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Abstract—Fault classification in power systems is a challenging
and complex task as the variety and variability of the electrical
parameters of the various network components in spatial and
temporal scales. The majority of machine learning methods for
event detection require the labeled data sets or examples of
previous events. However, the recorded event data happen in
different locations, time and system conditions. Therefore, they
are not aligned time-series which introduce more challenges
for feature selection and signal processing. To perform bet-
ter feature selection for time-series measurements, shape-based
methods along with time alignment (also called registration) are
needed. This paper presents the Fisher-Rao Registration Method
(FRMM) as a solution for the alignment of different time signals.
Amplitude and phase components resulting from the Fisher-
Rao registration method provide a means for implementing a
hierarchical clustering analysis classifying different fault events
by type. The algorithm was tested with the IEEE 13-nodes test
feeder simulated in RSCAD environment with over 1500 different
fault events presenting an average prediction rate of 98%.

Index Terms—Data Mining, Feature Selection, Shape-based
Data Analysis, Event Detection, Power Distribution Networks.

I. INTRODUCTION

The electrical power system is expected to deliver undis-
torted and uninterrupted sinusoidal rated voltage and current
at the rated frequency to the consumers [1]. Deviations and
abrupt changes in magnitude and frequency of the voltage and
the current waveforms from the standard rating are treated as
a disturbance or fault, resulting in the risk of malfunction
or damaging of electrical and electronic devices [2]. The
disturbances are typically caused by equipment failures, hu-
man errors and environmental conditions. Power quality (PQ)
disturbances and electrical faults followed by cascading effect
can increase the risk of outages, given the interconnection
and interdependency of the electrical equipment associated
with the grid. The multiple levels of abnormal events and
the interaction between them make a significant challenge for
building high fidelity mathematical models of the systems for
fault detection purpose. Therefore, data-driven and modeless
tools are needed for detection and classification of electrical
faults[1].

Several smart methodologies consisting of signal
processing-based feature extraction along with artificial
intelligence based classifiers have proposed to approach

this problem. In literature, Neural networks [3], [4], [5] and
Support Vector Machines (SVM) [6], [7], [8], [9], [10] are two
of the most used methods for classifying power system events
such as electrical faults. Many of them are combined with
feature extraction methods such as Fast Fourier Transform
[10], Wavelet Transform [11], [10], [3], [12], S-transform [6],
[13], and Principle Component Analysis (PCA) [8], [14]. One
primary concern in these methods is that testing and training
data sets are usually not time-aligned, i.e. fault events may
happen at any time and any location with different systems
constitutions during a time window T. This introduces
inaccuracies and uncertainties in the classification process.
In this work, we present a new approach for interpreting,
detecting and classifying power system events based on the
shape preserving method called the Fisher-Rao Registration
Methods (FRRM) [15], [16], [17]. Registration has been
successfully examined for disturbances classification (e.g.
[18]) with simulated signals but not for power systems.

In our approach, we provide a new way of characterizing
and measuring distance differences between fault events in a
power distribution network. The new notion of distance is used
to perform a clustering and to categorize fault types. Based on
the distances gathered from the training data, cluster templates
are created for each event type. The event templates are then
used to construct a classifier which performance is evaluated
in a cross-validation procedure.

II. DATA SHAPE PRESERVING BASED ON FISHER-RAO
METRIC REGISTRATION

To explain the concept of the Fisher-Rao Metric Registration
(FRRM), consider a set of functions, as shown in Fig. 1a, that
differ each other in both height and location of peaks and
valleys. Given that they are not aligned with the x axis, a
set of warping functions, like the ones depicted in Fig. 1c,
must be applied to each original curve so that they become
horizontally aligned as shown in Fig. 1b. After using FRRM
to a function or a time series (in our case, a voltage or current
data stream), the result is an average of all warped functions
as shown in Fig. 1d that preserves the shape of the original
data. It will be shown in the following sections that applying a
warping function comes from a group action with composition
as its primary operation.
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Fig. 1. Fisher-Rao Registration: (a) Set of original data; (b) Data set after
alignment or warping; (c) Warping functions; (d) Mean function after warping.

A. Events’ Space Construction

The high-resolution monitoring systems based on Phasor
Measurement Units (PMUs) and µPMUs that measure three
phases of timestamped voltage and current at very high res-
olution are recently introduced in distribution networks [19].
The typical sampling rate for PMUs is 120 sample per second
which is considered as the data frequency in this paper. For
the sake of clarity; we will assume for now that every event
has the same time span of length T . However, we emphasize
that the choice of the time frame in which the data can be
analyzed is also itself a non-trivial task. Define V and I, the
three-phase voltage and current respectively, as follows:

V = V (t) : [0, T ] 7→ R3

I = I(t) : [0, T ] 7→ R3.
(1)

where V = [Va(t), Vb(t), Vc(t)] and I = [Ia(t), Ib(t), Ic(t)]
with t ∈ [0, T ] and T being the length of the event.

In our approach, each phase signal corresponds to a different
dimension synchronized with timestamps, defining an event
space as a subspace of functions f : [0, T ] 7→ R3, matched
with necessary smoothness and integrability conditions. We
will denote this space by F and the elements of that space,
i.e. the signals of fixed length, as B ∈ F . In our analysis, we
are using a newly developed functional data analysis approach
to interpreting the events as shapes. Following the shape-
based methodology in [15], we are constructing the event
shape space (denoted by S) in three steps: First, interpreting
the space F as a Riemannian manifold with the Generalized
Fisher-Rao Riemannian metric [20]. Subsequently, transform-
ing F to a pre-shape space (S) with the Square Root Velocity
Function operator denoted by SRV F (·). The elements of S
are then denoted by q as in

SRV F (B) = q(t) = Ḃ(t)/

√
|Ḃ(t)|. (2)

Fig. 2. Distance between shape preserving function q1 and q2

Finally defining the shape space as a space of equivalence
classes of q (denoted by [q]) under warpings (γ(t)) of the time
domain of the event. The space from the mathematical point
of view is a quotient space S/Γ, where Γ is a set of all domain
warping functions γ(t).

B. Distances in the Events’ Shape Space

The benefit of the SRVF transformation is that it induces
a transformation of the Fisher-Rao Riemannian metric to a
standard L2 metric on a sphere.

Define L2([0, 1],R) (or simply L2) to be the set of all
SRVFs. Then, for every q ∈ L2 there exists a function f such
that q is the SRVF of that function f .

This has a particular application in the FRRM since warping
a function f by γ, then the SRVF of f ◦ γ becomes:

q̃(t) = (q ◦ γ)(t)
√
γ̇(t) (3)

This transformation will be denoted by (q, γ) = (q ◦ γ)
√
γ̇.

Following [21] we have that for any two SRVFs q1, q2 ∈ L2

and γ ∈ Γ, ‖(q1, γ)− (q2, γ)‖ = ‖q1 − q2‖. Thus the distance
in the space of events can be simply calculated as the arc-
length between two points on a sphere. As shown in Fig. 2,
the distance between two events [B1, B2], which have been
transformed to q1 and q2 in the sphere S2 is thus defined as:

distanceF (B1, B2) = min
γ
||q1 − q2 ◦ γ

√
γ̇||

= cos−1(< [q1], [q2] >L2).
(4)

We will follow the interpretation in the article [15] and
denote it the amplitude distance. The definition of ampli-
tude distance arises from an intuitive fact that an ampli-
tude difference between two functions should not change
upon random, simultaneous domain warpings. In particular:
amplitude(B(t)) = amplitude(B(γ(t))), where γ : [0, T ] 7→
[0, T ] is a registration (orientation preserving diffeomorphism).
Thus we define an amplitude of a function B as a equivalence
class under all time warpings:

Amplitude(B) = [B] =

{B ◦ γ|γ[0, T ] 7→ [0, T ], γ ∈ C∞([0, T ])}.
(5)

The definition of amplitude difference leaves us with an
intuitive approach to the phase difference, namely the phase
difference reflects the part that is not captured by amplitude.



Algorithm 1 Registration under Fisher-Rao metric
Input: Signals Bi with i = 1, 2, .., n.
Output: Amplitude and phase components distances:

distanceF (Bi, Bj) and distancephase(γi→j).
Initialisation :

1: Define Bi(t) : [0, T ] 7→ R3, i = 1, 2, ..., n.
2: for i, j = 1, 2, ..., n. do
3: Calculate SRV F (Bi) and SRV F (Bj) with (2)
4: Calculate distanceF (Bi, Bj) with (4)
5: Compute γi→j with (6)
6: Compute distancephase(γi→j) with (7)
7: end for
8: return distanceF (Bi, Bj) and distancephase(γi→j)

That is the amount of warping γ necessary to align the
curve B1 to B2 after the SRVF transformation, to minimize
the amplitude-distance between them. It is worth mentioning
that the amplitude and phase in this context are geometrical
parameters of mapped data point on the sphere space, not to be
confused with the electric voltage and current phasor values.

The optimal γ is found using the dynamic programming
approach with the use of an R [22] package “fdasrvf” [23]:

γ1→2 = argmin
γ
dSRV F (q1, q2 ◦ γ

√
γ̇). (6)

where γ represents the phase adjustment. This can be
quantified as follows:

distancephase(γ1→2) = cos−1(< 1,
√
γ̇1→2 >). (7)

Hence, for every signal B1 and B2, two distances will be
calculated as result after the FRRM: the distanceF (B1, B2)
and the distancephase(γ1→2). The FRRM is resumed in
algorithm 1.

III. THE CASE-STUDY FOR HIGH RESOLUTION
MEASUREMENT DATA

A. RSCAD model of IEEE 13 Test Feeder

Fig. 3 shows the IEEE 13 nodes test feeder used as a case
of study for this paper. The test feeder is highly loaded for a
4.16 kV system and presents the inherent high unbalance of a
normal distribution network. The complete data used for this
system may be found in [24].

In order to validate the effectiveness of the FRRM-based
classification algorithm, a set of fault events were applied to
the test feeder. The test feeder is implemented in RSCAD.
Different faults with a duration of 0.2 seconds (approx. 12
cycles) were applied, one at a time, in three locations: nodes
645, 680, and 692 (see Fig. 3).

Measurements from the distribution test feeder are necessary
for the fault type classification algorithm. In a distribution net-
work, it is usual that only the main feeder has a measurement
device providing voltage and current time-series. For this test
case, the meter providing both voltage and current readings is
located at node 632, that is, the secondary side of the main
feeder’s transformer (see Fig. 3).

Fig. 3. Imposed fault locations on the IEEE 13 nodes test feeder [24]

TABLE I
LABELING BY FAULT TYPE

Labels
4 fault-types labels 11 fault-types labels

AG, BG, CG SPH (Single-phase)
ABG, BCG, ACG 2PHG (Two-phase-to-ground)

AB, BC, AC 2PH (Two-phase)
ABCG, ABC 3PH (Three-phase)

In a three phase system, there are eleven types of faults
possible which include phase A to ground (AG), phase B
to ground (BG), phase C to ground (CG), phases A & B
to ground (ABG), phases B & C to ground (BCG), phases
A & C to ground (ACG), phase A to phase B (AB), phase
A to phase C (AC), phase B to phase C (BC), three-phase
(ABC), and three-phase-to-ground (ABCG). For each fault
type, a total of 50 events were simulated with random low
impedance values ranging from 0.01 to 0.015 ohm. A set
of 550 training/test observations of these bolted faults were
simulated for each location, giving a total of 1650 analyzed
fault events. Additionally, in order to test the FRRM, a re-
categorization of fault type classes has been assigned as shown
in table I.

Three events are presented here as an example: Fig. 4a
shows a single-line-to-ground fault as seen from the meter
(node 632), showing that voltage from the faulted phase de-
creasing considerably while the current increases to dangerous
levels in the same phase. Double-line-to-ground and three-
phase fault types present the same behavior for two and three
phases respectively (see Fig. 4b and Fig. 4c).

IV. VALIDATION & DISCUSSION

A. Clustering and Categorizing

As stated in section II, the FRRM algorithm returns the am-
plitude and phase components distances, distanceF (Bi, Bj)
and distancephase(γi→j), for an n number of signals. This re-
sults in a nxn matrix where its elements represent the distance
between its components. The matrix containing these distances
provides the necessary information to perform a classification
algorithm by clustering similar events or observations by their
fault types. It is important to remark that in a real power
system, most of the different fault events will not have a
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Fig. 4. RSCAD simulations of IEEE 13 nodes test feeder: (a) Measurements from node 632 with a single-line-to-ground fault at node 680; (b) Measurements
from node 632 with a double-line-to-ground fault at node 680; (c) Measurements from node 632 with a three-phase fault at node 680;

label providing their type. Therefore, an unsupervised learning
method, such as Hierarchical Clustering, provides a more
realistic approach to the classification problem. For our case of
study, knowing the fault type (or class) of each event simulated
will provide a metric to determine the prediction accuracy of
our classification algorithm.

Hierarchical cluster analysis (HCA) seeks to build a hier-
archy of clusters based on the distances between each of the
observations being classified. Each fault type has been given a
class and it is expected that after applying the FRRM, events
with the same label have similar distance values.

Fig. 5 shows the result of the FRRM for each one of
the fault locations. For the faults simulated at node 680, the
multidimensional scaling (MDS) visualization for 11 fault-
type labels, the re-categorization of 4 fault-type labels and
the resulting clustering matrix are shown in figures 5a, 5b and
5c respectively. The same resulting plots are shown for nodes
692 and 645 in the second and third row of Fig. 5 respectively.

Fig. 5a shows the MDS representation of the FRRM result-
ing matrix for node 680. MDS is a technique to visualize the
information contained in a distance matrix while preserving
the between-object distances as much as possible. In this
figure, it can be seen that different types of faults tend to
cluster in this MDS representation. There is a large clustering
for single-line-to-ground faults which are distributed in the
center of plot while two-phase and three-phase are distributed
in the left and right respectively. The re-categorized fault types
are shown in Fig. 5b. This figure shows again the single-
phase events in the center while the two-phase and three-phase
faults are distributed in the left and right respectively. Fig. 5c
presents the clustering matrix for the faults set at node 680.
The clustering matriz contains the distances resulting from
the FRRM between each pair of signals. A small distance
value means that the signals are similar. Thus, it is likely
that signals from an specific fault type have small distances
difference, clustering together. As expected, the diagonal in
the clustering matrix shows a group of events having similar
distances, showing that there is a representative clustering by
fault types.

Fig. 5d shows the MDS visualization for the faults set at
node 692. Faults at this node present a similar pattern as at
node 680, with three-phase events clustering on the left side of

the plot as they present similar distance values. Single-phase
faults are grouped in the in the center while two-phase faults
are gathered on the right. The 4-fault-types labels confirm
these clustering pattern as seen in Fig. 5e. Also, the clustering
matrix (Fig. 5f) presents the group patterns as a result of the
hierarchical clustering, where similar distance values can be
seen across the diagonal.

The faults taking place at node 645 present a remarkable
difference with respect to the previous to faulted nodes. Fig. 5g
shows a distinctive clustering for three-phase faults in the top
left, two-phase faults on the right while single-phase events
are shown in bottom-center section of the MDS plot. This
distinction can be seen more clearly in Fig. 5h, showing that
the algorithm was able to distinguish the number of faulted
phases in a very accurate manner. The clustering matrix in Fig.
5i shows three marked clusters across the diagonal, validating
the visualization with respect to the labels. Observing Fig. 3,
it can be seen that node 645 is directly next to the node where
the meter is located. Therefore, it becomes expected that the
best clustering is performed in nodes closer to the meter.

B. Cross-Validation for Clustering

The nature of unsupervised learning methods such as HCA
draws up a big challenge for testing its prediction accuracy.
It becomes essential to have a training and a testing set with
defined labels to measure if the algorithm is clustering into
the classes needed. In order to obtain the prediction rate of
the HCA-FRRM, a cross validation technique was utilized. A
large number of observations were sampled from the fault set
and used as a test while the remaining performed as a training
set to predict the event class. A nearest-neighbor approach was
taken in order to determine the class to which the observed
event belongs. Results from the cross-validation method are
shown in table II. Prediction with 4-fault-type labels has very
high accuracy with an average of 98.9% prediction rate. For
the 11-fault-type labels, the prediction rate has an average of
78.33%. Once again, location 3 has the best prediction from
among the three locations used as the meter is closer to this
node. This infers that the location of the meter is crucial for
having a high prediction rate.
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Fig. 5. Clustering for Voltage - Amplitude distances: (a) 11 fault types applied to node 680 (550 observations); (b) 4 fault types applied to node 680
(550 observations); (c) Clustering matrix for node 680; (d) 11 fault types applied to node 692 (550 observations); (e) 4 fault types applied to node 692
(550 observations); (f) Clustering matrix for node 692. (g) 11 fault types applied to node 645 (550 observations); (h) 4 fault types applied to node 645 (550
observations); (i) Clustering matrix for node 645. (j) Legend for 11-fault-type labels. (k) Legend for 4-fault-type labels. (l) Distance value color code.



TABLE II
FAULT CLASSIFICATION PREDICTION RATE

Location
Labels

4 fault-types labels 11 fault-types labels

Node 680 98.3% 81.3%
Node 692 98.6% 70.69%
Node 645 100% 83%

C. Future Work

Further steps and our future direction which didn’t fit
into the scope of this paper are as follow. Other methods
of exhaustive and non-exhaustive cross-validation methods
such as “Leave-p-out” and “k-fold” will be used to test the
prediction rate further. The algorithm will also be validated
with other unsupervised learning techniques such as centroid-
based and distribution-based clustering. Instead of comparing
a signal with the every signal of the training set, characteristic
templates of the different types of faults will be created with
FRRM for direct comparison. The optimal placement of the
measuring devices can lead to better result as it was seen that
the clustering is strongly related to the location as the fault
impedance seen from the meter changes.

V. CONCLUSIONS

In this paper, a classification method based on the Fisher-
Rao registration was presented. Amplitude and phase distances
between signals are used to cluster them into their fault types.
Over 1500 fault types were simulated in RSCAD to test the
algorithm. After applying the FRRM, events with the same
class tended to cluster together, as expected. It was seen
that nodes 692 and 680 had a similar pattern, where it was
distinguishable what type of event was taking place. Faults
set at node 645 had a particular behavior as the clustering
was more clearly defined. This was expected as node 645 is
closer to the metering device which infers that the algorithm
would perform better with an optimal metering allocation. A
cross-validation method was implemented to determine the
algorithm’s performance showing a 98% of average accuracy
for a number of phases faulted prediction as shown in table
II. Prediction for faulted phases had an average of 78% of
prediction rate.
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