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ABSTRACT

Thispaperdescribesmethodsforevaluatingautomaticspeech
recognition(ASR)systemsincomparisonwithhumanper-
ceptionresults,usingmeasuresderivedfromlinguisticdis-
tinctivefeatures.Errorpatternsintermsofmanner,placeand
voicingarepresented,alongwithanexaminationofconfusion
matricesviaadistinctive-feature-distancemetric.Theseeval-
uationmethodscontrastwithconventionalperformancecrite-
riathatfocusonthephoneorwordlevel,andareintendedto
provideamoredetailedprofileofASRsystemperformance,
aswellasameansfordirectcomparisonwithhumanpercep-
tionresultsatthesub-phonemiclevel.

IndexTerms— performanceevaluation,errorpatterns,
confusionmatrices,distinctive-feature-distancemetric

1.INTRODUCTION

Conventionalautomaticspeechrecognition(ASR)systems
modelandevaluatethespeechrecognitionprocessasfol-
lows.Acousticmeasurementscanbeexpressedasasequence
X ={x1,x2,...,xt,...,xT},andthetruewordsequenceas
W = {w1,w2,,wn,,wN},sothattheoptimumestimated

sequenceisW =argmaxP(W|X),ormoregenerally,with

ascoringfunction,S(W,X)=>W =argmaxP(W|X).

InordertocomparethedifferencebetweenW andW ,the
mostcommonlyusedevaluationmeasureistheworderror
rate(WER)[1].Thegeneralformofanerrorrateisgivenby
errorrate=(deletions+insertions+substitutions)/(entries),
andaccuracyis(1errorrate).Fordifferentrecognitiontasks,
otherevaluationmeasurescanbeapplied.Forbinaryclassi-
ficationapplications,suchaskeywordspotting,theF-score
maybeused,whichiscalculatedastheharmonicmeanofthe
precisionandrecall.Toevaluatethewordaccuracyoftransla-
tionfromonelanguagetoanother,theBLEU(BilingualEval-
uationUnderstudy)methodusesthecorrespondenceofthe
translationbetweenthemachineandhumans,andrequires
wordboundaries.Similarly,theROUGEmethodevaluates
wordaccuracybycomparingthetranslationfromamachine
toahuman-producedsummary[2][3].

Acommoncharacteristicoftheevaluationmethodsmen-
tionedaboveisthatthemetricsarerelatedtoword-level
matches. Adrawbackofevaluationmeasuresattheword
levelisthattheycaptureoverallsystemperformance,com-
biningtheresultsofacousticandlanguagemodels.Asimple
waytoisolatetheperformanceattheacousticlevelistoeval-
uateatthephonemiclevel,usingaunitsuchasthephone,
leadingtophoneerrorrates(PER),whicharegenerallylower
thantheWER.However,usingPERtodescribeperformance
attheacousticlevelisstillproblematicinatleasttwoas-
pects.First,thephonesequenceforaproducedwordmay
varywidely,especiallyforcommonfunctionwordsandfor
wordsequencessusceptibletoreduction,sothatdirectcom-
parisonofpronunciationvariantsbecomesdifficult.Second,
itisnotpossibletomeasurehowsimilartwophonesareto
eachotherusingphonesasanalysisunits.Thefirstproblem
maybesolvedbyrestrictingthetestsequencestoutterances
withnopronunciationvariants;anexamplewouldbeVCV
(vowel-consonant-vowel)syllables. Thesecondissuecan
beaddressedbydescribingphonemelevelunitsatasub-
phonemiclevel,byusinglinguisticdistinctivefeatures[4].
Forexample,thephonemes/f/and/s/areboth[+consonan-
tal],[-sonorant],[+continuant],but/f/is[+labial],while
/s/is[+alveolar].

Inlinewithsuchresearch,thispaperdescribesmeth-
odsforevaluatingsystemperformanceusingdistinctive
featuremeasures,foradetailedanalysisofresultsatthe
sub-phonemiclevel.Thisapproachenablesdescriptionsof
thenon-uniformeffectsonrecognitionresultsfrompertur-
bationsoftheinputspeech,suchasambientnoise,orfrom
non-standardspeakercharacteristics,suchasforeignaccents.
Thisapproachalsoallowsdirectcomparisonwithhuman
perceptionresults,andmayprovidedirectionsformodeling
humanperceptionpatternsmorecloselyinASRsystems.
Accordingly,inthispaper,weobservetheacoustic-level
performanceoftwotypesofASRsystemsperturbedwith
additivewhitenoiseincomparisonwithhumanperception
results,usingVCVsyllables.ASRsystemsbasedonHidden
MarkovModels(HMMs)andDeepNeuralNetworks(DNNs)
areexamined.Incontrasttoconventionalevaluationmeth-

5810978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



ods,performanceisanalyzedbyclassifyingerrorpatterns
relatedtomanner,placeandvoicing,andbyexaminationof
confusionmatricesviaadistinctive-feature-distancemetric.

2. METHODS

2.1. Databases

TheTIMITdatabasewasusedfortrainingtheASRsystems,
andtheLAFFVCVdatabasewithadditivenoisewasused
asthetestset.TIMIT[5]containsbroadbandrecordingsof
630speakersof8majordialectsofAmericanEnglish,each
reading10phoneticallyrichsentences,andincludestime-
alignedorthographic,phoneticandwordtranscriptions,as
wellasa16kHzspeechwaveformfileforeachutterance.
LAFFVCV[6]isacollectionofvowel-consonant-vowelsyl-
lablesrecordedatthe MITSpeechCommunicationGroup
from2malespeakersand1femalespeakerwhowerena-
tivespeakersofNorthAmericanEnglish.Thesyllableswere
formedfrom6vowelsand26consonants,resultinginutter-
ancessuchas/aa-b-aa/,etc.Full-bandwhitenoisewasadded
totheVCVutterances,toproduceteststimuliwithvarious
signal-to-noiseratios.

2.2. ConversionofMiller&Nicelyresults

First,theresultsfromtheconfusionmatricesinMillerand
Nicelyspaper[7]onhumanperceptualconfusionsinnoise
wereconvertedtomanner,placeandvoicingerrorsaswell
asgrey-scaleconfusionmatrices,formoredirectcomparison
withotherresults.Mannererrorsinvolveerrorsbetweenvow-
els,glides={w,y,r,l,h},nasals={m,n,ng},fricatives={f,
th,s,sh,v,dh,z,zh},stops={p,t,k,b,d,g},andaffricates=
{ch,dj}.Placeerrorsindicateerrorsbetweenlabials={m,f,
v,p,b},dentals={th,dh},alveolars={n,s,z,t,d},palatals
={sh,zh,ch,dj},andvelars={ng,k,g}.Voicingerrorsare
betweenunvoiced={f,th,s,sh,p,t,k}andvoiced={alloth-
ers}.Inthegrey-scaleconfusionmatricesshowninFigs.5-
8,themagnitudeoftheentryineachcellcorrespondstothe
darknessofthecell(e.g.10outofpossible10trialswouldbe
100%,orblack).Theadditivewhitenoiselevelsrangefrom
12dBSNRto-18dBSNR,in6dBSNRdecrements.Inthe
followingresults,theentriesintheconfusionmatricesarein
theorderof/p,t,k,f,th,s,sh,ch,b,d,g,v,dh,z,zh,dj,
m,n,ng,w,y,r,l,h/,andNoResponse,withentriesskipped
ifnotpresent.Unvoicedsoundsappearbeforevoicedsounds,
withstopsprecedingfricatives,andnasalsandglidesareat
theend.Thisplacementfacilitatesthevisualanalysisoferror
patternsinthegrey-scaleconfusionmatrices.

2.3. HumanperceptionofLAFFVCVinnoise

Next,humanlisteningexperimentswerecarriedoutwithse-
lectedLAFFVCVdata.Thestimuliconsistedofthefollow-
ingsixsyllables:/aa-b-aa/,/aa-d-aa/,/aa-s-aa/,/aa-m-aa/,

/aa-ch-aa/,and/aa-sh-aa/.Eachsyllablewasembeddedin
full-bandwhitenoiserangingfrom30dBSNRto-20dBSNR
in10dBdecrements. Twentyadults(17females,3males)
between18and31yearsofage(mean=22,SD=3)were
recruitedforparticipationintheexperiment.Allparticipants
weremonolingualspeakersofAmericanEnglishandhadno
historyofspeech,language,hearing,orneurologicaldisor-
dersaccordingtoself-report.Eachparticipantheard360syl-
lables(6consonants×10repetitions×6SNRs).Thesyl-
lableswereblockedbySNR,withblockorderrandomlyde-
terminedforeachparticipant,andsyllableorderrandomized
withineachblock.Participantsweredirectedtoprovideare-
sponseevenwhentheywerenotcompletelysureoftheitem.
Stimuluspresentationanddatacollectionwascontrolledus-
ingtheSuperLabsoftware[8].

2.4. HiddenMarkovModel(HMM)-basedASRsystem

Asanexampleofawidely-usedHMM-basedASRsystem,
weselectedthestandardHTKsystem[9].Standardtrain-
ingmethodsfortheHTKsystemwereappliedtoobtain
single-phonemodels(6stateswithnon-emittingfirstandlast
states/8-mixtureGaussianmixturemodels),andHInitand
HRestprocedureswereusedtoinitializemodelsbeforerun-
ningHERestformodeloptimization[10].Theresultsshowed
67%correctphonerecognitionfortheentireTIMITtestset,
and65%fortheTIMITcoretestset. Errorratesreported
intheliteraturesimilarlyrangesfrom46%to55%,inline
withourerrorrates.Forourstudy,wefocusedondetection
ofconsonantsandglides,selecting36speechfilesfromthe
LAFFdatabase,eachofwhichincludedaconsonantorglide
betweentwo”aa”phones,suchas/aa-z-aa/,/aa-b-aa/,etc.
Whitenoiseatvariouslevelsfrom40dBSNRto-20dBSNR
at10dBdecrementswereaddedtoformthetestdataset[11].
(Asubsetofthesefileswasselectedforuseinthehuman
perceptiontestsinSection2.5.)Acousticfeaturefileswere
obtainedusingHcopy,theconsonantsweredetectedusing
HVite.TheHTKresultswerematchedtothetruesequence
(minimumeditdistancematch),andtheresultsweretabu-
latedintermsoferrortypesandintogrey-scaleconfusion
matrices.

2.5. DeepNeuralNetwork(DNN)-basedASRsystem

FortheDNNtraining[12],24Mel-scalelogfilterbanksare
extractedasinputfeatures.Therearefivehiddenlayers,each
ofwhichhas2048nodes,andadditionallythereisasoftmax
outputlayer;weusebackpropagationtotunetheweights.
Overall,theDNNsystemwasimplementedusingtheKALDI
toolbox[13],andtrainedontheTIMITTRAINset,resulting
inaPERof30.87%ontheTIMITTESTset.
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Fig.4. Errorpatternsfor
DNN-basedsystemresults

3. RESULTS

3.1. MannerPlaceandVoicingerrorpatterns

HumanperceptionresultsforLAFFVCVdatabasefilesare
showninFig.1.TheresultsshowthatasSNRdecreases,
errorratesincrease,particularlyafter0dBSNR.Also,place
errorsaremostprevalent,followedbyerrorsinmanner,then
voicing. Next,theresultsconvertedfromthe Millerand
NicelypaperareshowninFig.2.Similartotheresultsfor
theLAFFVCVdatabase,errorsincreasemonotonically,with
placeerrorshighest,followedbymannererrors,thenvoicing
errors.Incomparison,resultsforHMMphonedetectionin
theLAFFVCVdatabaseareshowninFig.3.Incontrastwith
theresultsforhumanperception,itisnotalwaysthecasethat
errorratesincreasemonotonicallyasSNRdecreases.Also,
therelativedegreeoferrorsinplace,mannerandvoicingare
notconsistentasinthehumanperceptionresults.Neverthe-
less,itcanbeseenthatplaceandmannererrorsaremostly
higherthanvoicingerrors,althoughthetotalnumberoferrors
arehigherthanforhumanlisteners.TheresultsfortheDNN
inFig.4showerrorpatternsthataremoresimilartohuman
perceptionresults,withthemostplaceerrorsandtheleast
voicingerrors.However,theoverallerrorratesarehigherand
increasestartingathigherSNRs.

3.2. Comparisonofconfusionmatricesinwhitenoise
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Inordertoexamineerrorpatternsinmoredetail,grey-scale
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Fig.6.ConfusionmatricesforMiller&Nicelyresults

cleanspeech,mostresponsesareonthediagonal,i.e.cor-
rect.Inthenext-to-lastfigure,theresponsesarespreadout
fromthediagonal,indicatingamorerandomdetectionpat-
tern.Inthefinalfigure,allresponsesaregivenas”NoRe-
sponse”,i.e.thehumanlistenerswereunabletoanswer.A
similarpatternisseenfortheMiller&Nicelyresponsesin
Fig.6,inthatlowernoiselevelsresultinmorediagonalen-
tries,whilehighernoiselevelsresultinamorerandomer-
rorpattern.However,thenext-to-lastconfusionmatrixshows
thatevenatalowSNRof-12dB,theerrorsappearinblocks,
whichindicatecommonvoicingfeatures.Fortheconfusion
matricesfortheHMMresultsshowninFig.7,theoverall
errorratesarehigherthanforthehumanperceptionresults,
evenatthehigherSNRlevels. Moreover,theresultsdonot
exhibitthecharacteristicblockingpatternsthatindicatesimi-
larvoicingdetectionsatnoiselevelsaround-10dBSNR.And
finally,itcanbeseenthataround0dBSNRorlower,mostre-
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Fig.9.Plotofdistinctive-feature-distanceresultsofhuman
perceptionandHMM-andDNN-basedASRsystems

sponsesaregivenas/s/,whichdivergesfromthehumanper-
ceptionresults.FortheDNNresultsinFig.8,wecanseethat
resultsaremoresimilartohumanperceptionresults. How-
ever,wedonotobservethecharacteristicblockingeffect,and
theresponsesatthelowestSNRsincludeamajorityof/s/re-
sponses,similartotheHMMresults.Thedistinctivefeature
distanceD(i,j)betweenphonemesiandjcanbewritten
asD(i,j)= f(1−δ(d(i,j)d(j,f))),whered(i,f)isthe
fthdistinctivefeatureofthephonemei,f∈{vowel,glide,
consonantal,...},andδ(i,j)istheKroneckerdelta,δ(i,j)=
1, i=j
0, i=j

.Inourstudy,thetotalnumberofdistinctivefea-

turesis24.Thenormalizeddistinctive-feature-distancesof
theconfusionmatricesaboveareplottedinFig.9,which
representsthesub-phonemicrecognitionperformanceofthe
ASRsystemsincomparisonwiththehumanperceptionre-
sults.

4. CONCLUSIONS

Thisstudypresentsanevaluationmethodforsub-phonemic
analysisoftheeffectsofadditivenoiseontwotypesofASR

systems,indirectcomparisonwithhumanperceptionresults.
Resultswerecomparedintermsofmanner,placeandvoic-
ingerrorpatterns,asgrey-scaleconfusionmatrices,andas
distinctive-feature-distances.Humanperceptionresultsshow
thatplacefeaturesaremostsusceptibletomisperceptionin
whitenoise,followedbymannerfeatures,thenvoicingfea-
tures.TheDNN-basedsystemshowedsimilarpatterns,al-
thoughwithmoreerrors.Incontrast,theHMM-basedsystem
hadlessconsistencyintheerrorpatterns.Intheconfusion
matrices,humanperceptionresultsshowthatmosterrorsoc-
curnearthediagonalregions,withblockingeffectsaround
-10dBSNR,whichindicatecorrectvoicingdetectionsatthat
level. Meanwhile,intheDNN-andtheHMM-basedsys-
tems,errorsconvergetothesound/s/athighernoiselevels,
morerandomizederrorsoccurathigherSNRlevels,andthe
blockingeffectfromvoicingdetectionisnotobserved.The
distinctive-feature-distancesoftheconfusionmatricessum-
marizethediscrepancyoftheASRsystemperformancefrom
humanperceptionresultsatthesub-phonemiclevel.
Theseresultspointtothepossibilityofincorporatingpa-

rametersspecificallyrelatedtovoicing,manner,andplace
intoacousticmodels,and/orincorporatingdistinctive-feature-
distancemeasuresastrainingcriteriaforclosermodelingof
ASRsystemstohumanperceptionpatterns. Furtherwork
aimstoextendthiscomparisontoincluderesultsforlarger
databasesandothertypesofnoise,e.g.babbleandbandpass
noise,whichcanbeexpectedtoproduceperturbationpatterns
thataredifferentfromthatfromwhitenoiseforhumanper-
ceptionandASRsystems.
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