraints. To enable system-level design space exploration, we propose a regression analysis-based method
that can drastically reduce the overall exploration efforts. Experimental results show that our fully-automated approach can not only
allow accurate sustainability-oriented reasoning of TAS solutions under specified thermal and energy constraints, but also enable the
quick search of optimal TAS solutions on different MPSoC architectures with the highest performance yield.

Index Terms—Cyber-Physical Systems, Sustainability, Task Allocation and Scheduling, Statistical Model Checking, Optimization.
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1 INTRODUCTION CPS designs, especially for mobile autonomous CPSs which
are driven by batteries. Typically, higher power densities may
lead to higher chip temperature, which not only degrades
the performance and depletes system energy storage, but also
accelerates both the aging process of MPSoC devices and
failure mechanisms (e.g., electro-migration, dielectric break-
down). Consequently, the sustainability of MPSoC-based CPS
designs cannot be guaranteed. Therefore, it is very important to
restrict the overheating time to reduce the energy consumption
and balance the thermal profiles for MPSoC designs. The
second challenge is the uncertain PE performance caused
by process variations, which has a substantial influence on
reliable CPS execution [5]. Due to the difficulty of fabricating
small structures consistently across a die, even for the PEs
of the same type on the same chip, we cannot assume that
they have same performance. In addition to the intrinsic
physical variations (e.g., channel length, gate-oxide thickness
and threshold voltage) [6], [7], the environmental variations

(e.g., temperature, power supply) that depend primarily on

architectural designs and PE operations have substantial im-

pacts on the MPSoC performance. If such variations are not

considered in MPSoC design, we cannot assure the reliability

of the host CPS products [8].
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Due to the increasing demand of interactions between cyber
world and physical environment, there is a trend towards
the development of high-performance Cyber-Physical Sys-
tems (CPSs), e.g., autonomous automobile systems, unmanned
aerial vehicles [1]. To facilitate the simultaneous processing of
heterogeneous tasks (e.g., monitoring, control and communi-
cation), more and more CPS designers adopt Multiprocessor
System-on-Chip (MPSoC) which integrates a collection of
heterogeneous Processing Elements (PEs) such as application-
specific instruction-set processors and hardware accelerators
on a single die [2]. Since MPSoC allows to fully exploit
the capabilities of both hardware and software resources, the
stringent CPS design requirements such as real-time response
and energy efficiency can be accomplished systematically.
As technology scales, to achieve better overall performance,
the number of PEs integrated on an MPSoC chip grows
quickly. Due to increasing integration of transistors on a die,
the power densities together with process variations have been
also increasing dramatically [3], [4]. This brings two big
challenges in MPSoC design. The first one is the high energy
consumption which affects the sustainability of MPSoC-based
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performance and power deviations from nominal values in the
design and overly pessimistic performance estimation, such
approaches may no longer provide viable solutions. To mea-
sure TAS strategies under variations, performance yield was
proposed to define the probability of an assigned TAS instance
meeting required MPSoC constraints [11]. Therefore, it can be
used as an effective metric to evaluate the sustainability and
reliability of MPSoC designs.

Since MPSoC TAS is an NP-Complete problem, various
heuristics have been proposed to find a sub-optimal solution
to maximize the performance yield [11], [12]. However, due
to the complexity of correlated variations (e.g., delay, power
and temperature), it is hard for designers to determine which
TAS strategy works best for a given MPSoC TAS problem.
Therefore, making the quantitative evaluation and comparison
among TAS strategies has become an important issue to
guarantee the performance yield in MPSoC design. Although
existing statistical graph analysis-based methods can deal with
simplified execution variations, few of them can accurately
model complex parallel task execution scenarios and corre-
lations between different types of variations [4]. Moreover,
constraint solving-based approaches can only answer whether
a given MpSoC TAS problem satisfies a given constraint. None
of these approaches can quantitatively reason why a required
performance yield cannot be achieved and how to achieve
a better TAS solution with near-optimal performance yield.
Clearly, the bottleneck is the lack of powerful evaluation
and optimization methods that can help MPSoC designers
to make sustainable and reliable TAS decisions.

Based on the Statistical Model Checking (SMC) [13] and
regression analysis [15] approaches, this paper proposes a
novel framework that can effectively conduct performance
yield queries and optimization for energy- and thermal-aware
MPSoC designs under variations. Our framework adopts the
model checker UPPAAL-SMC [16] as the engine of variation-
oriented evaluation. Compared with formal model checking
approaches, UPPAAL-SMC allows approximate evaluation of
complex MPSoC systems, thus it requires far less memory
and validation time. By simulating systems using underlying
statistical methods (i.e., sequential hypothesis testing and
Monte Carlo simulation), UPPAAL-SMC can estimate the
satisfaction probability of a specified performance query (i.e.,
performance yield) under temperature and energy constraints.
Generally, the TAS optimization requires evaluation of a large
set of feasible solutions. Since the evaluation of a single TAS
solution is alreay time-costly, our framework employs regres-
sion analysis to predict the best possible TAS solution based
on the evaluation of a small subset of labelled TAS solutions.
This paper makes two following major contributions:

o We propose a novel UPPAAL-SMC-based approach that
can automatically convert TAS solutions under correlated
energy and thermal constraints into Networks of Priced
Timed Automata (NPTA) [16], which enables accurate
evaluation of corresponding performance yield.

« We develop a regression analysis-based optimization ap-
proach that can quickly find the best possible energy-
and thermal-aware TAS solution for a specific MPSoC
architecture (i.e., floorplan) under variations.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work on variation-aware task allocation
and scheduling approaches for MPSoC designs. After a brief
introduction to the power and thermal modeling of MPSoCs in
Section 3, Section 4 presents the details of our evaluation and
optimization framework. Section 5 presents comprehensive
experimental results based on a synthetic application. Finally,
Section 6 concludes the paper.

2 RELATED WORKS

With the advent of the MPSoC architecture in CPS design
[2], various application mapping techniques are proposed to
optimize the design from the perspectives of performance,
temperature and energy [17]. For example, Coskun et al.
[18] proposed an ILP-based approach to minimize hotspots
and balance temperature distribution on the die for a set of
tasks. In [19], Huang and Xu proposed novel task allocation
and scheduling algorithms to minimize the expected energy
consumption of multi-mode embedded systems under perfor-
mance and lifetime reliability constraints. In [20], Chantem
et al. presented a mixed ILP-based solution to optimize peak
temperature under various constraints based on phased steady-
state thermal analysis. Although the above approaches are
promising in optimizing the temperature and energy, none of
them consider the impact of process variations.

Due to the aggressive technology scaling, the effect of
process variations in microelectronic circuits is widely in-
vestigated [4]. Based on the assumption that the execution
time of MPSoC tasks can be approximated with Gaussian
distribution [21], various TAS approaches were proposed to
minimize the impact of process variation while maximizing
the performance. In [11], Wang et al. introduced the concept
of performance yield for MPSoC designs. Assuming that the
task execution time follows the Gaussian distribution [21], they
proposed an efficient TAS algorithm to maximize performance
yield based on statistical task graph analysis. In [22], Chon
and Kim proposed an efficient method to schedule and bind
tasks in an acyclic task graph to MPSoC resources in the
presence of resource sharing. Using simulated annealing-
based scheduling method and clustering-based performance
yield enhancement technique, Huang and Xu [12] took the
spatial correlation of within-die variation into account and
presented a novel quasi-static scheduling approach to improve
the overall performance yield. Although the above approaches
can obtain higher performance yield, few of them investigated
the performance yield involving the temperature- and energy-
based constraints. Moreover, none of the above approaches
considers the floorplan information in their variation-aware
performance yield analyses.

Machine learning-based algorithms are widely investigated
in MPSoC domain for the purpose of design optimization. For
example, Coskun et al. [23] proposed an online learning-based
low-cost temperature management strategy for multicore sys-
tems. Their approach can be used to reduce the adverse effects
of hotspots and temperature constraints. In [24], Tan et al.
presented a novel online power management technique based
on model-free constrained reinforcement learning. Compared
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with other existing power management method, the proposed
approach is capable of exploring the trade-off in the power-
performance design space and converging to a better power
management policy. To reduce the non-recurring engineering
(NRE) costs and time-to-market, Almer et al. [25] proposed
a machine learning-based method which can automatically
generate near-optimal application specific SoC designs within
hours rather than weeks. Although various heuristics were
proposed to improve different kinds of performance, none
of existing machine learning-based approaches considers the
joint energy and thermal constraints under process variations
in MPSoC design.

Statistical model checking has been widely used in eval-
uating system designs under variations [26]. In [27], Chen
et al. presented a variation-aware MPSoC design framework
that supports the TAS evaluation under the power and timing
constraints. However, they did not consider the correlation
between the power and temperature of PEs with different
floorplan layouts. Moreover, the work in [27] only focuses
on TAS evaluation rather than optimization. Although David
et al. optimized energy consumption for smart buildings based
on UPPAAL-SMC [28], their approach strives to optimize the
cost values on a parameterized smart building model, while
our approach targets to find a solution with the best possible
performance yield from a large set of MPSoC design models.

To the best of our knowledge, our work is the first SMC-
based approach that not only can evaluate different perfor-
mance aspects of TAS strategies considering temperature and
energy constraints under process variation, but also can effi-
ciently optimize the floorplan-aware task mapping to achieve
the highest performance yield.

3 BACKGROUND
3.1 UPPAAL-SMC

Relying on the formal models of Network of Priced Timed
Automata (NPTA) [29], UPPAAL-SMC [16] provides a user-
friendly interface to enable the quantitative performance anal-
ysis of complex stochastic systems. NPTA comprises a set of
correlated Priced Timed Automata (PTA) that are synchronized
via broadcast channels and shared variables. Figure 1 shows an
example of an NPTA consisting of two PTAs, i.e., A (id=ida)
and B (id=idb), where each PTA has four locations, two
variables (e.g., #; indicating the delay time and p; indicating
the power in location A, for PTA A) and two local clocks
(e.g., ¢ indicating the execution time and e; indicating the
consumed energy for PTA A), respectively. As a variant of
timed automata, PTA allows clocks with different rates in
different locations. The value of a primed clock denotes the
rate of the clock. For example, e’l == p; in PTA A is used to
record the energy consumed by PTA A with a rate of p;. When
dealing with the composite state transition of an NPTA, if a
PTA process is in a commit or urgent location (i.e., a location
marked with the symbol “C” or “U”), the process will have
a zero delay in this location and the next transition should
involve an outgoing edge from one of the commit or urgent
locations (commit locations have higher priority). Otherwise,
after each decision, the PTA process with the shortest delay

will attempt to take a transition and all the continuous variables
will be updated accordingly. In Figure 1, the synchronization
between two PTAs is based on an array of two broadcast
channels, i.e., msg[]. To filter useless messages, we use the
non-deterministic selections e:msg_t and the guard condition
e==idb to filter messages which are not sent to PTA B.

e1'==0 c1<=t1&&e1'==p1

e1'==0
t1=t dist(ida); ) M

(9]
@ p1=p_dist(ida) & c1=0e1=0
A0 A1 A2
e2'==0 e2'==0

@ t2=t_dist(idb); O
BO B1

el'==0

c1>=t1 O

msglidb]! A3

c2<=t288&e2'==p2 e2'==0
)

& co>=t2 O

B2 B3

exmsg_t
e==idb _msq[idb]?
c2=0,e2=0

p2=p_dist(idb)

Fig. 1. An NPTA, (A | B)

We use the design pattern shown in Figure 1 to enable
the stochastic behavior modeling and evaluation of MPsoC
designs. For simplicity, Figure 1 only presents an example
considering the variations of power and energy. Currently,
UPPAAL-SMC only explicitly supports the uniform and ex-
ponential distributions. However, due to the built-in function
random() and C-like programming constructs, UPPAAL-SMC
can generate constant values following a large set of com-
monly used distributions (e.g., normal distribution, Poisson
distribution). For example, by using the Box-Muller method,
we can derived values following normal distributions. In this
example, functions ¢_dist() and p_dist() are used to derive the
random delays (i.e., #; and #,) and power configurations (i.e.,
p1 and py) for the PTAs following some specified distributions.
In the pattern, the location A, sets the upper bound for clock
¢ (i.e., c;<=t1) and its outgoing transition has the guard
condition c¢y>=t;. Therefore, PTA A must stay in location
A with a delay of #;. Meanwhile, the energy consumption
rate of A in location A, is denoted by the location invariant
¢/==p;. Based on the above template using message-based
synchronization among PTAs, arbitrarily complex stochastic
behaviors of MPSoC designs can be modeled.

To enable the quantitative evaluation of NPTA-based de-
signs, UPPAAL-SMC employs the property-based perfor-
mance queries in cost-constrained temporal logic [29] format.
The query is in the form of Pricost <= bound|(<> expr),
where [cost <= bound] indicates the bound of cost (e.g., time,
power), and the expression <> expr asserts that the predicate
expr should be hold eventually. If the cost is not specified
explicitly, [<= bound] indicates the bound of system time.
Based on the specified probability of false negatives (i.e.,
o) and probability uncertainty (i.e., €), UPPAAL-SMC will
generate and execute a fixed number of random runs. By mon-
itoring these runs bounded by either time or design constraints,
the probability range of each query (i.e., [p —€,p+¢€|) with
a specified confidence degree (i.e., 1 — o) will be reported,
where p indicates the success ratio of the given query. The
performance query details will be described in Section 4.4.

3.2 Power and Thermal Modeling

It is important to note that our TAS evaluation and optimiza-
tion framework itself is independent of the power and thermal
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models used. In other words, users may define their own
power and thermal models by modifying the functions which
calculate new power and new temperature, and these models
can be easily converted to corresponding NPTA templates in
a similar way as presented in Section 4.3. To illustrate the
usage of our framework, this subsection presents a general
power and thermal model, which can model the correlation
between power consumption and temperature of PEs.

Assume that there are m PEs in an MPSoC design. For each
PE, the power consumption consists of two parts: dynamic
power Py, and leakage power Pq. Since dynamic power
consumption is weakly coupled with temperature variation,
we consider the value of Py, as a constant. Note that leakage
power consumption is a strong function of temperature. Thus
the overall power of the i PE can be formulated as:

Pl(t) :])leak,i(t)+den7i. (1)

Since our framework takes the temperature impacts among
PEs into consideration, we adopt the well-known RC thermal
model [32], [35] to investigate the temperature correlation
among PEs. In the RC model, C; denotes the thermal capac-
itance of the i PE, and R; ; indicates the thermal resistance
between the i’ PE and the j"* PE. The temperature of the i
PE can be formulated as:

. dz;llft) + Tl(t)R‘ ‘Tamb +Z Tz(t)R‘ Tj(t)

[ ]751 L]
where T, indicates ambient temperature. Note that, although
Equation (2) is a first order Ordinary Differential Equation
(ODE), it does not need to be solved within our framework.
This is because UPPAAL-SMC allows location invariants in
the form of ODEs with primed clocks [16].

G

4 OUR SMC-BASED EVALUATION AND OPTI-
MIZATION APPROACH

This section presents our TAS evaluation and optimization
framework in details. Our approach focuses on how to improve
the performance yield under energy and thermal constraints
considering the variations of time and power.

4.1 Notations and Problem Definition

Besides the two types of variations (task execution time and
power) addressed in this paper, our approach can be easily
extended to model other types of variations, based on the tem-
plate shown in Figure 1. To accurately describe the stochastic
behaviors of MPSoC designs, we adopt the distribution-based
methods for modeling variations. The MPSoC TAS evaluation
and optimization under variations studied in this work is
formulated as follows.

e Let G=(V,E) be a task graph in the form of directed
acyclic graph (DAG), where V = {vy, ...,v,} denotes the
task set and E indicates precedence constraints between
tasks.

e Let FF be the floorplan of an MPSoC design which
consists of a set of PEs PE ={py, ..., pn} with specific
placement. Let PT = {pty, ..., pt;} be the set of PE types

of F. We use the PE type function Tpg : PE — PT to
specify the type of an PE p; (p; € PE), and use the task
type function 7,5 : V — PT to denote the type of PEs to
which task v; (v; € V) can be allocated. A task v; can be
assigned to p; only if Ty (v;) = Tpe(pi).

o Let the function ET : V x PT — R™ be the nominal execu-
tion time function for tasks, where ET (v;, pt;) represents
the nominal execution time of task v; running on a PE of
type pt;. Let DIST be the set of probability distributions.
We use ETD :V x PT — DIST to specify the execution
time variation of tasks, where ETD(v;, pt;) = dist denotes
the execution time of task v; running on a PE of type pt;
following the distribution dist.

o Let the function PD : PT — DIST specify the power
variations of PEs, where PD(pt;) = dist indicates that
the power consumption of PEs of type pt; follows the
distribution dist. Considering the PE power variations
and temperature influence among PEs, we use the func-
tion Power : PE x R™ — R™ to denote real time power
consumption of PEs, i.e., Power(p;,t) denotes the power
consumption of p; at time 7.

o Let the function Energy(t) = [3 ¥, Power(p;,t)dt de-
note the overall energy consumed by the MPSoC design
till time ¢.

o Let the function Hotspot : RT™ — {0,1}, denote whether
there exists a PE on F with a temperature higher than
the specified hotspot temperature at time ¢. The function
Thotspot (1) = fé Hotspot(t)dr is a metric that denotes the
overall MPSoC overheating time till time ¢.

o Let mp, rt, thorspor» me, and fu be design constraints,
which denote the power limit, response time, overheating
time limit, energy limit, and available function units,

respectively.
e A TAS solution rass, is a 2-tuple in the form of
(<VidseeesVan> <VPyl,..., VPx,>) indicating that the

task vy; is assigned to a PE virtually indexed by vp,; €
NZ%, without violating the constraint fu. The schedule

sequence <Vy1,..., Vx,> is a permutation of tasks of V
in an order such that v, ; cannot be dispatched earlier than
vy if i<j.

o Let FP:NZL,, — PE be a PE mapping function, where
FP(vp;) indicates the real PE virtually indexed by vp;.
Considering the floorplan F, a mapped TAS solution
mtass, is mapping from tasks to real PEs. It is a 2-tuple
(<Valseo oy V>, <FP(vpxi), ..., FP(vpy,)>) where
FP(vpy;) indicates the assigned PE running the task v, ;.

o Let mtass be a mapped TAS solution, and END(v;,mtass )1
be the finish time of task v; when executing mtass.
Under the variations (i.e., execution time variation ETD
and power variation PD) and design constraints (i.e.,
mp, 1t, thorspor» and me), the performance yield PY(mp,
It thotspor» Me, mtass) of the MPSoC with mtass de-
notes the probability that the design meets the con-
straints such that Y, Power(p;,t) < mp for any 1,
Max}!_END(vi,mtass) < rt, Thorspot(t) < thorspor, and

1. Note that END(v;,mtass) is affected by ET D, and Power(p;,t) is affected
by PD and temperature influence among PEs.
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Energy(Max}_END(v;,mtass)) < me.

Note that TAS solutions do not take floorplans into ac-
count. The exploration of a TAS solution is to assign tasks
to corresponding indexed virtual PEs only considering the
task precedence relations (denoted by E) and constraint of
available function units (denoted by fu). Although there may
exist multiple feasible TAS solutions for the given MPSoC
design constraints, for each TAS strategy our approach only
adopts the one that is found first. The difference between
distinct mapped TAS solutions using the same strategy is
that they are based on different floorplan-based PE mapping
functions. Given a set of mapped TAS solutions generated by
different TAS strategies with different PE mapping functions,
the TAS evaluation process is to figure out which mapped TAS
solution has the best performance under variations. Unlike
evaluation, the optimization process will try to evaluate all
possible TAS solutions for the same strategy with the same
design constraints but different PE mapping functions. The
goal of optimization is to find one mapped TAS solution with
the highest performance yield under variations.

,3,0. (B,10,0.5) (C,3,0.3)
(A, 3,0.2) PEL PE2 PE3
N PE4 PES
(B, 8, 0.4)
PE6 PE7 PES

(a) Task graph

(b) MPSoC floorplan

Fig. 2. An example of floorplan-aware MPSoC TAS

As an example shown in Figure 2, we are trying to
schedule the tasks shown in Figure 2(a) onto an MPSoC
design with the floorplan specified in Figure 2(b). In
Figure 2(a), each task is labelled with the information of
allocated PE type and execution time variation. For example,
task v; is labelled with a setting (A,3,0.2) indicating
that this task will be assigned to PEs of type A and its
execution time follows the Gaussian distribution N(3,0.22).
Assume that TPE(PEl) = TPE(PEQ) = TPE(PE3) = A,
TPE(PE4) = TPE(PEs) = B, and TPE(PEG) = TPE(PE7) =
Tpp(PEg) = C. Let tass= (<vi,v2,v3,v4,v5>,<1,5,6,4,1>)
be a TAS solution of the problem. Assume that we
have a PE mapping function indicates the binary
relation of virtual indexed PEs to real PEs, i.e.,
{(1,1/1),(2,\12),(3,\23),(4,1)5),(5,1)4),(6,\/5),(7,\/7),(8,\/8)}.
Based on such PE mapping function, we can get a mapped
TAS solution mtass; = (<vi,v2,v3,v4,vs >,< PE|,PEy,
PEg,PEs,PE; >) for tass. Note that mtass, = (<vi,v3,
va,v4,vs >,< PE|,PEs,PEs,PE4,PE3 >) is not a mapped
TAS solution generated from tass, since v; and vs are not
mapped to the same PE. Under the execution time and power
variations coupled with the energy and thermal constraints, it
is difficult for existing approaches to determine which mapped
TAS solution (mtass; or mtass,) has a better performance
yield. Furthermore, it is a major challenge to answer whether
mtass| or mtassy has the highest performance yield among all

the feasible mapped TAS solutions for the given task graph
and MPSoC platform.

4.2 Our Framework

Figure 3 presents our proposed UPPAAL-SMC-based TAS
evaluation and optimization framework. Based on the MPSoC
design information (i.e., a task graph with task execution
information and the specification of the adopted MPSoC
platform) and the TAS strategy, our framework can generate
one TAS solution and figure out all the corresponding mapped
TAS solutions. By combining the power model, thermal model
and platform variation information of the MPSoC design,
our framework automatically transforms the mapped TAS
instances into corresponding executable NPTA models. Mean-
while, the specified design constraints can be converted to
properties to enable the quantitative evaluation of the mapped
TAS instances. By checking the generated NPTA models and
properties using the UPPAAL-SMC model checker, we can
compare among the mapped TAS solutions. For the purpose
of optimization, it is required to evaluate all the possible
mapped TAS solutions, which is time-consuming. To reduce
the optimization time, our framework employs the regression
analysis that only needs to check a small subset of the sampled
mapped TAS solutions. By using the Back Propagation Neural
Network (BPNN)-based approach [33] on the evaluated NPTA
models in the regression set, we can predict and rank the
performance yield of the remaining NPTA models in the
prediction set. Finally, the selected top-ranking NPTA models
will be evaluated using UPPAAL-SMC to validate the pre-
diction results. Since only a small part of the mapped TAS
solutions are evaluated, the overall TAS optimization time
can be significantly reduced. The following sub-sections will
describe the major components of our framework in detail.

4.3 NPTA Model Generation

Aiming at evaluating mapped TAS instances using SMC, we
need to first covert the mapped TAS instances into executable
NPTA models. In our approach, we adopt six kinds of PTAs:
task, PE, power monitor, temperature monitor, hotspot mon-
itor, and hotspot timer. The task PTA models the execution
of a single task. The PE PTA presents the behavior of a
single PE dealing with multiple assigned tasks. The power
monitor, hotspot monitor and hotspot timer PTAs monitor the
power usage and overheating time of the whole chip, while
the temperature monitor models the temperature change for a
single PE. To facilitate the model construction, we decouple
an NPTA model for MPSoC designs into two parts: i) front-
end models which describe the common behaviors of MPSoC
designs, and ii) back-end configuration which consists of
necessary data structures (e.g., thermal models, task graph
DAG, variation information, synchronization, etc.) to guide the
stochastic simulation for the specified TAS solution. Note that
in our approach, all TAS solutions share the same front-end
models. To simplify the model and property generation, we
introduce a dummy task (i.e., a task whose execution time is
0) with tid = 0 to merge all the tasks without any successors.
In our approach, we assume that there are 7+ 1 tasks (with
tid € [0,T]) and P PEs (with pid € [0,P — 1]).
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Fig. 3. Our TAS strategy evaluation and optimization framework

4.3.1 Back-end Configuration Generation

According to the semantics of the task graph, a task can be
executed only when its precedent tasks are all completed.
As an example shown in Figure 2, for mtassy, task v4 can
start execution only when both of its predecessors v and v,
are finished. To model the concurrent execution of tasks, we
adopt a precedence matrix PM[T+1][T+1] to indicate the task
precedence relations (indicated by both the elements of the
2-tuple tassy as defined in Section 4.1), where PM[i][j]=1
indicates that task v; can start its execution immediately when
task v; is finished. Note that besides the task precedence
relations posed by the edges of a task graph, PM also contains
the task precedence relations derived during the task allocation
and scheduling. For example, assume that <...,v;,...,vj,...>
is a schedule sequence, where v; and v; are parallel tasks, i.e.,
there is no path from v; to v; in the task graph. If v; and v;
are mapped to the same PE, we need to set PM[i][j] to 1.
Based on this precedence matrix, each task should be aware
of the status of its predecessors and successors. In our back-
end configuration, we define two arrays pre_count[T+1] and
post_count[T+1] to denote the number of predecessors and
successors for each task. Both arrays are initialized based on
the precedence matrix.

To model the variation information of MPSoC platforms, we
use two multi-dimensional arrays tvar and pvar in the back-
end configuration to specify the distributions of execution time
and power consumption for each PE. Note that our framework
supports a wide range of widely used distribution models
which facilitate the modeling of time and power variations.
For example, if designers select the Gaussian distribution to
model the power consumption variation, a two dimensional
array pvar[T+1][2] will be used to specify the mean value
and standard deviation of power for each PE. Based on
such distribution information, the arrays real_time[T+1] and
real_power[P] in the back-end configuration will be initialized
to denote the real execution time for each task and the real
power for each PE at the beginning of simulation.

Due to the correlation between the power and temperature
of PEs as introduced in Section 3, to accurately model the

TAS execution, our approach allows the RC modeling as
presented in Section 3. In the back-end configurations, we
use two matrices R[P][P] and C[P][P] to denote the thermal
resistance matrix and thermal capacitance matrix with constant
coefficients, respectively. Both matrices can be either obtained
from MPSoC producers or generated by floorplanning tools.
To enable the PTA synchronization, our framework adopts
the messages of different types to conduct the synchronization
for specific purposes. For example, in our approach, task PTAs,
PE PTAs, and the power PTA can only accept messages of type
msg_task_t, msg_proc_t and msg_power_t, respectively. For
the communication between task PTAs, the back-end configu-
ration contains a broadcast channel array ¢_notify[T+1], where
t_notify[i] indicates a private channel for the i"" task to receive
notifications from predecessor tasks. With respect to task allo-
cation, the array assignp[T+1] in the back-end configuration
is used to indicate the floorplan-aware task-to-PE mapping
relation (i.e., the PE mapping function defined in Section 4.1),
and the broadcast channel array assign_proc[(T + 1) x (P)]
is used to enable the dispatching of tasks to PEs, where the
channel assign_proc[e] is used to assign a task with rid = e¢/P
to a PE with pid = e¢%P. When a PE finds that the current task
v; finishes its execution, the PE will notify v; via its private
channel pr_notify|[j] about its completion. To model the real-
time power of MPSoC designs, the back-end configuration
consists of two channel arrays requestP[P] and freeP[P]
which can dynamically update the power consumption status
of currently running PEs. Since each PE has an associated
temperature monitor, to enable the switch of monitoring states,
PE p; needs to send notification messages via the channels
m_task_start[i] and m_task_finish[i]. The back-end configura-
tion also defines four urgent channels (temp_high, temp_lower,
hotspot_timing_start, hotspot_timing_stop), which can trigger
transitions immediately when their associated guards satisfy.

4.3.2 Front-end Configuration Generation

Based on the global data structures defined in the back-end
configuration, the front-end models can be instantiated to
enable the stochastic simulation. According to the semantics
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of task graphs, all the tasks have the same behavior pattern.
Therefore, we only need to construct one task PTA model
for all the tasks. Figure 4 presents the details of the task
PTA. The Init state initializes the data structures of the whole
NPTA. For example, based on the precedence matrix PM, we
can figure out the successor tasks (saved in the local array
post_tasks[T+1]) and the count of predecessor and successor
tasks of the current task (denoted by local variables pre_num
and post_num). Init state also sets the real execution time
for each task and the real power consumption for each PE
with the randomly generated values based on the specified
distribution information. The Receiving state tries to receive
the notifications from all its predecessors. As soon as all
the predecessors are finished (i.e., pre_num =0), the Running
state will dispatch the task to the PE with pid = assignp|tid].
After receiving the execution completion notification from the
PE via channel pt_notify[tid] as shown in the Finish state,
the Sending state tries to notify all its successors saved in
post_tasks about the completion of the current task.

Init Ready pre_num > 0 Recieving
© ©)
initialize() ¢’
e :msg_task_t
pre_num ==0 pre_n task_finished(e)
t_notify[e]?
pre_num--

Begin @
pre_num ==0
assign_proc[proc_ms
(tid, assignp[tid])]!

Runnin()

e :msg_task_t
pe_finished(e)
pt_notify[e]?

Finish@/

Fig. 4. Front-end model of a task

t_notify[post_tasks

[post_num - 1]]!

post um-- Sending

PEs have the same behavior pattern as shown in Figure 5. In
our approach, each PE has a task queue to keep the ready tasks
in the dispatching order. The PE PTA model consists of three
major states. The Waiting state tries to receive new tasks when
its task queue is empty. Before entering the Running state,
the PE will notify the power monitor to update the overall
power via channel request_p[pid] and notify its temperature
monitor to switch its temperature changing mode via the
channel m_task_start[pid]. In the Running state, the PE will
choose task v, at the head of the queue for execution and
the execution time is saved in real_time[x] which follows the
specified distribution. When task v, completes its execution
(indicated by the Finish state), the PE will notify v, about its
completion, and notify its power and temperature monitors to
conduct the corresponding state switch.

The power monitor is created to monitor the overall real-
time power and accumulated energy consumption for TAS
solutions. As shown in Figure 6, the model has two states. The
Handling state deals with the requests form PEs for increasing
or decreasing the power. The Waiting state waits for new power
requests and records the accumulated consumed energy. It is

e :msg_proc_t e :msg_proc_t

t_assign(e) t_assign(e)
assign_procle]? assign_proc[e]?
enqueue(e) enqueue(e)
m_task_finish[pid]! ®

Finish  t >= real_exec_time()
pt_notify[finish_msg()]|
ree_p[pid]! dequeue()

t <= real_exec_time()

lqueue_empty() Running

request_p[pid]! ()
t = 0, start_task()

Start

m_task_start[pid]!

e:msg_proc_t e:msg_proc_t e :msg_proc_t e :msg_proc_t

t_assign(e) t_assign(e) t_assign(e) t_assign(e)
assign_proc[e]? assign_proc[e]? assign_procle]? assign_proc[e]?
enqueue(e) enqueue(e) enqueue(e) enqueue(e)

Fig. 5. Front-end model of a PE

important to note that, due to the correlation between the PE
temperature and power, we use the function power_update() to
periodically update the overall power of all the PEs by using
the formula presented in Equation (1). The value of the latest
overall power is saved in current_power.

e : msg_power_t e : msg_power_t t>=0.1
request_p[e]? request_p[e]? p_update!
p_alloc(e) t=0,

power_update()

energy' ==
current_power

e : msg_power_t
free_ple]?
p_free(e)

e : msg_power_t
free_pl[e]?
p_free(e)

Fig. 6. Front-end model of the power and energy monitor

During the simulation of TAS solutions, the temperature
of different PEs is different. In order to reflect the real-
time temperature for each PE, we adopt the PTA shown in
Figure 7 for each PE. The model has two states (P_idle and
P_running) which indicates whether there is a task running
on the PE. When calculating the temperature, the P_idle state
only considers the leakage power, while the P_running state
takes both dynamic and leakage power into account. The
temperature rate functions temp_idle() and temp_running() are
created based on the formulas presented in Equation (2).

m_task_start[pid]?

P_idle P_running
Tlpidr' == Tlpid] ==
temp_idle()

temp_running()

m_task_finish[pid]?

Fig. 7. Front-end model of the temperature monitor

When evaluating MPSoC temperature, hotspot is an im-
portant factor which contributes to the system reliability and
cooling cost. Based on the PTAs shown in Figure 8, our
approach supports the quantitative analysis of hotspot features.
For each PE, we adopt a PTA shown in Figure 8(a) to
indicate whether the temperature of current PE p,;; exceeds
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the threshold temperature, i.e., T_threshold. For the overall
MPSoC design, we use one hotspot monitor to record the up-
to-date overheating time T},orspo: () as defined in Section 4.1.

T[pid] >=T_threshold

temp_higher!
hot_num++
T_lower T_higher,
T[pid] <= T_threshold
temp_lower!

hot_num--

hot num!=0
hotspot_timing_start!
hptspot_time' ==
Timing_stop Timing_start

hotspot_time' =91
hot num==0
hotspot_timing_stop!

(a) Hotspot Monitor (b) Hotspot Timer

Fig. 8. Front-end models for hotspot

4.4 Property Generation

To compare the performance yield of generated NPTA models
considering the temperature and power constraints, we assume
that MPSoC designers would like to figure out the problems
like “what is the probability such that the task graph can
be completed under the hotspot time constraint x and energy
constraint 'y within time z?” or “given a certain amount
of energy/hotspot time x, what is the probability a specific
task graph can be completed under the time constraint y
and hotspot time/energy constraint z?”. In our framework,
the above queries can be automatically converted using the
following property templates:

o Pr[<=z] (<> T(0).End && hotspot_time<x &&
energy<=y)
o Prlenergy<=x] (<> T(0).End && hotspot_time<=z
&& time<=y)
o Pr[hotspot_time<=x] (<> T(0).End && energy<=z
&& time<=y)
Here, T(0).End denotes the completion of the task graph,
time means the overall elapsed time, hotspot_time indicates
the overheating time, and energy represents the overall energy
consumption. Based on the monitoring of a large number
of stochastic simulation runs, UPPAAL-SMC will report the
probability distribution of successful simulations after the
check finishes. Such information can be used to evaluate the
performance of TAS solutions.

4.5 TAS Optimization

Since our approach focuses on the evaluation and optimization
of task allocation and scheduling under thermal and energy
constraints, we need to consider the underlying MPSoC floor-
plans and corresponding task-to-PE mappings. After figuring
out a feasible TAS solution for a given task graph and resource
constraints using existing TAS heuristics (e.g., BULB [36],
list scheduling [37]), our TAS optimization tries to figure out
a task-to-PE mapping (i.e., PE mapping function) that can
lead to the highest performance yield for the TAS solution.
To quickly explore such an optimal result, our approach
adopts BPNN [33] as the TAS optimization engine as shown
in Figure 3. The reason why we choose BPNN to perform
regression analysis and prediction of performance yield is
because BPNN outperforms other popular regression models

when reasoning the performance metrics of variation-aware
models [14]. It needs less regression model generation time
but still can achieve the expected prediction accuracy. It
is important to note that BPNN is not the only option to
perform the regression. In fact, other regression methods (e.g.,
Support Vector Regression [34], M5 Model Tree) can be easily
integrated into our framework for the TAS optimization.

Algorithm 1: Our TAS optimization approach

Input: i) A TAS solution ras;
ii) A floorplan of the MPSoC platform fp;
iii) The performance query prop;
Output: An optimized mapped TAS solution with best possible
performance
TASOptimization(ras, fp) begin
: {FPy,...,FP,} = FloorPlanFuncGen(fp);
: TAS = {tasy, ... tasy} = {FP(tas),...,FP,(tas)};
: FV ={fvi,...,fvn} = Characterization(TAS);
: (Reg,Pre) = Sampling(TAS,FV);
: max_py =0, best_tas = 0;
: reg_result = {}, pre_result ={};
for each (tas, fv) pair in Reg do
7: model = NPTAGen(tas);
8: py = SMC(model, prop);
9: best_tas = max_py > py ? best_tas :
8: max_py = MAX (max_py, py);
10: reg_result = reg_result\J(tas, fv, py);

QAU BA W -

tas;

end
11: predictor = Regression(reg_result);
for each (tas, fv) pair in Pre do

2:

pre_result = pre_result\J(tas, fv, predictor((tas, fv)));
end
13: ranked_tas = Rank(pre_result);
14: sel_tas = Select(ranked_tas);
while sel_ras.empty() == FALSE do
15: tas’ = sel_tas.deque();
16: temp_py = SMC(NPTAGen(tas'), prop);
if temp_py > max_py then
17: best_tas = tas’;
18: max_py = temp_py;
end
end
19: Return (best_tas,max_py);

end

Algorithm 1 outlines the major steps in our TAS opti-
mization approach. For a given floorplan, step 1 enumerates
all possible PE mapping functions. Based on these mapping
functions, we can obtain all the mapped TAS solutions for
a given unmapped TAS solution in step 2. By extracting the
feature vectors of the mapped TAS solutions in step 3, step
4 conducts the sampling to split the mapped TAS solutions
into two separate sets, i.e., the regression set (dented by
Reg) and prediction set (denoted by Pre). The regression
set is used to generate the regression model, which can be
used to predict the performance yield for the mapped TAS
solutions in the prediction set. Steps 5 initializes the best
mapped TAS solution and its performance yield, while steps
6 initializes the regression and prediction results. Steps 7-10
evaluate the mapped TAS solutions in the regression set one by
one and save the evaluation results in reg_result. Meanwhile,
the best mapped TAS solution as well as its performance
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yield are saved in best_tas and max_py, respectively. Based
on the evaluation results of the TAS solutions in regression
set, step 11 generates the regression model, which is used to
predict the performance yield for the mapped TAS solutions
in the prediction set as shown in step 12. Step 13 sorts the
mapped TAS solutions with regard to their performance yield
in a descending order. Step 14 selects three mapped TAS
solutions with the highest predicted performance yield from
the prediction set. Steps 15 and 16 re-evaluate these selected
solutions using the UPPAAL-SMC. If a solution is found
to be better than the best solution searched so far, steps 17
and 18 will record this solution as the new best solution.
Finally, step 19 reports the optimized mapped TAS solution
with the best possible performance yield under the power and
temperature constraints. Note that feature selection (step 3)
and sampling (step 4) are two key steps in our approach, since
they determine the accuracy of the prediction. The following
subsections will describe these two steps in detail.

4.5.1

To guarantee the accuracy of prediction, it is required to
figure out the features which can significantly reflect the
performance of the mapped TAS solutions. Since our approach
focuses on finding PE mapping function for a TAS solution to
achieve the highest performance yield, based on the criteria
of significance, independence and diversity, our approach
investigates the following two kinds of features of each PE for
the given floorplan and TAS solution: i) the physical attributes
of PE p; (i.e., R;; and C; in the RC model [35] as defined in
Section 3.2); and ii) the task to PE mapping information. Due
to the same task dispatching order and same mapped PE types
for all the mapped TAS solutions, we do not consider the task
dependence relation and the PE variation information in the
feature selection. For a mapped TAS solution, there may be
multiple tasks allocated to the same PE. To simplify the feature
representation, we use the following encoding to denote the
tasks assigned to the PE p;:

Feature Selection for TAS Solutions

Mi:i(xi7j><2j) (3)
j=1

where X;; = 1 indicates that task v; is allocated to the PE
pi., and O otherwise. As an example shown in Figure 2, the
TAS solution mtass; has two tasks (i.e., v and vs) assigned
to PE;. Therefore, we can get M| =1 x 2141 %25 =34 for
PE;. To calculate the overall running time of a PE, we use
the following formula:

n

Ti=Y (Xijx ET(v;,Tre(pi))) S

Jj=1

which indicates the accumulated running time of tasks on PE
pi. For the example of mrass;, wecan get Ty = 1 x3+1x9=
12, since the overall nominal running time of tasks v; and vs
in Figure 2(a) is 12.

In the feature vector, each PE p; is represented by a 4-tuple
in the form of (R;;,C;,M;,T;). If there are p PEs in the MPSoC
design, the feature vector will contain p such 4-tuples. As an

example shown in Figure 2, assuming that mrass| needs to be
characterized, the following shows its feature vector.

<(19.5,0.2,34,12), (2.15,0.25,0,0), (19.5,0.2,0,0),
(19,0.22,4,10), (19,0.22,16,8), (20.2,0.24,8,3),
(20.7,0.27,0,0), (20.2,0.24,0,0) >

4.5.2 TAS Solution Sampling

The goal of sampling is to collect a set of feasible mapped TAS
solutions for the regression model generation. To avoid biased
prediction, such a set should be as representative as possible.
If all the sampled TAS solutions have the same performance
yield value, the prediction will be inaccurate. Therefore, it
is required that the sampled TAS solutions should be evenly
distributed in the whole solution space. Since we focus on
TAS optimization, some observable TAS solutions with high
performance yield should be included in the regression set.
To achieve these two goals, our approach employs a hybrid
sampling method with two strategies. In the first strategy, we
uniformly sample the TAS solutions that are sorted based
on their generation order. Assuming that there are m TAS
solutions in total sorted based on its generation order, and
n TAS solutions to be sampled, we may conduct the sampling
by choosing every other [m/n] TAS solutions. The second
strategy tries to sample as many TAS solutions with high
performance yield as possible. Since allocating tasks to PEs
that are close to the die center can easily result in hotspots,
to avoid such scenarios, our approach assigns each PE with a
bonus coefficient which encourages allocating tasks to border
PEs. The PEs on the die border have higher bonus, while
the PEs far away from the die border have lower bonus.
Assuming that (< vei,...,Vxn >, < PEcy,...,PE., >) is a
mapped TAS solution, its overall bonus can be calculated
using the formula Y7 | ET (vy;, Tpe (PEy;)) * Bonus(PEy ;). As
an example shown in Figure 2, assuming that Bonus is
a binary relation {(PE;,0.8), (PE»,0.5),(PE3,0.8),(PE4,0.6),
(PEs,0.6),(PEg,0.7), (PE7,0.4),(PEg, 0.7)}, mtass) has a bonus
of 3x0.8410x0.64+3x0.74+8x0.6+9x0.8=22.5. By
using this strategy, if there are n TAS solutions to be sampled,
the n ones with highest bonus values will be sampled.

Note that both sampling strategies have their own strengths.
For the first strategy, it can be used to obtain TAS solutions
with different performance yields. For the second strategy that
selects TAS solutions with highest bonus, the performance
yields of the samples are quite similar. However, from their
feature vectors, the regression analysis process can effectively
learn why the performance yield is high. To guarantee the
prediction accuracy, our approach employs a hybrid approach
that combines the advantages of above two sampling strategies.
By default, the hybrid sampling approach generates the same
number of TAS solutions for the two different sampling
approaches. It also allows designers to specify their own
proportion for samples with different strategies.

5 CASE STuDY
5.1 Experiment Setup

This section presents the experimental results on a synthetic
example using our proposed framework. In this example, we
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model the dynamic power consumption of PEs using the
method presented in [35], and the static power consumption
of PEs using the approach provided by [31]. We adopted the
UPPAAL-SMC (version 4.1.19 with parameters € = 0.05, ou =
0.05) as the engine of variation-aware TAS solution evaluation.
We used the built-in BPNN tool from MATLAB to generate
the regression model (with a setting of 50 neurons in hidden
layer, MSE = 0.001, and a maximum of 50 epoch iterations)?.
For the BPNN regression model generation, we employed the
training function scaled conjugate gradient backpropogation
to update weight and bias values. We used the tan-sigmoid
transfer function in the hidden layer which generates outputs
between -1 and 1. In the output layer, we used the log-sigmoid
transfer function which generates outputs between 0 and 1
indicating the value of performance yields. We implemented
the remaining components of our framework including the
TAS solution generation heuristics, TAS to NPTA converter,
property generator and TAS optimization procedure using the
C programming language. For TAS solution generation, our
framework supports three heuristics (i.e., BULB [36], list
scheduling [37], and PVTS [11]) that can efficiently achieve
feasible TAS solutions. In this experiment, we set the supply
voltage of PEs to 1.1V, the ambient temperature to 35°C, and
the temperature of thermal emergency (i.e., hotspot) to 85°C.
All the experiments were conducted on Linux desktops with
4.0GHz CPU and 8 GB RAM.

TABLE 1
Power and Time Variations for MPSoC PEs

Ty Exec. Time Variation
N(y, (0.05y)%)
N(. (0.07y)7)

N(y, (0.10y)%)

e | Power Variation
A N(x, (0.10x)%)
B N(x, (0.13x)%)
C N(x, (0.15x)%)

s=]

By using the open source tool TGFF [38] which is designed
to generate pseudo-random task-graphs, we obtained a 22-
node task graph with a maximum input degree of 3 and a
maximum output degree of 2. Beside ID information, each task
node is assigned with its corresponding PE type and execution
time information. Note that the execution time variations of
all the tasks follow the distributions for PEs as specified in
Table 1. For example, if the expected execution time of a task
v running on PEs of type A is 10 time units, its execution
time will follow the Gaussian distribution N(10,0.5%), since
the execution time of PEs of type A follows the Gaussian
distribution N(y, (0.05y)?).

In the experiment, we assumed that the target MPSoC
platform consists of 12 PEs, including 5 PEs of type A, 2 PEs
of type B and 5 PEs of type C. To demonstrate the evaluation
capability of our approach, we investigated the performance

2. In this example, we used the MATLAB BPNN tool which has only one
hidden layer by default. Based on the Kolmogorov’s theorem [30], we found
that 50 neurons can effectively generate an accurate regression model with
under the constraint of Mean Square Error (MSE). We set the maximum
number of epoch iterations to 50 in this example, and our approach can find
the regression model within 50 epoch iterations. Note that if within 50 epoch
iterations we cannot obtain a regression model satisfying the given constraints,
we need to increase the maximum number of iterations or tune the other
parameters (e.g., increasing the number of hidden neurons) until a satisfying
regression model is found.

yield of the same TAS solution under different architecture. We
conducted the experiment based on two architectures with the
different floorplans (i.e., MPS0C(5,5,2) and MPSoC(5,2,5)) as
shown in Figure 9. Due to the different floorplan layouts, the
RC models of these two MPSoC platforms are quite different,
which will inevitably affect the evaluation results. For each of
above floorplan, there exists 5! x 2! x 5! =28800 different PE
mapping functions. In other words, for a given TAS solution,
there are 28800 different mapped TAS solutions. Note that
both the floorplans shown in Figure 9 have a symmetric
structure. If we want to figure out the best solution for a
TAS problem under variations, we only need to evaluate
28800/2 = 14400 mapped TAS solutions.

Al | A2 A3 [ A4 | A5 Al | A2 A3 | A4 | AS
B1 B2 Cl|C2|C3|[cC4|C5
Cl|C2|C3|C4|C5 B1 B2

(a) MPSoC(5,2,5) (b) MPSoC(5,5,2)

Fig. 9. Two MPSoC floorplans

Similar to the work presented in [11], [27], we assume that
the task execution time and power consumption follow the
Gaussian distribution as presented in Table 1. For example,
the power of type A PE follows the Gaussian distribution
N(x, (0.10x)?), where x indicates the real time power (leakage
power + dynamic power) of the PEs of type A. For example,
if the current power of the PE is 10, its real power value at the
same time will follow the Gaussian distribution N(10, (1)?).
The execution time of PEs of type A follows the Gaussian
distribution N(y, (0.05y)?), where y denotes the expected
execution time of a task that can be executed on the PEs of
type A. For instance, if the mean execution time of a task
allocated to some PE of type A is 15, its execution time will
follow the Gaussian distribution N(15,0.75%). It is important to
note that, since our framework offers a large set of distribution
models and comprehensive programming constructs, it allows
accurate modeling of variations and correlations of PEs.

5.2 Time-Oriented Evaluation and Optimization

Assume that we want to achieve a TAS solution that can
meet the design constraints such that “with an energy quota
of 12000 Joules, the task graph can be finished within 180
seconds while the max power cannot exceed 82 Watts and the
overheating time cannot be longer than 60 seconds”. Based on
the given power and functional unit constraints, we generated
three TAS solutions based on the following three strategies,
respectively: 1) the BULB [36] which is a power-constrained
time minimization method for task allocation and scheduling,
ii) list scheduling method (denoted by List) [37] which is a
promising heuristic to quickly find a near-optimal TAS solu-
tion, and iii) process variation-aware task scheduling approach
(denoted by PVTS) proposed in [11] which can effectively
find near-optimal TAS solutions with highest performance
yield. Note that neither BULB nor List takes the performance
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Fig. 11. Time oriented evaluation results for (5,5,2)

variations into account during the search of optimal TAS so-
lutions. Unlike BULB and List, PVTS adopts a list scheduling
like approach based on dynamic priorities calculated from
unscheduled tasks with uncertain delays. For each obtained
TAS solution with a given floorplan, we generated 14400
mapped TAS solutions. By using our developed tools, all
these mapped TAS solutions can be automatically converted to
NPTA models, and the design constraints can be automatically
transformed to the properties. To enable the TAS optimization,
we sampled 100 mapped TAS solutions in total (50 by using
the first sampling strategy and 50 by using the second sampling
strategy) to construct the regression set. Since the whole
process including the mapped TAS solution generation, NPTA
model/property generation and TAS solution sampling costs
less than 3 seconds, compared with the TAS evaluation time,
such time can be neglected.

Assuming that we want to check the performance yield
from the perspective of completion time, we can use the
property Pr [<=180](<> T(0).End && energy<=12000
&& max_power<=82 && hotspot_time<=60). Based on
the two given floorplans, Figure 10 and Figure 11 show
the evaluation results of the different mapped TAS solutions
generated by the approaches BULB, List and PVTS. Here,
each figure has four sub-figures. While the first three sub-
figures compare the performance of different mapped TAS
solutions for the same strategy, the last sub-figure compares
the best performance of the mapped TAS solutions for different
strategies. In these figures, original denotes the TAS solution
with the first generated PE mapping function, while manual
indicates that the PE mapping is provided manually by some
experienced MPSoC designer. The optimized PE mapping is
produced by using our TAS optimization approach. Note that
an optimized PE mapping does not mean the real “global
optimal” mapping which can achieve the highest performance
yield. This is because our approach relies on the perfor-
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mance yield prediction using regression analysis rather than
evaluating all the TAS solutions. It can be observed that
our approach can visually reflect the relations between
performance yield and response time for the given query.

From Figure 10 we can observe that the performance
yield of all the BULB-based TAS solutions are better than
the performance yield of all the list scheduling-based TAS
solutions. Furthermore, from both figures we can find that in
the first three sub-figures the optimized mapped TAS solutions
generated by our approach achieve the best performance yield
compared with its counterparts produced by the same TAS
strategy. Especially, in Figure 11(a) , by using our optimiza-
tion approach we can obtain a significant improvement of
the solution BULB optimized (with a performance yield of
0.91) over the solution BULB original (with a performance
yield of 0.60). The similar trend can also be observed in
Figure 11(c). From Figure 10(d) and Figure 11(d) we can
find that the mapped TAS solutions generated by both the
BULB strategy and our optimization approach can achieve
the highest performance yield. This is because that the TAS
solutions generated by BULB have the smallest response time
under specified design constraints. Unlike List and PVTS,
the SMC simulation failures against the query in this case
is mainly due to the violation of the expression part of
the query (i.e., <> T(0).End && energy<=12000 &&
max_power<=382 && hotspot_time<=60) rather than the
time bound (i.e., [<=180]). By using our optimization
approach, the tasks are more likely to be allocated to colder
PEs with few neighbour tasks, which drastically reduces
the chance of performance query violations. Consequently,
the best performance yield can be achieved. Interestingly,
in Figure 11(d) the mapped TAS instances BULB optimized
and PVTS optimized achieve similar performance yield at time
1. However, designers may prefer PVTS optimized, since its
average response time is smaller.
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Fig. 13. Energy oriented evaluation results for (5,5,2)

To justify the efficacy of our proposed approach, we con-
ducted the full search for the “real” optimal solutions. Due to
the limited time and computer resources, we only investigated
the case of BULB strategy with the floorplan (5,5,2) (i.e.,
the case shown in Figure 11(a)) by checking all the 14400
mapped TAS solutions. It is important to note that the average
evaluation time of a single mapped TAS solution against
the above property needs around one hour. To accelerate the
optimization process, we used four machines with 4 cores each
for the parallel evaluation. We spent around one month to
achieve the “real” optimal mapped TAS solution. In this case,
we found that the “real” optimal solution is the same as the
solution obtained using our approach, which only required 7
hours with the same setting.

TABLE 2

Comparison of Different Regression Methods
SMC Regression | Reg. Pred. Pred. Real
Time Method Time Time Value | Value
e-SVR <1 <1 0.980 | 0.928
BULB || 8859 BPNN ~T [ <71 [ 0933 [ 0937
) e-SVR <1 <1 0.766 | 0.770
List 1] 15433 |\ —ppNN <1 [ <1 [[ 0802 [ 0.799
e-SVR <1 <1 0.992 | 0.901
PVTS || 7417 BPNN ~T [ <71 ([ 0947 [ 0921

To show the effectiveness of our regression analysis based
approach using BPNN, we performed the optimization for
the three TAS strategies with floorplan (5,5,2) using the
well established regression tool e-SVR from the SVM library
LIBSVM [34]. For the regression model generation in &-
SVR, we adopted the Radial Basis Function (RBF) kernel
to enable the non-linear regression for the training set, and
employed a 10-fold cross validation. To enable the prediction
of performance yield, we scaled the output of the regression
which can generate an output value between 0 and 1. Table 2
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shows the comparison results of the two regression methods.
In this table, column 1 denotes the name of TAS strategies.
Column 2 gives the SMC time (in minutes) for checking
the 100 mapped TAS solutions in the regression set. While
column 3 indicates the two regression methods, columns 4
and 5 present the time (in seconds) for regression model
generation and performance yield prediction, respectively. The
last two columns shows the predicted value and real value for
the best mapped TAS solution obtained using Algorithm 1.
From this table, we can find that both regression methods
can quickly (< I second) find an optimized mapped TAS
solution. Especially, in this experiment we can find that the
regression models generated by BPNN outperforms the ones
generated by €-SVR, since they can find the mapped TAS
solutions with the highest real performance yield in all the
three cases. Furthermore, we can observe that BPNN can
achieve a smaller difference between predicted value and real
value of performance variations. In other words, the prediction
based on BPNN regression is more accurate.

5.3 Hotspot time and Energy Oriented Evaluation

Since the MPSoC platform with layout (5,5,2) can achieve the
best performance yield under the specified design constraints,
based on this architecture we conducted the further hotspot
time and energy-oriented analysis. Hotspot time indicates the
overheating time of a given MPSoC platform, which strongly
affects the reliability and cooling cost of the designed chips.
Therefore, it is required that the hotspot time should be as short
as possible. To further analyze the overheating time of the
achieved mapped TAS solutions as shown in Figure 11, we re-
evaluated the same mapped TAS solutions against the property
Pr [hotspot_time<=60](<> T(0).End && energy<=12000
&& max_power<=385). Figure 12 shows the evaluation re-
sults. It is important to note that Figure 11 shows the cu-
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mulative probability distribution, while Figure 12 shows the
distribution of the probability density. From Figure 12, we can
find that the optimized mapped TAS solutions may not achieve
the least overheating time. For example, in Figure 12(b), the
List optimized has the largest hotspot time. This is because
that the optimized mapped TAS solutions derived in Figure 11
focus on the optimization of the response time. It only requires
the hotspot time constraint to be satisfied for the mapped TAS
solutions. From the four sub-figures in Figure 12, we can
observe that the solution PVTS optimized has the lowest chance
to be overheated, though its performance yield is slightly lower
than BULB optimized (as shown in Figure 11(d)). Compared
with the solution BULB optimized which has the highest
chance to have a hotspot time of 35 seconds, the solution PVTS
optimized has a lower chance (i.e., 22 seconds at its peak) to
be overheated under variations. In this case, designers may
prefer the mapped TAS solution PVTS optimized, since it has
a higher reliability and needs less cooling cost.

Similarly, we performed the energy oriented evalua-
tion for the design MPSoC(5,5,2) using the property Pr
[energy<=12000] (<> T(0).End && hotspot_time<=60
&& max_power<=85). Figure 13 shows the analysis results.
Note that Figure 13(d) does not reflect the optimized solutions
for the purpose of saving energy. Interestingly, in Figure 13(a)
we can find that although the mapped TAS solution BULB op-
timized can achieve the highest performance yield, its MPSoC
chips which meet the design constraint have a higher chance
to consume more energy than the mapped TAS solutions
BULB List and BULB manual. If designers care for the energy
consumption much more than the performance yield, they
would like to choose the mapped TAS solution BULB manual.

6 CONCLUSION AND FUTURE WORK

To fully exploit the capabilities of heterogeneous hardware
and software resources, MPSoC chips have been increasingly
embedded in cyber-physical systems. While more and more
PEs are integrated on a die to achieve better performance,
drastically increasing energy consumption and performance
variations are becoming two key challenges in MPSoC de-
sign, which make cyber-physical systems unsustainable and
unreliable. To address these challenges, this paper proposes
an efficient energy- and thermal-aware evaluation and opti-
mization approach for MPSoC TAS. Based on statistical model
checking, our framework enables automated evaluation of var-
ious complex queries to quantitatively reason the performance
of TAS solutions. To reduce the overall optimization efforts,
our framework employs the regression analysis to quickly
explore TAS solutions with near optimal performance yield
considering both temperature and energy constraints. Com-
prehensive experimental results demonstrate the effectiveness
of our approach.

In our approach, the execution of UPPAAL-SMC is based
on the underlying simulation engine using statistical methods.
From our experiments, we can find that for complex MPSoC
TAS problems the evaluation of a single mapped TAS instance
under variations requires a long simulation time. To address
this problem, in future we plan to incorporate the state

space reduction techniques (e.g., model slicing and model
abstraction) in our approach, which may improve the overall
evaluation and optimization time of our approach.
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