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Abstract—The power system has been incorporating increasing
amount of unconventional generations and loads such as dis-
tributed renewable resources, electric vehicles, and controllable
loads. The induced dynamic and stochastic power flow require
high-resolution monitoring technology and agile decision support
techniques for system diagnosis and control. This paper discusses
the application of micro-phasor measurement unit (µPMU) data
for power distribution network event detection. A novel data-
driven event detection method, namely Hidden Structure Semi-
Supervised Machine (HS3M), is established. HS3M only requires
partial expert knowledge: it combines unlabeled data and partly
labeled data in a large margin learning objective to bridge the
gap between supervised learning, semi-supervised learning, and
learning with hidden structures. To optimize the non-convex
learning objective, a novel global optimization algorithm, namely
Parametric Dual Optimization Procedure (PDOP), is established
through its equivalence to a concave programming. Finally, the
proposed method is validated on an actual distribution feeder
with installed µPMUs, and the result justifies the effectiveness
of the learning-based event detection framework, as well as its
potential to serve as one of the core algorithms for power system
security and reliability.

Index Terms—Event Detection, Phasor Measurement Unit,
Distribution, Machine Learning.

NOMENCLATURE

α,β,γ Lagrangian multipliers for the three types of con-
straints in the primal; Decision variables in the Dual

η Indicator variables for partly labeled data
λ Unified hidden variable in the Dual
θ Unified decision variable in the Dual
ζ Indicator variables for unlabeled data
Cθ,Cλ,C0 Matrices encoding the coefficients of θ,λ and the

constant term in the constraints.
e Column vector of all 1s
Q Kernel matrix in the Dual
T ,H ,P Composite matrices defined in Theorem 1
w Parameter of the classifier
xi The ith data sample (system measurement)
κ(·, ·) Kernel function
Λ,Θ Feasible set for λ and θ, respectively
A Index set of active constraints
H Hilbert function space
J (θ) Value of the dual objective as a function of θ
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L+ Index set of all samples having yi = +1
L− Index set of completely labeled samples having yi =

−1
L+
H Index set of partly labeled samples having yi = +1
L−H Index set of partly labeled samples having yi = −1
U Index of unlabeled data samples
ŷi Tentative label for sample i ∈ U
ỹ Augmented label vector, including tentative and

dummy labels
c ,c1-c3 Classification loss penalties
K Number of event classes
k Index for the kth base classifier
yi Indicator for nominal (0) or event (1)
zi Event type indicator

I. INTRODUCTION

A. Background

HISTORICALLY, power distribution networks are be-
hind transmission networks regarding transparency,

measurement frequency, and sophisticated monitoring sys-
tems. However, the growth of distributed renewable energy
resources, electric vehicles, power electronic based grid edge
controllers, and controllable loads introduces more short-term
and unpredictable disturbances in the electricity flow [1].
It suggests a need for more accurate measurement devices
with higher resolution. As utilities have expanded their mon-
itoring systems and sensor networks, the data management,
analysis, and inference have become the most significant
challenges with the shift from a conventional data acqui-
sition system depended on domain experts (supervised) to
an automated intelligent analysis system (unsupervised). This
paper specifically discusses high-precision synchrophasors, or
micro-phasor measurement units (µPMUs) for high-fidelity
measurement of voltage and current waveforms [2]. All µ-
PMUs measurements are GPS time stamped to provide time-
synchronized observability for three-phase voltage and current
magnitude and phase angle with a 0.05% Total Vector Error
[3]. Figure 1 shows the actual µ-PMU device and the overall
system architecture. The µ-Pnet is the equivalent of the Phasor
Data Concentrator (PDC) in a distribution network. More
technical information about the µ-PMU device is available
in [4]. Topology detection[5], phase labeling [6] and linear
state estimation[7] are among applications of µ-PMU data
that are explored so far. Moreover, the accuracy and resolu-
tion available from such µ-PMU monitoring network enable
operators to detect short-time events that would otherwise be
unobservable in distribution systems.
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Fig. 1: The integration of the proposed event detection tool
with existing µ-PMU monitoring and SCADA system.

Events of interest in distribution networks are classified
into different categories based on their duration, cause, and
location. Two sample events, captured by a µ-PMU, are shown
in Figure 2. Events in power systems present themselves as
oscillations, transients, short duration variations, long-duration
variations, and waveform distortion in voltage, current and
frequency values [8]. The causes are usually faults, switch-
ing actions, topology changes, controllers, load behavior and
source dynamics. Related standards for characterizing events
in distribution network including but are not limited to [9],
[10], [11]. Moreover, the initial fault or event occurring at
one or more components of the grid usually triggers the
faults or events of others [12], [13], [14], [15]. For the
sake of power systems reliability, stability, security, and re-
silience, it is crucial to monitor the operating states in real
time and detect anomalies quickly to avert disturbances and
disruptions[16]. Besides µ-PMU based event detection system
in distribution networks, the proposed data-driven tool in this
paper is compatible with different types of measurement such
as traditional measurement devices, power quality recorders,
protection relays, smart meters, and synchrophasors. Within a
larger scope, this paper aims to leverage advances in machine
learning techniques, global optimization methods and time-
series data analysis for data-driven event detection in power
distribution networks.

B. Learning Based Event Detection Methods

A novel framework for event detection is proposed in this
paper using µ-PMU data streams. A large body of available
literature has been addressing the problem of event detection,
in particular, its simplified case of novelty/fault detection with
various methods. Available works on event detection can be

divided into two main categories and their combinations, i.e.,
model-based method and model-less or data-driven method.

The basic idea of model-based approaches is to compare
the system behavior, estimated by a dynamic model, to the
expected behavior when the system is in a certain state [17].
To list a few, model-based applications range from cyber
attacks identification in power system [18], fault diagnosis
for switching converters [19], and fault-detection of electric
machine [20]. Recently, model-based approaches have also
been used in combination with time series analysis to establish
semi-model-based algorithms [21]. This type of methods is
largely based on the correctness of the dynamic model of
the system, as well as system analytic tools such as real-
time state estimators and parity equations. Their limitations
are evident as dynamics of a system may be (1) hard to
specify and (2) nonlinear/coupled in structure. Also, as more
and more applications are dealing with a complex system with
randomness, the high dimensionality and inherent uncertainty
significantly deteriorate the reliability of dynamic models.

On the other hand, the data-driven approaches use methods
of machine learning to conduct statistical inference or deci-
sion making on available system measurements. As massive
amount of data is provided by the advancement of sensor
network and information technology, this approach is receiving
increasing attention in both application and research domains.
The problem of distinguishing abnormalities from the normal
states has been extensively studied in literature and is referred
to as novelty (or abnormal) detection. Indeed, many classic
machine learning tools, such as kernel Principle Component
Analysis (kPCA), Partial Least Squares (PLS), and Fisher
Discriminant Analysis (FDA) have been widely applied in
various fields. Readers are referred to [22] and the references
therein for a comprehensive survey.

The event detection problem becomes more challenging as
the objective is extended from making a binary decision to dis-
tinguishing the type of events. Recently several attempts were
made for this purpose, including cost sensitive Support Vector
Machine (SVM) for fault type identification in semiconductor
manufacturing process [23] and the hierarchical kernel method
for building cooling system fault diagnosis [24]. These meth-
ods belong to the supervised multi-class classification which
require properly labeled data with detailed event types as
the training set. However, the occurrence of events might be
rare in many real-world applications, and the availability of
fully labeled data set is often limited. In the situation dealing
with µ-PMU data, complete expert knowledge for power
system diagnosis and event labeling can be expensive and
scant. Lacking labeled data may cause insufficient supervised
learning and eventually lead to degraded performance.

In this work, a novel data-driven event detection method,
namely the Hidden Structure Semi-Supervised Machine
(HS3M), is proposed for the purpose of event type identifi-
cation. To resolve the scarcity of labeled training data, HS3M
also incorporates information from partly labeled data and
unlabeled data. The inclusion of this partial information breaks
the convexity of traditional large margin learning formulation.
As such a new global optimization algorithm is developed to
solve the non-convex learning problem. The proposed method
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(a) Voltage Magnitude: HI (b) Current Magnitude: HI (c) Voltage Magnitude: VD (d) Current Magnitude: VD

Fig. 2: Real time µ-PMU measurements that contains events. (a)&(b): Voltage/Current measurements when a short duration
high impedance fault occurs. (c)&(d)Voltage/Current measurements when a transmission level voltage disturbance occurs.

is applied to a concrete case of power distribution network
event detection with µ-PMU data. The integration of the event
detection tool as a complement of the existing monitoring and
control system is shown in Figure 1.

The contributions are highlighted as follows:
• HS3M provides a unified framework to incorporate data

of different natures for event detection. The proposed
method bridges the gap between semi-supervised learning
and learning with hidden structures.

• The newly developed PDOP algorithm constitutes a
promising substitute for previous methods such as
Concave-Convex Procedure and alternating optimization.

• HS3M yields significant improvement compared to state-
of-the-art methods, showing promising results on distri-
bution network event detection with µ-PMU data.

The paper is organized as follows, in section II we introduce
the formulation of HS3M learning objective and the intuition
behind it. Section III is devoted to transforming the training
problem into a parametric quadratic program. In Section IV,
the PDOP algorithm is established for HS3M learning. The
case study is given in section V.

II. HS3M EVENT DETECTION: MOTIVATION AND
FORMULATION

Traditionally, there have been two fundamentally different
paradigms of machine learning (ML). The first one is the
supervised learning, with the goal of learning a mapping
from some input x to output y. Usually the observations
(xi, yi), i = 1, · · · , n are called samples, xi are referred to as
features of sample i, and yi ∈ Y are called labels or targets. To
find the “optimal” mapping f , the learning task is commonly
formulated as “regularized empirical risk minimization” [25]

min
f∈H

1

2
||f ||2H + c

∑
i

L(yi, f(xi)) (1)

in which the second term measures the “goodness of fit”
of the classifier f with some loss function L, and the first
regularization term controls the complexity of the mapping f
to avoid over-fitting1[26]. By tuning the “hyper-parameter” c
(called “model selection” in the jargon of ML), one is able to
balance training fitness and model complexity, hence finding
the optimal classifier that generalizes well to unseen data set.

1Known as the Occam’s razor principle. In some context the regularization
can also help alleviate ill-posed problem and induce sparsity.

The second task of ML is unsupervised learning [27].
Under this setting, only the unlabeled observations X =
{x1, · · · ,xn} are given. Typically, the goal of unsupervised
learning is to identify interesting structures in the data X , such
as clusters, quantiles, support, low-dimensional embedding, or
more generally the patterns related with the distribution of the
data.

The presence of both labeled and unlabeled data motivates
the so-called semi-supervised learning [28]. The hope is
that, by combining both types of available data sets, semi-
supervised learning could find better models/classifiers, and
reduce the cost of expert engagement [29]. In the context of
event detection using µ-PMU measurement, data with detailed
event labels is precious but scant - power system experts are
needed to inspect the measurement and mark events. On the
other hand partly labeled data with incomplete labels, e.g.,
nominal/fault, may be obtained less costly by using decision
support systems. Moreover, unlabeled data can be acquired
in large quantity simply by collecting µ-PMU measurement.
Given the characteristics of the different types of data available
for power system event detection, a unified ML framework is
proposed to leverage all information sources. The following
subsection explains the construction of the proposed HS3M
step-by-step.

A. Motivation and Intuition of HS3M

To formalize the information availability in different sce-
narios, consider data of the following three formats:

1 Completely labeled data samples, denoted as {xi, yi, zi},
where i is the sample index, xi is the system
measurement, yi is a indicator for “nominal/stable state”
(y = +1) or an “event” (y = −1). If y = −1, an event
type indicator zi ∈ {1, · · · ,K} is also associated.

2 Partly labeled data samples, denoted as {xi, yi, ·}, where
yi is still the indicator for “event”, but event type is
unavailable as differentiating event types is costly.

3 Unlabeled data samples, denoted as {xi, ·, ·}, where only
system measurement xi is accessible.

An illustration of different situations is given in Fig. 3.
Intuitively, partly labeled data should be helpful: at least
it provides discriminating information between stable state
and events. The role of unlabeled data might be ambiguous
since it does not carry any expert knowledge. However, it
does contain distributional information of measurement, which
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Event 1

Nominal

Event 2

Event 3

(a) Completely labeled data

Nominal

Events

(b) Partially labeled data

(c) Unlabeled data set (d) HS3VM on all data sets

Fig. 3: Different data format and the intuition of HS3M

could be exploited with a proper formulation. In the sequel, an
unified learning framework is designed to combine all three
information sources to improve detection performance.

To begin with, the regularized empirical risk minimization
framework is substantiated by hing loss and L2 regularization:

min
w

1

2
||w||22 + c

∑
i

[1− yig(w,xi)]+ (2)

where c is the loss penalties, [1− yig(w,xi)]+ is the hinge
loss for the miss classification, and w is the parameters of
the classifier g(w,xi). The regularization term ||w||2H also
favors the large margin separating hyperplanes. The HS3M
formulation resembles this “regularization+hinge loss” min-
imization, but both partly labeled data and unlabeled data
are incorporated as additional information, by constructing a
new classifier having a geometric property suitable for power
system event detection purposes.

B. A Geometrically Constrained Classifier

Intuitively, data generated from the nominal (stable) state
are often “concentrated” in some distribution, whereas data of
diverse events are “scattered around” since they deviated from
the nominal in different ways. This distributional asymmetric
is illustrated in the top-left panel of Figure 3. To encode this
particular “geometric” information of event detection, it is
natural to describe the stable state by the intersection of the
acceptance region of multiple nonlinear decision rules, while
the events class by the union of their complements, as is shown
in Figure 3(d). Mathematically, a composed classifier g(·) can
be written in terms of multiple base classifiers fk(·) as follows:

g(w,x) > 0⇔ min{f1(w,x), · · · , fK(w,x)} > 0

where K is the number of all possible event types. The con-
struction of the classifier inherently emphasizes the sensitivity
to event class because an event is detected by any one of the
base classifiers. The classifier also maintains the specificity to
stable state class, as all base classifiers have to “agree” for a
positive prediction. Given a feature mapping φ : Rd → H, a

hyperplane classifier in the new Hilbert space can be written
as f(w,x) = 〈w, φ(x)〉H + b , w · φ(x) for short hand
notation. Then the proposed classifier is

g(w,x) = min
k
{w · φk(x)}. (3)

1) Incorporating Labeled Data: Based on the com-
posed classifier, the hinge loss [1− yig(w,xi)]+ is com-
puted for each format of data to incorporate their “con-
tribution” to the classifier. With detailed event type being
available, the hinge loss for labeled data set can be di-
rectly obtained as [1 +w · φzi(xi)]+ when yi = −1 and
[1−mink{w · φk(xi)}]+ when yi = +1.

2) Incorporating Partly Labeled Data: Comparing Fig-
ure 3(a) and 3(b), we see that partly labeled data could be
viewed as data with “missing detailed labels” (event types).
But the hidden clusters of each event class still exist. From
a ML perspective, this is the problem of “learning with
hidden structures”. Composed from multiple base classifiers,
the unified classifier g performs implicit “clustering” for the
event class, so as to capture hidden subgroups in partly labeled
data sets. Thus the hinge loss for a partly labeled data sample
{xi, yi, ·} is just [1− yi mink{w · φk(xi)}]+ for yi = ±1.

3) Incorporating Unlabeled Data: Given a classifer
g(w,x), the predicted label is its sign, i.e., ŷi =
sign(g(w,x)). This inspires a tentative labeling strategy to
include information provided by unlabeled data. More specif-
ically, with ŷi = sign (mink{w · φk(xi)}), the corresponding
hinge loss has the form[

1− ŷi min
k
{w · φk(xi)}

]
+

=

[
1−

∣∣∣∣min
k
{w · φk(xi)}

∣∣∣∣]
+

C. Overall Learning Objective
Putting things together, the following regularized hinge loss

minimization is formulated for event detection that incorpo-
rates all explicit and partial expert knowledge:

min
w

1

2
||w||2H + c1

∑
i∈L+

[
1−min

k
{w · φk(xi)}

]
+

+ c21
∑
i∈L−

[1 +w · φzi(xi)]+

+ c22
∑
i∈L−

H

[
1 + min

k
{w · φk(xi)}

]
+

+ c3
∑
i∈U

[
1−

∣∣∣min
k
{w · φk(xi)}

∣∣∣]
+

(ORIG)

where L+ denotes the index set of all data samples that
has yi = +1, including both completely and partly labeled
samples, L− as the index set of completely labeled samples
with yi = −1 and event type zi (hence the hinge loss only
involves the corresponding individual classifier fzi ). The index
set L−H contains partly labeled samples that are “events”, and
U is the index of all unlabeled data samples. The loss penalty
hyper-parameters c1-c3 weight each loss term differently, and
should be chosen by taking into account the imbalanced cost
for false positive and false negative error, sample size in each
category, as well as for model selection considerations. Since
the above formulation deals with both hidden structures and
unlabeled samples in the available data, we call it Hidden
Structured Semi-Supervised Machine (HS3M).
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III. LEARNING OBJECTIVE REFORMULATION

The first three terms in the learning objective ORIG are
convex in decision variables, the last two terms, however
are not convex. Existing heuristics for this type of problems
use either group alternating optimization or Concave-Convex
Procedure (CCCP), which only converge to local minimals and
may lead to deteriorated solution. The degradation especially
happens as we are in a machine learning context [30].

In this work, a novel optimization algorithm is derived for
HS3M as well as for a class of “hidden structure” problems.
A remarkable property of the algorithm is that it can approach
global optimum by iteratively improving local solutions. The
new method is based on an equivalent optimization problem
and two important parametric property of its dual. As the first
step, we transform ORIG by introducing additional “hidden”
variables, and write the learning objective in the following
joint optimization form:

Proposition 1. ORIG is equivalent to (OPT1)

min
η,ζ

min
w

1

2
||w||2H + c1

∑
i∈L+

[
1−min

k
{w · φk(xi)}

]
+

+ c21
∑
i∈L−

[1 +w · φzi(xi)]+

+ c22
∑
i∈L−

H

K∑
k=1

ηik [1 +w · φk(xi)]+

+ c3
∑
i∈U

K∑
k=1

ζik [1 +w · φk(xi)]+

+ c3
∑
i∈U

ζi(K+1) max
j
{0, 1−w · φj(xi)}

subject to ηi ∈ SK , ∀i ∈ L−H ; ζi ∈ SK+1, ∀i ∈ U
In addition, the two minimization is interchangeable.

The introduced variables η and ζ can be thought of as
hidden state indicators for partially labeled data and unlabeled
data, respectively. The corresponding dual of the inner opti-
mization of OPT1 is

max
α,β,γ

− 1

2

∥∥∥∥∥∥
∑
k,i∈I

αikyiφk(xi) +
∑
i∈L−

βiφzi(xi) +
∑

k,i∈U+

γikφk(xi)

∥∥∥∥∥∥
2

H

+
∑
k,i∈I

αik +
∑
i∈L−

βi +
∑

k,i∈U+

γik

subject to

αik ≥ 0;
∑

k αik ≤ c1 ∀i ∈ L+

0 ≤ βi ≤ c21 ∀i ∈ L−

0 ≤ αik ≤ c22ηik ∀i ∈ L−H
0 ≤ αik ≤ c3ζik ∀i ∈ U−

γik ≥ 0;
∑

k γik ≤ c3ζi(K+1) ∀i ∈ U+∑
k,i∈I yiαik +

∑
k,i∈L− yiβi +

∑
k,i∈U+ yiγik = 0

(Inner Dual)
where the Lagrangian multipliers α,β,γ are now decision
variables. Note that the unlabeled data set U is used as two
dummy copies with tentative labels yi = +1 for i ∈ U+

and yi = −1 for i ∈ U−, respectively. Also for short hand
notation, we denote the index set of all samples by I, and a
unified decision variable in the Dual by

θ =
[
αT ,βT ,γT

]T

where α ,
[
α11, · · · , α|I|1, · · · , α|I|K

]T , β ,
[
β1, · · · , β|L−|

]T
and γ ,

[
γ11, · · · , γ|I|1, γ12 · · · , γ|I|K

]T . It is immediate that
the norm in the Hilbert space reduces to inner products. Hence
the objective of the dual (pulling out a minus sign) can be
equivalently written as

−min
θ

1

2

∑
i,j

θi〈φ(xi, yi, i), φ(xj , yj , j)〉θj −
∑
i

θi (4)

in which the so called kernel trick could be used for direct
computation of the inner product without the need to compute
the explicit feature mapping φ(·), i.e.,

〈φ(x, y, i), φ(x′, y′, j)〉 = κ(iy)(jy′)(x,x
′) (5)

For a more compact form of the dual, let us fur-
ther define a matrix Q with elements Q(iy)(jy′) =
κ(iy)(jy′)(x,x

′), a column vector of all hidden variables
λ , {η1; · · · ;η|L−H |

, ζ1, · · · , ζ|U|}, and an augmented label
vector (with dummy copies of unlabeled set) as

ỹ = [1, · · · , 1︸ ︷︷ ︸
L+

,−1, · · · ,−1︸ ︷︷ ︸
L−

H

,−1, · · · ,−1︸ ︷︷ ︸
U−

,−1, · · · ,−1︸ ︷︷ ︸
L−

, 1, · · · , 1︸ ︷︷ ︸
U+

]T

together with a matrix encapsulated inequality constraints, the
(negative) inner optimization becomes

min
θ
J (θ) =

1

2
θTQθ − eTθ

subject to

{
Cθθ ≤ Cλλ+C0

ỹTθ = 0.

(OPT D)

where Cθ,Cλ,C0 are constant matrices with K|L−H |+ (K+
1)|U| rows. Similar to other kernel methods in machine
learning, HS3M is restricted to Mercer kernels, thence Q
is positive definite, and (OPT D) is in a convex quadratic
program. The learning objective ORIG proposed in section II
now becomes

max
λ∈Λ

min
θ∈Θ(λ)

J (θ) (6)

Next the inner optimization of (6) is analyzed in some depth,
and establish the theoretical foundations of the novel global
optimization algorithm.

IV. STRUCTURES OF THE DUAL OPTIMALITY AND A
NOVEL GLOBAL OPTIMIZATION METHOD

First of all, it is helpful to consider the inner optimization
(OPT D) as if “parameterized” by the outer optimization
variable λ. Thus solving it with some fixed λ, one can get
the optimal solution as a function of the “parameters”. Denote
the optima as θ∗(λ) to emphasize this dependence, then the
original learning objective becomes minλ∈Λ J (θ∗(λ)).

Two important properties of J (θ∗(λ)) will be character-
ized: (1) Locally (in a well defined neighborhood called critical
regions) θ∗(λ) has an explicit form. (2) Globally the inner
optimal objective J (θ∗(λ)) is convex piece-wise quadratic
in λ. These two observations serve as the underpinning for
the new optimization algorithm.

The problem of analyzing the dependence between opti-
mal solution and involved parameters have been previously
addressed in operational research and our communities, with
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the terminology Parametric Programming (PP) or Sensitivity
Analysis (SA). In particular, the study of Parametric Quadratic
Programming (PQP) can be dated back to [31], and fol-
lowing the pioneer work [32], it has been widely applied
for model predictive control problems [33][34]. However, to
the best of our knowledge, PQP has not yet been explored
for machine learning problems. More importantly, technical
difficulties arise because existing results usually rely on the so
called Linear Independence Constraint Qualification (LICQ)
assumption, which in the current case of (OPT D) cannot
be satisfied due to the existence of the equality constraint,
ỹTθ = 0. In fact, in the jargon of PP or SA, the problem
at hand corresponds to a degenerate case for which existing
solution is still lacking.

In subsequent parts, we will bridge the gap by firstly
replacing the LICQ condition with a sample partition property,
and then show that the local explicit form of θ∗(λ) can still be
obtained under a mild condition. But before that, it is useful
to define the following terms.

Definition 1. (Active Constraint) Assume that an optimal
solution of (OPT D) has been obtained as θ∗(λ). Then the ith

row of the constraints is said to be active at λ, if Cθ
i θ
∗(λ) =

Cλ
i λ+C0

i , and inactive if Cθ
i θ
∗(λ) < Cλ

i λ+C0
i . Let index

set of all active inequality constraints i be denoted by A, and
all inactive inequality constraints by AC . CA denotes the C
matrix with only rows that correspond to the active constraints,
and CAC as the matrix with only rows that correspond to
inactive constraints.

Definition 2. Samples Partition : Based on the value of θ∗,
i.e., α∗,β∗,γ∗ at optimal,
• A jth sample in L+ ∪ L− ∪ U+ is called:

Support vector if αjk > 0, βj > 0 or γjk > 0
respectively. Unbounded support vector if in addition∑
k αjk < c1, βj < c21, or

∑
k γjk < c3, and bounded

support vector if the upper bound (equality) is reached.
• A j′th sample in L+

H ∪ U− is called:
Support vector of subgroup k if αj′k > 0. Unbounded
support vector of subgroup k if in addition αj′k < c22

for j′ ∈ L−H or αj′k < c3 for j′ ∈ U−, and bounded
support vector if the upper bound (equality) is reached.

This definition is extended from classic binary Support Vec-
tor Mathine (SVM) and has very similar geometric interpre-
tations. Next, we define a term based on the characteristics of
the sample partition, which will serve as a sufficient condition
for the existence of the parametric solution of (OPT D).

Definition 3. (Qualified Solution) We say that the solution
of the dual problem is Qualified if its corresponding sample
partition contains at least one unbounded support vector in
both L+ ∪ L− ∪ U+ and L+

H ∪ U−

It is worth noting that requiring qualified solution is a very
mild condition. Indeed since the unbounded support vectors
are essentially the sample points that lie on the decision
boundaries that construct the classifiers (and its interception).
In order to have meaningful classification in practice this
condition is necessary and is expected to be satisfied with

even a few samples. The following theorem characterizes the
solution structure and provides explicit forms.

Theorem 1. Assume that the solution of (OPT D) is qualified
and induces a set of active and inactive constraints A and AC ,
respectively. Denote the composed matrices

H ,
Q−1ỹỹTQ−1

ỹTQ−1ỹ
−Q−1

T ,H(Cθ
A)T ; P , Cθ

AH(Cθ
A)T . (7)

and the vector ẽ , Cθ
AHe. Then we have

1 The matrix H is symmetric negative semi-definite, and P
is symmetric strictly negative definite hence is invertible.

2 The optimal solution is a continuous piecewise affine
function of λ. And in the critical region defined by{
P−1(Cλ

Aλ+C0
A + ẽ) ≥ 0

Cλ
ACλ+C0

AC −Cθ
ACTP

−1(Cλ
Aλ+C0

A + ẽ) ≥ 0
(8)

the optimal solution θ∗ of (OPT D) admits a closed form

θ∗(λ) = TP−1(Cλ
Aλ+C0

A + ẽ) (9)

3 The optimal objective is a continuous piece-wise
quadratic (PWQ) function of λ.

In essence the theorem indicates that each time the inner
optimization (OPT D) is solved, full information (closed form
solution) in a well-defined neighborhood (critical region) can
be retrieved as a function of outer optimization variables, i.e.,
those newly introduced “hidden variables”.

Besides the local explicitness result, the next theorem
describes the overall geometric structure of the optimality,
showing that globally the optimal objective is convex in λ,
which inspires the proposed learning algorithm for HS3M.

Theorem 2. Still assuming qualified solution,
1. The dual optimization has finite number of polyhedron

critical regions CR1, · · · , CRNr
which constitute a par-

tition of the feasible set of λ, i.e., each feasible λ belongs
to one and only one critical region.

2. The optimal objective J (θ∗(λ)) is a convex PWQ func-
tion of λ, and is almost everywhere differentiable.

With the local explicit solution and global convex PWQ
structure of J (θ∗(λ)) revealed by the theoretical analysis,
the learning problem is reduced to maximizing (minimizing) a
non-smooth but convex (concave) function in the space λ ∈ Λ.
Concave minimization is well-known to be NP-hard. Despite
the hardness, there exist several global optimality conditions.
In this work one of these conditions [35] and a level set
idea are adopted to establish a an optimization algorithm
that is able to approach global optima. The derivation and
convergence analysis of the algorithm is long and technical,
hence is postponed to Appendix for interested readers. It’s
worth pointing out that the proposed optimization strategy can
be extended to a much broader class of non-convex machine
learning problems, and the parametric analysis done in the
section complements prior studies on PQP. These two points
constitutes the theoretical contribution of this paper.
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V. EVALUATION

The authors are collaborating in the ”Micro-Synchrophasor
for Power Distribution Networks” project [2] to develop a
network of µ-PMU devices (µ-Pnet) at the distribution level. In
this paper, data from µ-PMUs are used to validate the proposed
method. Each µ-PMU provides 120 samples per second for
three-phase voltage and current magnitude and phase angle
[3],[4].

A. Data Collection and Feature Selection

The raw data sets collected from the µ-PMU measurement
are multi-stream time series, which are transmitted and stored
with the sMAP protocol [36]. Notation-wise, raw data is writ-
ten as {X1, · · · , XT }, where each Xt is a M×C dimensional
vector. In the current experiment, M = 5 is the number of
µ-PMUs and C = 12 is the number of channels of each µ-
PMU. Because the raw data is in millisecond’s resolution and
almost all practical events happen at a larger time scale, one
can safely use a sliding window to extract useful information.
The window size L is set to 12 according to the time scale of
the event of interest. We denote wit , {xit, · · · , xit+L} as the
tth window of stream i. For the purpose of detecting different
types of events, miscellaneous single stream and inter-stream
feature extraction are performed. A summary of computed
feature are given in Table I.

With the presented feature extraction procedure, a total
number of 312 features have been obtained. However, some
of them may be redundant as there are significant sim-
ilarities among extracted features, for example, when the
three phases are balanced, their single stream mean, vari-
ation, etc., are almost the same. From a machine learn-
ing point of view, adding redundant features does not help
event detection, but instead introduces extra noise and cause
computational difficulties. In this work, we adopt a method
developed in [37], called Minimum-redundancy-maximum-
relevance (mRMR). The procedure uses mutual information as
the metric of goodness of a feature set, and resolve the trade-
off between relevancy and redundancy. For each event, mRMR
is conducted to choose 20 most informative features [38][39].
Also note that all numerical experiments in the following are
conducted on a workstation having dual Xeon X5687 CPUs
and 72GB memory.

B. Performance of HS3M

The overall task is not only identifying the occurrence
of events versus stable state, i.e., the binary classification,
but also distinguishing 4 types of events including Voltage
Disturbance (VD) and Voltage Sag (VS), Motor Start (MS),
High Impedance fault (HI), i.e., the multi-class classification.
The training set contains about 40000 µPMU records with
detailed labels (completely labeled data). The testing data set
contains the similar events and has around 30000 data points,
but is collected at a different time. For the training of HS3M
which enables the inclusion of partial knowledge, another
36000 partially labeled data and 108000 unlabeled data are
also used (the effect of the size of these data sets will be
discussed later).

TABLE I: Extracted Candidate Features

Single Stream
Statistics mean(wi

t), var(wi
t), range(wi

t)
median(wi

t), entropy(wi
t), hist(wi

t)
Difference ui

t = Diff(xi
t); Statistics

Transformation fft(wi
t),wavelet(wi

t)

Inter Stream Deviation xi − xj ∀i, ∀j ∈ N (i)
Correlation corr(xi, xj) ∀i, ∀j ∈ N (i)

Fig. 4: Detection results over Time. Note that some periods
of stable state are shrunk for visualization purpose.

The performance of HS3M is compared with other popular
multi-class event detection methods, including cost sensitive
versions of Ada Boost, Decision Tree, and Gaussian Process
Classification. The hyper-parameters of those models, e.g.,
the cost balance coefficient, are chosen with 10-folds cross
validation (CV). A brief introduction of those methods and
their implementation details are listed below:
• Decision tree method: It create a tree-like model that

predicts the value of a target variable by learning sim-
ple decision rules inferred from the data features. The
conditional inference tree algorithm is implemented in
this work, which uses multiple significance tests to grow
the tree. For cross validation, the maximum tree depth is
varied from 10 to 50 by factors of 10, and the splitting
threshold is varied from 0.1 to 0.9 with 0.1 intervals.

• Ada Boosting Method: Boosting generates a prediction
model by combining many weak classifiers into a stronger
classification committee. The AdaBoost procedure is im-
plemented to combine basic tree classifiers for ensemble
learning. We vary the maximum tree depth from 10 to
50 by factors of ten. The number of boosting iterations
range from 100 to 500 by a step size of 50.

• Gaussian Process Classification (GPC): Instead of di-
rectly parameterizing a latent function for classification,
GPC models it with a generic Gaussian process. The
posterior of the process is updated with training data
set, and is squashed through a logistic function for
classification. The GPC is implemented with the help of
kernlab package 2, which includes several approximation
algorithms for acceleration. The radial basis kernel is used
with kernel width tuned from 2−5 to 24.

The binary detection results are shown in Figure 4 and
its performance are listed in Table II together with other

2http://www.jstatsoft.org/v11/i09/
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Fig. 5: Confusion Matrix for different methods. Diagonal terms are correct identifications and off-diagonal ones are mis-
classifications. mACC for multi-class detection accuracy. Note that the class of stable state is not included for better visualization.

methods under comparison. We observe that HS3M performs
extremely well in distinguishing stable state and events, with
99.13% binary accuracy (bACC), only 2.33% false positive
(false alarm) rate and 0% false negative (miss detection) rate.
Compared to other methods, the proposed HS3M outperforms
the rest, by at least 9% of bACC and 10% of false positive with
respect to the runner-up. The computational cost in terms of
training and testing (or prediction) time/memory usage are also
listed in Table II. It appears that HS3M requires longer time
and about median memory usage in the training phase. This
is expected since HS3M is a more comprehensive method in-
corporating partial information. On the other hand, the testing
time/memory usage of HS3M are one of the shortest/smallest.
This is due to the solution sparsity (Definition 2) of the HS3M
classifier. In practice, testing cost is of major concern because
event prediction should be done in real time on distributed
systems, while training can be performed “offline” on powerful
computers. In this regards, the proposed HS3M is promising
also when computational cost is a concern.

To compare the performance on distinguishing event types,
the confusion matrices (contingency table) for all methods are
shown in Figure 5. Each row of the sub-figure represents the
samples in predicted class while each column represents the
samples in actual (true) class. The overall multi-class accuracy
(mACC) is summarized in the title of each sub-figure. We see
from the confusion matrices that significant improvement is
achieved: HS3M provides 94.41% mACC, outperforming the
best of the other methods by around 11%, while the classic tree
based method only yields 75% classification accuracy. More-
over, HS3M gives improvements in differentiating all event
types, especially VS, MS, and HI with an accuracy at least
90%. The only issue is that it tends to confuse VD with VS,
which is somewhat expected as the criteria for distinguishing
VD and VS events are thresholding on the voltage magnitude.
In short, the results justified the effectiveness of the proposed
HS3M, as well as the idea of incorporating partial information
for event detection.

C. Effect of Partial Information

Last but not least, the benefit of including additional par-
tially labeled data and unlabeled data is investigated. To do
this, HS3M is evaluated with 0, 7200, 21600 and 36000

TABLE II: Comparison of (Binary) Detection Performance
and Computational Cost. bACC for binary Accuracy.

Method HS3M Ada Boost. Decision Tree GPC
bACC (%) 99.13 90.11 89.20 92.73

False Positive (%) 2.33 12.3 16.87 10.1
False Negative (%) 0.0 5.32 0.01 2.31
Time Train (min) 35.7 17.4 11.8 28.6
Time Test (sec) 53.7 206.6 41.2 221.9

Mem. Train (MB) 193 166 59 299
Mem. Test (MB) 0.79 2.91 0.52 292

Fig. 6: The incorporation of partially and unlabeled data

partially labeled data samples and 0 - 108000 unlabeled data
points. The testing accuracy (bACC) of each test, averaged
over 50 random sampled experiments, is plotted in Figure 6
(diamond line), together with the 0.75 and 0.90 confidence
intervals (shaded area). Note that when no partially labeled
data is included (blue line), HS3M reduces to the semi-
supervised (kernelized) support vector machine [40]. In the
case where unlabeled data is not incorporated (the beginning
of each line), HS3M can be viewed as a multi-class variations
of the consensus learning recently proposed in [41]. In gen-
eral, it is observed that the performance improves as more
partially labeled data and unlabeled data are added, while
the improvements exhibit a “diminishing return” property,
i.e., the marginal benefit of including more and more par-
tially/unlabeled data is decreasing. Besides, it appears clearly
that HS3M, by leveraging both source of information, signif-
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icantly outperforms previous semi-supervised and consensus
learning.

VI. CONCLUSION AND FUTURE WORK

In summary, with the help of high resolution µ-PMU
measurement, a pure data-driven framework is designed for
distribution network event detection by incorporating all types
of accessible labeled, partially labeled and unlabeled data.
More importantly, we developed a new optimization algorithm,
by revealing the locally explicit and globally convex property
of the dual solution. The experimental results on a real-world
µ-PMU dataset justified the effectiveness of the proposed
HS3M and the PDOP global optimization method, as well
as the benefit of incorporating partial knowledge for event
detection in power distribution network.

For future work, we will implement HS3M methods for a
large volume of µ-PMUs data streams, as well as developing
online learning HS3M method. More recorded events will be
used to train our algorithm and perform feature selection.
More importantly, the spatial-temporal characters of large
scale events in power systems will be investigated to detect
possible cascading effect.

APPENDIX

A. Derivation of the PDOP algorithm

With a slight abuse of notation, we omit the interme-
diate variable and denote the non-smooth convex function
J (θ∗(λ)) by J (λ). From previous discussion, we consider
the following non-smooth convex maximization:

max
λ∈P
J (λ) (10)

We first provide a global optimality condition for maximizing
non-smooth convex function, then we propose a corresponding
optimization algorithm that approaches global solution with
level set augmentation.

The global optimality condition for maximizing smooth
convex function, in particular convex quadratic functions, has
been studied before [35]. However, none of them consider non-
smooth piecewise defined functions. In this work, we extend
Strekalovsky’s condition to non-smooth cases. First of all,
the notion of level set is defined as the set of variables that
produces the same function values, i.e.,

Definition 4. The level set of function J at λ is defined by

EJ (λ) = {q ∈ Rn | J (λ) = J (λ)}

The following result gives sufficient and necessary condition
for a point λ∗ to be the global maximizer of non-smooth
convex function J (λ)

Theorem 3. Assume that J is not constant, then λ∗ is a
global optimal solution of problem (10) if and only if for all
λ ∈ P, q ∈ EJ (p∗), g(q) ∈ ∂J (q)

(λ− q)T g(q) ≤ 0 (11)

where ∂J (q) is the set of subgradients of J at λ.

By virtue of Theorem 3, we can check the optimality of any
point λ by solving

∆(λ) , max
q∈EJ (λ), λ

′∈P
g(q)∈∂J (q)

(λ′ − q)T g(q) (12)

We call the above maximization auxiliary problem at λ. This
seems to be a hard problem because (1) it is bilinear in
decision variables and (2) usually the level set EJ (λ) cannot
be calculated explicitly. Next we study solution method for
(12) based on approximating the level set with a collection of
representative points. To begin with, let us formally define the
notion

Definition 5. Given a user specified approximation degree m,
the approximation level set for EJ (λ) is defined by

Amλ =
{
q1, q2, · · · , qm | qi ∈ EJ (λ) i = 1, 2, · · · ,m

}
Now consider solving the auxiliary problem approximately

by replacing EJ (λ) with Amλ , we obtain that for each qi,
problem (12) becomes

max
λ∈P, g(qi)∈∂J (qi)

(λ− qi)T g(qi) (13)

Since J (λ) is almost everywhere differentiable, in most cases
g(qi) is unique and equals to the gradient ∇J (qi). Then
the auxiliary problem is a simple linear program. In the
cases when qi is on the boundary of critical regions, ∂J (qi)
becomes a convex set and the auxiliary problem becomes
a bilinear program. Generally bilinear program is hard, but
fortunately (12) has disjoint feasible sets and one can easily
check that it is equivalent to

max
λ∈P

{
max

g(qi)∈V (∂J (qi))
(λ− qi)T g(qi)

}
(14)

which uses the fact that the optimal solution to (13) must be
on the vertex of the feasible polyhedron, i.e., g∗(qi) must be
one of the vertices of ∂J (qi). Moreover, since J (λ) can be
viewed as a pointwise maximum, the subgradient is the convex
hull of one side derivatives of the neighboring critical regions.
The above analysis suggests an enumerative method for (12)
by solving a set of linear programs each with an element in
Amλ and a vertex of ∂J (qi).

Having solved the approximate auxiliary problem, we can
immediately determine if an improvement can be made with
current approximate level set. Let {(ui, si), i = 1, · · · ,m}
be the solution of (13) on the approximate level set Amλ , i.e.,

(ui − qi)Tsi = max
λ∈P, g(qi)∈V (∂J (qi))

(λ− qi)T g(qi) (15)

and define

∆(Amλ ) = max
i=1,··· ,m

(ui − qi)Tsi (16)

Then with the convexity of J we have

Proposition 2. For any λ ∈ P, if there exist qi ∈ Amλ ,
g(qi) ∈ V (∂J (qi)), and ui defined in (15), such that
(ui − qi)T g(qi) > 0, then J (ui) > J (λ).

Now the remaining problem is to construct approximate
level set given current point λ and the degree m. The following
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Algorithm 1 Parametric Dual Optimization Procedure
Choose λ(0) ∈ Λ; set k = 0; compute λ∗ with subgradient descent.
while k ≤ iter max do

Starting from λ(k), find local minimizer r(k) ∈ Λ with existing methods.
Construct approximate level set Am

r(k) at r(k)

for qi ∈ Am

r(k) do
for gj ∈ V (∂J (qi)) do

Solve uij = argmaxλ∈Λ (λ− qi)T gj #linear programming
end for
Let j∗ = maxIndexj{uij}; (ui, si) = (uij∗ , g

j∗ );
end for
Let i∗ = maxIndexi=1,··· ,m{(ui − qi)T si};
∆(Am

λ ) = (ui∗ − qi
∗

)T si
∗

; u(k) = ui∗ ;
if ∆(Am

λ ) > 0 then
Set λ(k+1) = u(k); k = k + 1; # improvement found

else
Terminate and output λ(k); # Global optimality condition

end if
Collecting explored critical region and explicit forms in Theorem 1.

end while

results shows that this is theoretically possible with the help
of a global minimizer.

Lemma 1. Let the global minimizer of J (λ) be λ∗, then for
any h ∈ Rn and λ 6= λ∗, there exist a unique positive scalar
γ, such that λ∗ + γh ∈ EJ (λ).

With this guarantee, we write approximate level set by

Amλ =
{
q1, q2, · · · , qm | qi = λ∗ + γih

i ∈ EJ (λ)

}
(17)

To explore directions for improvement, a natural choice of h
is a set of orthogonal basis. Specifically, we could start with a
random h1 and use Gram-Schmidt algorithm to extend it to m
orthogonal basis. For each hi, the corresponding γi is found
by solving:

Φ(γi) , J (λ∗ + γih
i)− J (λ) = 0 (18)

As stated in Lemma 1, the above function has a unique root,
which can be computed efficiently with line searching method
such as the Bisection algorithm. While another problem is
to solve λ∗ = argminJ (λ), which is a convex minimization
problem. We adopt a sub-gradient descent method since in
each critical region, the gradient can be calculated explicitly
with Theorem 1. By further considering the convex PWQ
structure of the problem, we have

Lemma 2. Let supλ ||λ
(1) − λ|| = B, and the Lipschitz

constant of J be G, then sub-gradient descent with iteration
T and optimal step size τi = B/G

√
T converges to global

minimum within O
(
n/
√
T
)

. To be specific, let J∗ be the
global minimum then

J (θ∗(λ
(T )
best))− J∗ ≤

BG√
T
≤ O

(
n√
T

)
, where

J (θ∗(λ(T )
best)) , min

{
J (α∗(λ(1))), · · · ,J (θ∗(λ(T )))

}
The overall PDM procedure for maxλ∈P J (λ) is sum-

marized in Algorithm 1. Given current solution λ(k), the
algorithm first tries to improve it with existing methods such
as AO, CCCP, and SGD. After finding a local minimizer r(k),
approximate level set Am

r(k) is obtained by solving (18) and
constructing (17). With Am

r(k) and vertices of current sub-
gradient set, a series of linear programming is solved to pick
up vector u(k) and subgradient s that maximize condition (11)

of Theorem 3. If this maximal value, i.e., ∆(Amλ ), is greater
than 0, then by Proposition 2, u(k) must be strict improvement
of r(k). The algorithm iterate until no improvement could be
found at current point with the associated approximate level
set. Combining Theorem 3 and Proposition 2, we have

Theorem 4. Algorithm I generates a sequence
{λ(1), · · · ,λ(k), · · · } that converges to the global maximizer
of J (λ) in a finite number of steps or finds an approximate
maximizer at user specified degree m.
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