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ABSTRACT

An accurate nonnegativity preserving limiter is presented for use with discontinuous Galerkin (DG) dis-

cretizations of scalar advection equations. The nonnegativity of the tracer field is preserved through the

application of a mass conservative limiter that truncates negatives within each element and linearly rescales

the resulting DG polynomials to preserve element-mean mass. As a preliminary step, the DG fluxes through

each side of the element are limited in amanner similar to flux-corrected transport to ensure that the element-

meanmass remains nonnegative during each individual stage of the time integration. In this paper, it is proven

that such a truncation and mass aware rescaling (TMAR) does not change the order of accuracy of the

underlying unlimitedDG approximation. Numerical tests with two-dimensional deforming flows confirm that

the method remains accurate and efficient while preserving nonnegativity. In comparison to some popular

previous approaches, TMAR limiting is particularly well suited to approximations that use high-degree

polynomial expansions (quartics or higher) to capture features that are only moderately well resolved.

1. Introduction

Discontinuous Galerkin (DG) finite element methods

are an increasingly popular means of producing nu-

merical approximations to systems of hyperbolic con-

servation laws. Methods from this family are attractive

because they are high-order accurate, geometrically

flexible, h–p adaptive, compactly defined, and scale well

on distributed memory systems (Giraldo et al. 2002). In

this paper we will consider DG approximations to the

one- and two-dimensional transport of an inert scalar

tracer advected by a flow with velocity u(x, t) through a

spatial domain V having suitable boundary conditions.

Letting c(x, t) denote the tracer concentration and

r(x, t) the density, the tracer evolution satisfies

›

›t
(rc)1= � (ruc)5 0, (x, t) 2 V3R

1

c(x, t5 0)5c
0
(x) . (1)

Using the dry mass continuity equation, the preceding

may be written in the advective form:

›c

›t
1 u � =c5 0. (2)

Analytic solutions to (2) satisfy the boundedness

condition that if m#c0 #M for all x 2 V, then

m#c(x, t)#M for all t$ 0 and all x 2 V. When the

flow is nondivergent (i.e., = � u5 0), solutions to (1)

satisfy the same boundedness condition. However, even

in divergent flows, solutions to (1) will nevertheless still

satisfy the nonnegativity condition that if 0#c0 for all

x 2 V, then 0#c(x, t) or all t$ 0 and all x 2 V. In the

following we focus on the case of nondivergent flowwith

constant density r5 1 to keep the mathematical nota-

tion associated with solutions to (1) concise, but our

results are easily extended to divergent flows and non-

uniform density fields.

Beyond emulating a physical quality of the analytic

solution, maintaining the nonnegativity of the numerical

solution can be of great importance to stability, particu-

larly when (1) is generalized to include nonlinear source

and sink terms such as chemical reactions or cloud mi-

crophysical processes. In practice, the tendencies from

these sources and sinks are often integrated separately

from the advective tendencies through techniques like

a Current affiliation: Department of Applied Mathematics,

University of Washington, Seattle, Washington.

Corresponding author address: Dale Durran, Dept. of Atmo-

spheric Sciences, University of Washington, Box 351640, Seattle,

WA 98125.

E-mail: drdee@uw.edu

DECEMBER 2016 L I GHT AND DURRAN 4771

DOI: 10.1175/MWR-D-16-0220.1

� 2016 American Meteorological Society

mailto:drdee@uw.edu


operator splitting. An example of this type of a problem

in a geophysical context is the reactive transport system

considered in Lauritzen et al. (2015). If spurious negative

species concentrations are generated in the transport split

step, they can quickly destabilize the solution by inducing

reactions in the chemistry split step that would otherwise

be impossible (Durran 2010). When a high-order method

such as a DG scheme is used to simulate the transport of

data, which contains poorly resolved steep gradients,

Gibbs-like oscillations can generate spurious negatives. It

is, therefore, often necessary to augment the standard

DG discretization by adding a limiter to preserve non-

negativity when simulating tracer transport in the pres-

ence of nonlinear sources and sinks.

Proposed limiters have taken a variety of approaches

such as adding artificial viscosity (Hartmann andHouston

2002; Persson and Peraire 2006), extending classical TVB

limiters (Cockburn and Shu 1989; Cockburn et al. 1989),

weighted nonoscillatory (WENO) DG limiters (Qiu and

Shu 2004, 2005a, 2005b), the solution of a quadratic

minimization problem (Guba et al. 2014), and a posteriori

limiting (Dumbser et al. 2014). For a brief review of these

methods, see Dumbser et al. (2014). Another widely used

method for keeping DG approximations to conservation

laws nonnegative is to adapt the bounds preserving lim-

iter proposed in Zhang and Shu (2010, 2011), hereafter

the ZS limiter, for use as a nonnegativity preserving

limiter (Rossmanith and Seal 2011; Qiu and Shu 2011;

Guo et al. 2014). The ZS limiter ensures nonnegativity by

introducing a conservative linear rescaling originally

proposed in Liu and Osher (1996) that, when combined

with a suitably limited time step, prevents the element-

integrated tracer mass from becoming negative. The ZS

limiter is attractive for several reasons: it preserves high-

order accuracy, is locally defined, and is straightforward

to implement alongside existing methods (Zhang and

Shu 2010).

We propose an alternative limiter that enjoys many of

the same benefits as the ZS limiter but can perform

better for higher-degree polynomial approximations

with similar computational effort. Like the ZS approach,

nonnegativity is preserved in two stages. In the first

stage a flux-corrected transport (FCT) adjustment is

made to the numerical fluxes just before the integration

step to ensure that the element-integrated tracer mass

remains nonnegative after the step. After the step, the

local DG polynomial representation is corrected to

remove any negatives that might have developed within

the element using a nonlinear adjustment that truncates

negatives values to zero while rescaling the concentra-

tions at the other nodes to conserve mass.

The remainder of the paper is structured as follows.

In section 2 we describe the basic DG framework and

the ZS limiter. Section 3 presents the proposed non-

negativity preserving truncation and mass aware resca-

ling (TMAR) limiter. Section 4 examines the empirical

performance of the TMAR limiter on several one-

dimensional and two-dimensional test problems.

Section 5 investigates the computational expense of

implementing the TMAR limiter, and section 6 con-

tains our conclusions.

2. The groundwork

a. Basic DG formulation

The proposed method is based on the standard

Runge–Kutta DG (RKDG) formulation presented in

Hesthaven and Warburton (2008), Durran (2010), and

Ramachandran et al. (2011). We divide the computa-

tional domain V into nonoverlapping elements si and

approximate the solution c(x, t) within element si as an

expansion of basis polynomials uk(x) defined locally

over each element,

f
si
(x, t)5 �

k

a
i,k
(t)u

k
(x) for x 2 s

i
, (3)

where the summation is taken over the total number of

basis polynomials. For one-dimensional problems, themost

common choices for the basis polynomials are Legendre

polynomials (leading to modal methods) or Lagrange

polynomials (leading to nodal methods). Lagrange poly-

nomials of degree N are chosen to interpolate the N1 1

Gauss–Legendre–Lobatto (GLL) quadrature nodes xk,

which have been mapped to si.

The DG approximation to (1) is obtained by multi-

plying the differential equation by the test function

uk(x) and formally integrating by parts over si to get

d

dt

ð
si

f
si
(x, t)u

k
(x)dx5

ð
si

f
si
(x, t)u(x, t) �=u

k
(x)dx

2

ð
›si

f
si
(s, t)u(s, t) � nu

k
(s)ds "u

k
,

(4)

where n is the outward-facing unit normal on the

boundary of si. The flux term F(fsi
)5fsi

(s, t)u(s, t) in

the boundary integral in (4) is not uniquely defined be-

cause f can be discontinuous across element interfaces.

To specify a unique approximation this term is replaced

with a numerical flux function F̂(�, �). A simple choice

for transport equations is the upwind flux:

F̂(f2
h ,f

1
h )5

�
uf2

h if u � n$ 0

uf1
h if u � n, 0

, (5)
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where f2
h refers to the local (or interior) solution at the

interface and f1
h refers to the neighbor (or exterior)

solution. Although upwind fluxes result in a first-order

scheme in standard finite-volume methods, they do

not adversely affect the spectral convergence of DG

schemes.

Substituting the expansion (3) into (4) leads to the

matrix equation:

M
da

i

dt
5G , (6)

where ai is the vector of expansion coefficients on ele-

ment si, M is the mass matrix with entries:

M
j,k
5

ð
si

u
j
(x)u

k
(x) dx , (7)

and G is the vector:

G
k
5

ð
si

f
si
(x, t)u(x, t) � =u

k
(x) dx

2

ð
›si

F̂(f2
si
,f1

si
) � nu

k
(s) ds. (8)

The integrals in (7) and (8) are approximated using

numerical quadrature. Nodal methods typically per-

form the quadrature on the GLL nodes, while modal

methods use more accurate Gaussian quadrature. As a

consequence of the orthogonality of Legendre poly-

nomials,M is diagonal for modal methods, which allows

(6) to be integrated using explicit time-stepping

schemes. On the other hand, if the mass-matrix in-

tegral in (7) for a nodal method were to be evaluated

exactly, M would be dense (Durran 2010, p. 344), cou-

pling the time derivatives for all expansions coefficients

within each element and leading to implicit algebraic

equations for the ai at each new time step. However, if

the nodal mass matrix is instead approximated using

the GLL integration rule implied by the underlying

interpolation grid, the resulting mass matrix will be

diagonal. This technique, sometimes known as mass

lumping (Karniadakis and Sherwin 2005, p. 57), is used

to obtain our nodal solutions. Regardless of quadrature

technique, the semidiscrete system in (6) is integrated

using the three-stage, third-order strong stability pre-

serving Runge–Kutta (SSPRK) method in Gottlieb

et al. (2009) for the numerical simulations performed in

this paper.

It is computationally expensive, particularly in mul-

tidimensional problems, to ensure the solution is non-

negative at all x within element si, and it is unnecessary.

In practice all that is required is that the solution be

nonnegative over the set of subelement data that would

be used in more general problems to compute (via op-

erator splitting) interactions between tracer species that

require nonnegativity. For nodal methods the natural

choice for the subelement data is simply the numerical

solution at the tensor-product GLL nodes, which as a

consequence of Lagrange interpolation, are the values

of the expansion coefficients themselves. For modal

methods in d-dimensional space, we specify the subele-

ment data to be the averages over a uniform Cartesian

subgrid denoted by si,k, k5 1, . . . , (N1 1)d such that

si 5<ksi,k. Letting jsi,kj denote the length, area or vol-

ume of si,k, the average mass over each subgrid element

can be evaluated as

f
i,k
5

1

js
i,k
j
ð
si,k

f
si
(x, t) dx. (9)

The set of modal expansion coefficients ai,k in element

si can be mapped to the set of fi,k by a projection

operator P such that fi 5Pai. After the subgrid-

element averages are adjusted for nonnegativity, a

reconstruction operator R is applied to map these

modified averages back to the polynomial coefficients

at the beginning of the next time step. Because the

subelement data have the same number of degrees of

freedom as the original polynomial approximation,

the matrix representation of P will be nonsingular and

R will be its inverse P21.

b. ZS nonnegativity preservation

As the first half of a two-part formulation, the ZS

limiter preserves element-mean nonnegativity through a

restriction on the length of the time step (Zhang and Shu

2010). The largest time step for which element-mean

nonnegativity is guaranteed is obtained by preserving

nonnegativity at the set of L̂GLL nodes, where L̂ is the

smallest integer for which an L̂-point GLL quadrature is

exact for polynomials of degree N (i.e., 2L̂2 3$N).

Then if the quadrature weights wk are expressed as-

suming the coordinate in each DG element has been

rescaled to the interval [21, 1], the largest Courant

number mmax for which a one-dimensional or Strang

split multidimensional ZS method is guaranteed to

preserve element-mean nonnegativity satisfies the

following:

m
max

5max
x2V

juj Dt
Dx

#min
k

w
k

2
. (10)

Zhang and Shu (2010) also showed that two-dimensional

schemes must obey the more restrictive condition:

m
x
1m

y
#min

k

w
k

2
, (11)
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where

m
x
5 max

(x,y)2V
juj Dt

Dx
, m

y
5 max

(x,y)2V
jyj Dt

Dy
.

If the mesh is isotropic and maxjuj5maxjyj, this con-

dition will correspond to a maximum time step that is

half as large as in the corresponding one-dimensional

problem.

After the integration step, the values at some of the

GLL nodes may have become negative. These negatives

must be eliminated before the next forward step, and the

ZS limiter removes them through a linear rescaling. If

f is the local DG approximation to c over the element si
with element-mean f, the rescaled polynomial f* is

computed as

f*5 u(f2f)1f, u5min

� j02fj
jm2fj, 1

�
, (12)

where

m5 min
x*2G

f(x*), (13)

and in the most straightforward implementation, G is

simply the set of L̂ GLL nodes in element si.

Zhang and Shu (2011) noted that a more efficient

implementation is possible, which in one-dimensional

problems requires just three points: the two points at the

edges of the element and a third internal point x̂* whose

value f(x̂*) can be written in terms of the values of f at

the edges. This gain in efficiency becomes important in

two ormore dimensions, when it can significantly reduce

the number of points at which f(x̂*) needs to be eval-

uated. For example, in two-dimensional problems with

Cartesian elements, G will consist of points along the

edges of the element plus an additional internal point x̂*

whose value f(x̂*) may be determined from integrals of

the aforementioned edge values. The minimum number

of nodes along each edge required to integrate a one-

dimensional polynomial of degree N exactly are L

Gaussian quadrature points such that 2L2 1$N. Al-

though it might seem faster to use the L̂ GLL nodes

along each boundary at which the solution is already

known, in two dimensions it is more efficient to use the

minimum number of Gaussian quadrature points be-

cause that set will have the largest minimum weight wk

and, therefore, allow the largest time step. Use of this

larger time step offsets the extra computational effort

required to evaluate the solution at the Gaussian

quadrature points along each boundary.

Using the minimum number of nodes to preserve

nonnegativity, as above, yields the largest minimum wk

and permits the largest possible time step as per (10) or

(11), but it can allow negative values to develop on

tensor product mesh, which contains N1 1 nodes along

each coordinate. Therefore, an additional application of

(12) is required in which G is the set of all nodes on the

tensor product mesh. In our three-stage third-order

SSPRK time integration, negatives are eliminated by

applying (12) at the minimal number of nodes prior to

each Runge–Kutta stage, and after the last stage (prior

to the evaluation of any hypothetical coupling between

scalars that requires nonnegativity), (12) is applied one

additional time to eliminate negatives at the tensor

product nodes.

3. TMAR nonnegativity preservation

a. One-dimensional formulation

In the context of simple forward time differencing, the

basic DG algorithm is modified in two ways:

1) The numerical fluxes at element boundaries are

adjusted prior to each forward step to ensure that

the mean tracer concentration in each element re-

mains nonnegative after the step.

2) After each time step, the solution inside the element

is conservatively modified to remove any negative

tracer concentrations in the discrete subelement

data.

Let us consider the first adjustment. If f(x, t) is an

approximate solution generated by aDGmethod, then a

scheme for a forward-in-time update of each element

mean, or equivalently a numerical approximation to (4)

when uk51, can be written as follows:

fn11
si

5 fn
si
2

Dt

Dx
[F̂(f

i1(1/2)
2 ,f1

i1(1/2))
n

2F̂(f
i2(1/2)
2 ,f1

i2(1/2))
n]. (14)

To ensure that fn11
si

$ 0, the standard upstream fluxes

in (14) are replaced with modified fluxes F*i6(1/2) de-

termined as described in Smolarkiewicz (1989). This ap-

proach is a special case of the flux-corrected transport

algorithms that were originally developed for finite-

volume methods but have also been employed for

element-mean nonnegativity in finite-element methods

(Restelli et al. 2006; Ullrich and Norman 2014). The de-

tails of this algorithm can be found in Durran (2010) and

Smolarkiewicz (1989), and a detailed implementation of

this method in two dimensions is presented in section 3b.

For higher-order SSPRK time stepping, the FCT adjust-

ment is applied to the fluxes during each forward step in

the integration, and since the SSPRKmethods are convex
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combinations of forward Euler steps, the full multistage

update will also satisfy the element-mean nonnegativity.

One important benefit of this FCT algorithm is that it

does not impose an additional limitation on the length of

the time step.

The second step of the proposed limiter applies a

nonlinear truncation andmass aware rescaling (TMAR)

to the N1 1 subelement values in which negatives are

truncated to zero and the remaining nonnegative values

are rescaled to conserve mass. Such a rescaling will al-

ways be possible because the mean value of the ap-

proximate solution produced by the FCT limited

forward stepfsi
is nonnegative. The truncation produces

an intermediate approximation f1
i,k given by

f1
i,k 5

(
f
i,k

if f
i,k
$ 0

0 if f
i,k
, 0

.

The element-mean mass after truncation f1
si
is used to

compute a rescaling ratio:

r
i
5

f
si

f1
si

. (15)

Since fsi
$ 0 and the truncation adds mass to the ele-

ment, 0# ri # 1. Finally, the original subelement values

are replaced by

f
i,k
* 5

(
r
i
f
i,k

if f
i,k
$ 0

0 if f
i,k
, 0

(16)

whose element-mean satisfies

f
si
*5 r

i
f1
si
5f

si
, (17)

guaranteeing conservation. In our three-stage third-

order SSPRK time integration, element-mean negatives

are avoided by applying the FCT flux limiter during each

Runge–Kutta stage. After the last stage (prior to any

hypothetical chemistry), the TMAR limiter is applied to

eliminate negatives at the tensor product nodes, or in the

case of modal DG, in any of the equal subelement

volumes.

Figure 1 illustrates the difference between the linear

rescaling used in the ZS limiter (shown in red) and the

TMAR adjustment described above (shown in green)

when applied to a sample fifth-degree nodal polynomial

f(x) (shown in blue) having negative values at three of

the GLL nodes: two at the element edges and one near

the center. After applying the linear ZS rescaling, the

two largest magnitude negative nodal values have been

scaled to zero while the smaller magnitude negative in

the center is pushed into positive values. Moving this

node into positive values requires an unnecessarily large

amount of mass be redistributed from the other positive

nodes to maintain conservation. In contrast, the TMAR

modification, which simply sets the value at this node to

zero, produces less damping at the positive nodes.

Neither the TMAR nor the ZS-adjusted solutions

need be nonnegative at every point in the element.

Nonnegativity is ensured only for the set of subelement

data that could potentially be used in a subsequent

time-split calculation of chemical reactions or cloud-

microphysical tendencies. In the case shown in Fig. 1, the

subelement data are the nodal values, and the TMAR-

adjusted result remains slightly negative over a small

region.

We conclude this section with a theorem guaranteeing

that TMAR limiting does not degrade the high-order

accuracy of the underlying DG method; the proof is

given in the appendix.

Theorem 1. Let fsi
(x) be the unmodified Mth-order

DG approximation to c(x) in si at some arbitrary time,

subject to the constraint that fsi
$ 0. Then the TMAR

limited solution f
si
*(x) is also an Mth-order approxima-

tion to c(x).

b. Two-dimensional formulation

The TMAR limiter described in section 3 can be

readily extended to multidimensional problems. Let fi,j

FIG. 1. Fifth-degree polynomial f(x) with negative values at

three GLL nodes (blue) and the polynomial as modified by linear

the ZS rescaling in (12) (red) and by TMAR (green). The GLL

nodal values are indicated by black dots.
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denote the average value of the degree N local DG ap-

proximating polynomial within a rectangular element

si,j. A DG scheme for updating fi,j in a forward Euler

step from time tn will satisfy the following:

fn11
i,j 5fn

i,j 2
Dt

DxDy

(ðy
j1(1/2)

y
j2(1/2)

[Fn
i1(1/2)(y)2Fn

i2(1/2)(y)] dy

1

ðx
i1(1/2)

x
i2(1/2)

[Gn
j1(1/2)(x)2Gn

j2(1/2)(x)]dx

)
,

(18)

whereDx andDy are the length of the elements along the

x and y coordinates, respectively; and Fn
i6(1/2)(y) and

Gn
j6(1/2)(x) are the numerical flux functions at time tn

through the interfaces perpendicular to the x and y co-

ordinates, respectively. Equation (18) can be rewritten

more compactly in terms of the mean fluxes ~Fi6(1/2) and
~Gj6(1/2) through each interface as

fn11
i,j 5fn

i,j 2
Dt

DxDy
[Dy( ~Fn

i1(1/2)2
~Fn
i2(1/2))

1Dx( ~Gn
j1(1/2)2

~Gn
j2(1/2))] . (19)

Notice that (19) is in the same form as a finite-volume

update to fn
i,j using the mean fluxes. With this in mind,

we apply the standard multidimensional FCT algorithm

presented in Zalesak (1979) to (19) to determine cor-

rected mean fluxes ~F*
i6(1/2) and ~G*

j6(1/2), which will not

drive fn
i,j negative. For completeness, this approach is

summarized below:

1) Let Qi,j be the maximum outward flux sustainable

over a single time step without forcing fn11
i,j negative:

Q
i,j
5

fn
i,jDxDy

Dt
.

2) Let Pi,j be the net mean flux out of element si,j, given

by

P
i,j
5Dy[max(0, ~Fn

i1(1/2))2 min(0, ~Fn
i2(1/2))]

1Dx[max(0, ~Gn
j1(1/2))2 min(0, ~Gn

j2(1/2))].

3) Determine the ratio by which the mean fluxes will be

corrected to ensure that a negative concentration will

not be generated:

R
i,j
5min

 
1,

Q
i,j

P
i,j
1 «

!
,

where « is a small parameter (nominally 10210

times a typical magnitude for c) that is added to

avoid division by zero.

4) Evaluate the corrected mean fluxes such that

~F*
i1(1/2)

5

8<
:
R

i,j
~Fn
i1(1/2) if ~Fn

i1(1/2) $ 0

R
i11,j

~Fn
i1(1/2) if ~Fn

i1(1/2) , 0
,

~G*
j1(1/2)

5

8<
:
R

i,j
~Gn
j1(1/2) if ~Gn

j1(1/2) $ 0

R
i,j11

~Gn
j1(1/2) if ~Gn

j1(1/2) , 0
.

This approach yields a modification to themean fluxes

that will keep fi,j nonnegative. However, in practice it is

the pointwise fluxes, evaluated at quadrature locations

around the boundary of the element that are required

for numerical evaluation of the integrals in (18).

Therefore, it is necessary to map the modification to the

mean fluxes into an equivalent modification of the

pointwise fluxes. Let jk and wk denote the one-

dimensional GLL quadrature points and weights along

the element boundary centered at (xi1(1/2), yj). The

mean flux through this boundary is the linear combina-

tion of the pointwise fluxes:

~F
i1(1/2)

5
1

2
�
N

k50

w
k
F
i1(1/2)

(j
k
) . (20)

We adopt the simple approach of applying the FCT

multiplicative correction factor for themean flux to each

pointwise flux. In other words, if ~F*i1(1/2) 5 c ~Fi1(1/2) for

some correction factor 0# c# 1, then the modified

nodal fluxes F*i1(1/2)(jk) that will be used in the forward

step are given by F*i1(1/2)(jk)5 cFi1(1/2)(jk).

These FCT flux corrections are applied in each stage

of the SSPRK integration so that the element-mean

concentrations will be nonnegative after the last stage.

Immediately after this last stage (before any hypothet-

ical chemistry step), the TMAR limiter is used to trun-

cate negatives and rescale the positive concentrations in

the discrete subelement data. The rescaling ratio is

computed in a manner similar to (15),

r
i,j
5

f
i,j

f1
i,j

, (21)

where f1
i,j is the mean value of the truncated ap-

proximation over the two-dimensional subelement

data. The limited subgrid-element averages f
i,j,k
* for

k5 1, . . . , (N1 1)2 are then given by

f
i,j,k
* 5

(
r
i,j
f
i,j,k

if f
i,j,k

. 0

0 if f
i,j,k

, 0
. (22)

A proof similar to that for Theorem A in the appendix

shows that this two-dimensional limiter does not reduce
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the asymptotic convergence rate of the underlying DG

approximation.

4. Numerical tests

a. One-dimensional tests

One of the most important benefits of implementing

DG methods is that they allow the flexibility of refining

the approximate solution by either adding additional

elements (h refinement) or using local polynomials

of higher degree (p refinement). Therefore, we will

consider the influence of each limiter on the h- and

p-convergence rates for smooth initial data. Let

t(x)5 4jx2 1/4j and define an initial tracer density as a

member of the family of cosine bells:

c
0,q
(x)5

8><
>:
�
11 cos(pt)

2

�q
if t# 1

0 otherwise

, (23)

where q 5 1, 2, or 4. Because c0,q has 2q2 1 continuous

derivatives (c0,q is C2q21), larger values of q permit

greater convergence rates as the degree p of the DG

polynomial truncation is increased. Although c0,q is

nonnegative, for all values of q considered here, the

initial profile contains gradients steep enough to gen-

erate negative concentrations in the unlimited numeri-

cal solution. In these tests, c is advected by a constant

wind speed u5 1 around the periodic domainV5 [0, 1].

Figure 2 illustrates the impact of the limiting methods

on the h convergence of theL2 error. The three methods

shown use a nodal basis of fifth-degree polynomials

with a time step chosen for the SSPRK3 integration so

that Dt} (Dx)2, which guarantees that spatial conver-

gence rates are observed. For the C1 and C3 tests the

observable convergence rates (i.e., the slopes in Fig. 2)

are constrained by the smoothness of the analytic solu-

tion, which limits the observed order of accuracy to be

roughly second and fourth order, respectively. However,

in the third panel the optimal sixth-order accuracy of the

method is observed in the unlimited-method results.

While both limited solutions are slightly less accurate

than the unmodified solution, their convergence rates

nevertheless closely match the unlimited convergence

rate for all three initial conditions considered. This re-

sult is consistent with the proofs that both methods

preserve the original convergence rate of the unlimited

method under h refinement.

Figure 3 examines the impact of limiting on

p-convergence rates for the same initial conditions consid-

ered in Fig. 2. To measure the impact of p refinement we

define the effective spacing Dxe 5Dx/N to be the aver-

age grid spacing between the GLL nodes. A time step

Dt} (Dx)(N11)/3 is chosen so that the spatial convergence

rates are observed, and the local polynomial degree is

refined from 4 to 9 using a fixed mesh of 32 elements. As

in the h-refinement tests, the convergence rates are

influenced by smoothness of the exact solutions. The

unlimited and the TMAR solutions both produce very

similar errors that decrease as the polynomial degree

increases (i.e., as Dxe decreases), attaining roughly

fourth-order convergence for theC1 test, eighth order in

the C3 test, and approximately twenty-second order in

the C7 test. On the other hand, the errors in the ZS so-

lutions are not reduced as the polynomial-order in-

creases in the C1 and C3 tests. The ZS solutions do show

some improvement under p refinement in the C7 test,

although this may be primarily due to the reduction in

FIG. 2. Convergence results under h refinement: log–log plot of theL2 error as a function of the number of elements for (a)C1, (b)C3 and,

(c) C7 cosine bell tests with initial conditions defined in (23). Each test uses a nodal basis with N5 5 and a time step of Dt5 0:5Dx2.
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the magnitudes of the undershoots generated in the

unlimited solution in the C7 case, which tends to reduce

the differences between the unlimited and both limited

solutions. In summary, the TMAR limiter does a good

job of maintaining the original accuracy of the unlimited

solution under p refinement.

b. Two-dimensional tests

We now examine the performance of the TMAR

limiter applied both to fully two-dimensional DG

methods and to dimensionally split DG schemes, which

advance the solution through pairs of one-dimensional

integrations (Strang 1968). Table 1 lists numerical values

for the maximum permissible one-dimensional Courant

numbers for polynomial degrees between 2 and 5 when

using SSPRK3 time stepping. Themaximumpermissible

time step taken in the unlimited and TMAR methods is

determined based on the maximum possible Courant–

Friedrichs–Lewy (CFL) number for stability. An unsplit

unlimited method or TMAR-limited method has a

maximum stable Dt that is smaller by a factor of 221/2

than the values listed in Table 1. For ZS-limited

methods, the time step condition given by (10) for split

methods or (11) for unsplit methods must be satisfied

to guarantee element-mean nonnegativity. Adopting a

strategy similar to that in many practical applications,

our solutions are obtained using a time step that brings

the maximum local Courant number throughout the

integration to approximately 95% of its limiting value.

Inmultidimensional problems, complex velocity fields

can stretch and deform initially smooth data into thin

filaments creating poorly resolved concentration gradi-

ents regardless of how well the initial conditions are

resolved. This behavior occurs in our test case, in

which a sheared swirling flow deforms an initially

circular tracer distribution into a narrow coil before

reversing and returning the tracer to its original shape.

This test was originally described in LeVeque (1996).

The velocity field is periodic over a time interval

0# t#T5 5 and is defined by the streamfunction:

C(x, y, t)5
1

p
sin(px)2 sin(py)2 cos

�pt
T

�
, (24)

and the relations:

u(x, y, t)5
›C

›y
, y(x, y, t)52

›C

›x
. (25)

The initial data c0(x, y) for this test are a C3 cosine bell

centered at the point (x0, y0)5 (1/4, 1/4) given by (23),

with q5 2 and t(x) replaced with t(x, y) defined by

t(x, y)5
1

r
0

[(x2 x
0
)2 1 (y2 y

0
)2]1/2 , (26)

where the initial radius is r0 5 1/4. Tests involving the

same flow and initial condition were considered in

Ullrich and Norman (2014). Figure 4a shows the exact

solution at t5 0 and T, while Fig. 4b shows a reference

FIG. 3. Convergence results under p refinement: log–log plot of theL2 error as a function of the effective spacingDxe for (a)C1, (b)C3, and

(c) C7 cosine bell tests. Each test uses a nodal basis with a 32 element mesh and a time step of Dt5 0:5Dx(N11)/3.

TABLE 1. Maximum permissible Courant numbers mmax for DG

methods of polynomial degree 2–5 schemes with SSPRK3 time

stepping. TheZS values are fromZhang and Shu (2010); modal and

nodal values are from Ullrich (2014).

mmax

Degree Modal Nodal ZS

2 0.210 0.450 0.167

3 0.130 0.255 0.167

4 0.090 0.168 0.083

5 0.067 0.120 0.083

4778 MONTHLY WEATHER REV IEW VOLUME 144



solution computed using very high time and space res-

olution1 at the time of maximum deformation t5T/2.

Figure 5 shows numerical results at t5T for nine

different combinations of limiter and DG approxima-

tion strategies. Each DG approximation uses a 243 24

element grid with N5 4, for a total of 120 degrees of

freedom (DOFs) along each coordinate. The results in

the top row were obtained using a fully two-dimensional

nodal DG implementation, while those in the bottom

two rows were obtained using dimensional splitting with

nodal (second row) and modal (third row) basis func-

tions. The columns show the unlimited (left), ZS-limited

(middle), and TMAR-limited (right) solutions. The

maximum and minimum values of f are listed in each

panel, as well as the error measured from the analytic

solution in the L2 and L‘ grid norms (labeled as E2 and

E‘, respectively).

All three of the unlimited approximations do a fair job

of maintaining the original amplitude of the exact so-

lution, although as expected, they also generate spurious

negative concentrations with magnitudes ranging up to

7% of the initial amplitude of the bell. These negatives

are completely removed in each of the limited solutions.

Relative to the unlimited solutions, the TMAR limited

nodal solutions (Figs. 5c,f) see a 5%–7% decrease in

their global maximum and a slight increase in both error

norms. TMAR limiting has an even smaller impact on

the accuracy of the modal solution, reducing its maxi-

mum amplitude by less than 1%. The superiority of both

the unlimited and TMAR-limited modal solutions over

their nodal equivalents arises from their use of the exact

mass matrix (7). While the TMAR-limited solutions

appear qualitatively similar to their unlimited counter-

parts with the negatives removed, all of the ZS limited

solutions are significantly degraded. The ZS limiter

produces substantial distortion of the originally sym-

metric tracer field, a 12%–25% reduction in the global

maximum, and a large increase to both error norms.

The performance of the ZS limiter can be improved

considerably by doubling the number of elements along

each coordinate to 48, as shown in the middle column of

Fig. 6. Nevertheless, as also shown in Fig. 6, the TMAR-

limited solutions remain superior at this higher resolu-

tion; they look nearly identical to the unlimited solutions

with the negatives removed and suffer very little deg-

radation in the maximum amplitude. In particular, the

TMAR-limited modal solution (Fig. 6i) is essentially

identical to the nonnegative part of its unlimited coun-

terpart (Fig. 6g).

We now consider the influence of the limiters on so-

lutions to the same swirling-flow problem under p re-

finement with the total DOF held constant. Figure 7

FIG. 4. Exact solution for the C3 cosine bell tracer concentration field in the reversing deformation flow in (25) at

times (a) 0 and T, and (b) converged solution for time T/2. Contours are at intervals of 0.1.

1 The reference solution was computed usingN5 5,Dx5 0:00625,

and Dt5 5:1823 1024.
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shows results obtained using the unsplit nodal scheme as

the polynomial degree is increased while the number of

elements is reduced to keep the total DOF constant. The

solutions in the top row were computed using a 303 30

element grid with local polynomial order N5 3. Thus,

along each coordinate there are 4 DOF per element and

120 DOF across the full domain. The second row shows

solutions computed using a 243 24 grid with N5 4,

while those in the last row were generated on a 203 20

element grid with N5 5.

FIG. 5. Comparison of tracer concentration fields at t5T using (left) no limiting, (middle) ZS limiting, or (right) TMAR limiting.

(a)–(c) Unsplit nodal solutions, (d)–(f) split nodal solutions, and (g)–(i) split modal solutions. The domain is partitioned into a 243 24

element grid. Error norms and the domain maximum andminimum concentrations are noted in each plot. Contours are plotted every 0.1,

and regions of negative concentration are highlighted in light gray.
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In the unlimited case (left column of Fig. 7), using

higher-degree polynomials reduces the error in both

norms and the magnitudes of the negative undershoots.

Higher degree also helps maintain maximum tracer

concentration and the circular symmetry of the solution

at t5T. Qualitatively similar improvements are seen as

N is increased in the TMAR-limited solution (right

column of Fig. 7), although as would be expected from

Fig. 5, the error norms and the reduction in the maxi-

mum concentration in the TMAR-limited solutions ex-

ceed those obtained without limiting. In contrast, the

quality of the ZS-limited solutions (middle column of

Fig. 7) degrades as N is increased, a behavior consistent

with that shown for our one-dimensional tests in Fig. 3.

FIG. 6. As in Fig. 5, but using a grid of 483 48 elements.
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The difference in performance between the TMARand

ZS limiters in these tests can be largely explained by

comparing their impact on the values at the nodes as il-

lustrated in Fig. 1. Both limiters involve a linear rescaling

applied to nonnegative nodal values, but that rescaling, as

well as the modifications made to the negative nodal

values, are different. When the ZS limiter is active, the

local polynomial is modified so that the largest negative

undershoot is scaled to zero while smaller undershoots

take positive values. In contrast, when the TMAR limiter

FIG. 7. Impact of polynomial refinement on tracer concentration fields at t5T. Each panel uses a total of 120 DOF along each

coordinate. The limiting method is labeled at the top of each column and the degree of polynomial truncation is labeled to the left of each

row. Error norms and the domain maximum and minimum concentrations are noted in each plot. Contours are plotted every 0.1, and

negative regions are highlighted in light gray.
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is active, all negative undershoots are truncated to zero,

giving a smallermodification for all but theminimumnodal

value. By minimizing the magnitude of the adjustment at

the nodes with negative values, the TMAR limiter mini-

mizes the amount by which the positive part of the solution

must be damped to conserve mass. Also in contrast to

the ZS limiter, if the undershoot is at a node with a small

weighted contribution to the element-averaged mass,

the TMAR adjustment at that node has a correspond-

ingly small effect on the total adjustment required for

mass conservation. The mass-weighted adjustment used

in the TMAR approach can be particularly important

when using basis functions of high polynomial degree,

where most of the nodes are clustered near the edges of

each element and make relatively small contributions to

the mean mass.

As a final test, we examine the behavior of these

limiters in a case with large discontinuities by replacing

the initial tracer field used in the previous tests with a

unit-amplitude slotted cylinder of radius 0.15 centered

at (x0, y0)5 (0:25, 0:5). The slot, in which the tracer

density is zero, includes all points within the cylinder for

which jx2 x0j, 0:025 and y. y0 1 0:0625. Figure 8

compares unsplit nodal solutions at time T obtained

using no limiting, TMAR limiting, and ZS limiting with

N5 5 and 32 elements (for a total of 192 DOF) along

each axis. Because of the discontinuous initial data, the

maximum magnitude of overshoots and undershoots in

the unlimited solution now exceeds 20% of the initial

height of the cylinder. The TMAR solution removes the

negatives and reduces the overshoot to about 12%

without significantly increasing the E2 and E‘ errors.

The worst solution with the largest error norms is gen-

erated using the ZS limiter, which produces short-

wavelength noise that significantly distorts the solution.

5. Computational efficiency

We now turn to comparing the computational effi-

ciency of the schemes used to obtain the solutions in the

preceding two-dimensional deformation tests. The effi-

ciency of a given scheme is a function of the maximum

time step allowed by that scheme, the work required per

time step, and the accuracy of the result at a given spatial

and temporal resolution. The work per time step is both

machine dependent and influenced by the efficiency of

the code written for its implementation. All of our re-

sults are obtained using the same computing resource,

and we have endeavored to impose a similar degree of

optimization in the FORTRAN codes used to imple-

ment these methods. Despite these efforts, the following

results are subject to the caveat that they are still

somewhat machine and implementation specific.

Both theZS andTMAR limiters require calculations in

connection with each substep of the SSPRK scheme as

well as a final adjustment to eliminate negatives after the

full SSPRK update. The work per time step required

in the final update, via (12) for the ZS method or (22) for

the TMAR scheme, is similar. Somewhat more work is,

however, required during each individual substep by the

FCT flux correction for the TMAR method than for the

most efficient ZS rescaling algorithm that uses the Gauss

FIG. 8. Comparison of (a) unlimited, (b) TMAR-limited, and (c) ZS-limited solutions tracer concentration for the slotted cylinder at

t5T. Each panel uses an unsplit nodal basis with a 323 32 element mesh. Error norms and the domain maximum and minimum con-

centrations are noted in each plot. Contours are plotted every 0.1, and negative regions are highlighted in light gray. The exact solution is

outlined by the heavy black line.
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points along each element boundary to implicitly evaluate

the solution at one additional interior point. Table 2

compares the average CPU time spent for a single time

step for the ZS and TMARmethods in the C3-cosine-bell

deformation-flow test using N5 4 and 1923 192 ele-

ments. The values in Table 2 are normalized by the time

required for a single step of the unlimited scheme.2 On a

per-time-step basis, the ZS limiter requires 22% more

computation time than the unlimited scheme, while the

TMAR method requires 34% more time.

These results for the work per time step do not take

into account important differences in the maximum

permissible time step for eachmethod. The time step for

the ZS scheme must satisfy the bound (11) in order to

guarantee nonnegativity (roughly mmax 5 0:04 in this

case),3 while the TMAR limiter can use the maximum

time step for which the unlimited method is stable

(roughly mmax 5 0:12). Thus, as shown in the last column

of Table 2, the ZS method takes about 3 times as long to

complete the integration as does the TMAR-limited

scheme. This comparison could, nevertheless, be less

favorable for the TMAR scheme in a massively parallel

implementation because the FCT modification of the

fluxes needs to be communicated among the various

elements, whereas the unmodified ZS fluxes does not

require such extra communication. If the modest addi-

tional parallel communication required by the FCT

limiter proves to be too inefficient, the FCT step in our

limiter can be avoided by limiting the time step to the

same value used in the standard ZS scheme.4

Another key measure of efficiency is the time re-

quired to obtain a solution of a desired accuracy.

Figure 9 shows the L2 error plotted as a function of the

CPU time required to obtain unsplit-nodal and split-

modal solutions to the C3-cosine-bell deformation-flow

test at t5T. All computations were performed with

fourth-degree polynomials and 24, 48, 96, or 192 ele-

ments along each coordinate axis. (The concentration

fields for the 24- and 48-element cases were plotted in

Figs. 5 and 6, respectively.) At any particular CPU time,

the TMAR-limited solution clearly gives a more accu-

rate result, with an L2 error roughly an order of mag-

nitude smaller than that generated by the ZS-limited

solution. Note also is that for both limiters, the split

modal methods are more accurate than the corre-

sponding unsplit nodal results.

6. Conclusions

We have introduced a nonnegativity preserving limiter

for discontinuous Galerkin approximations to multidi-

mensional scalar transport problems with nonnegative

initial data. The proposed TMAR limiter truncates neg-

ative nodal values while simultaneously applying a mass

aware rescaling to the remaining positive nodal values.

This approach requires the element-mean concentration

field to be positive prior to the TMAR adjustment, and

this was ensured by an FCT-style correction to the stan-

dard DG fluxes computed at the element boundary in

each forward substep of the SSPRK time integration. The

limiter is also suitable for modal DG implementations in

which the nonnegativity of the solution is maintained

over subelement volumes of uniform size.

FIG. 9. TheL2 norm of error as a function of computational time

spent to integrate the C3 cosine bell deformation test using unsplit

nodal and split modal methods in combination with TMAR or ZS

limiting. Data points are shown for these simulations, which use 24,

48, 96, or 192 elements along each coordinate.

TABLE 2.Work per time step and total time required to integrate

deformation test for ZS and TMAR limiters applied to unsplit DG

usingN5 4 and an 1923 192 element grid. Entries are normalized

by the values for the unlimited method.

Method CPU time per step Total time

Unlimited 1.00 1.00

ZS 1.22 3.68

TMAR 1.34 1.34

2Our benchmark unlimited integrations were also performed

using the three-stage third-order SSPRK scheme, allowing an easy

assessment of the computational overhead introduced by the

nonnegativity preserving algorithms. Nevertheless, if limiting were

not required, the SSPRK integrator could be replaced by a variety

of classical three-stage third-order Runge–Kutta schemes for

which the maximum stable time step increases by a factor of 1.73.
3 In a series of empirical tests, we found small negatives de-

veloped when the ZS limiter was used in this test case with time

steps for which mmax exceeded about 0.065.
4When element-mean nonnegative mass is ensured by limiting

the time step, rather than the fluxes, TMAR limiting must be

performed after each stage of an SSPRK integration (like the ZS

rescaling).
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TMAR limiting maintains the geometric flexibility,

compact formulation, and h–p adaptivity of the original

DG formulation. It also maintains the order of accuracy

of the underlying unlimited scheme. Our tests show that

it can perform better than the well-known limiter due to

Zhang and Shu (2010) in two-dimensional problems in

which localized initial tracer fields deform in a swirling

flow. TMAR limiting differs from the approach in

Zhang and Shu (2010) because it does not overcorrect

some negatives into positive values and because spuri-

ous undershoots at nodes near element boundaries,

which have relatively less influence on the element-

mean mass, exert only a correspondingly minor influ-

ence on the rescaling. The advantage of the TMAR

limiter is particularly pronounced when using DG

polynomials of modestly high degree (fifth or greater)

and relatively coarse spatial resolution. In our tests, the

TMAR limiter was also able to obtain solutions with L2

errors an order of magnitude smaller than those com-

puted over the same CPU time using the ZS limiter.

TMAR limiting may be easily extended to spectral

element methods in which the basic functions are tensor

products of Lagrange polynomials interpolating the

GLL nodes. As shown by Guba et al. (2014), a re-

striction on the time step similar to that used with the ZS

limiter will ensure that the element-mean mass remains

nonnegative after each forward step of an SSPRK in-

tegration. TMAR limiting may then be performed after

each forward step to preserve nonnegativity within each

element. The performance of the TMAR limiter in

spectral-element discretizations on the cubed sphere,

and the extent to which the TMAR approach preserves

tracer correlations, will be examined in a future

publication.
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APPENDIX

Proof of Theorem 1

Theorem 1. Let fsi
(x) be the unmodified Mth-order

DG approximation to c(x) in si at some arbitrary time,

subject to the constraint that fsi
$ 0. Then the TMAR

limited solution f
si
*(x) is also an Mth-order approxima-

tion to c(x).

Proof. Because fsi
(x) is an Mth-order approximation

to c(x) it follows that

max
x2si

jc(x)2f
si
(x)j5O (DxM) , (A1)

so it suffices to show that the TMAR modification is

small in the sense that

max
x2si

jf
si
*(x)2f

si
(x)j5O (DxM) . (A2)

Since the coefficients in the Lagrange polynomial rep-

resentation of f
si
*(x) are given by the modified nodal

values in (16):

max
x2si

jf
si
*(x)2f

si
(x)j5 max

x2si

����� �
N

k50

[f
si
*(x

k
)2f

si
(x

k
)]u

k
(x)

����� ,
(A3)

#C
N �

N

k50

jf
si
*(x

k
)2f

si
(x

k
)j , (A4)

where CN is a constant that depends only onN. Thus we

need to show that �N

k50jfsi
*(xk)2fsi

(xk)j5O (DxM).
There are two cases to consider. First suppose that

fsi
(xk)# 0, then f

si
*(xk)5 0, so fsi

(xk)#f
si
*(xk)#c(xk).

Since fsi
(x) is an approximation to cwith error O (DxM),

it follows that

jf
si
*(x

k
)2f

si
(x

k
)j# jc(x

k
)2f

si
(x

k
)j5O (DxM) . (A5)

On the other hand suppose that fsi
(xk). 0, then

f
si
*(xk)5 rifsi

(xk) where r is given in (15). Noting that

ri # 1:

jf
si
*(x

k
)2f

si
(x

k
)j5 (12 r

i
)f

si
(x

k
) . (A6)

Defining

f1
si
(x

l
)5

8<
:
f

si
(x

l
) if f

si
(x

l
)$ 0

0 if f
si
(x

l
), 0

and

f2
si
(x

l
)5

8<
:
0 if f

si
(x

l
)$ 0

f
si
(x

l
) if f

si
(x

l
), 0

, (A7)

and using (15), the coefficient (12 ri) may be rewritten

as

12 r
i
5
�
N

l50

w
l
jf2

si
(x

l
)j

�
N

l50

w
l
jf1

si
(x

l
)j
. (A8)

Substituting (A8) into (A6) and using the inequality

�N

l50wljf1
si
(xl)j$wkfsi

(xk) to bound the denominator in

(A8) from below gives
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jf
si
*(x

k
)2f

si
(x

k
)j# 1

w
k

�
N

l50

w
l
jf2

si
(x

l
)j . (A9)

From (A5) it follows that jf2
si
(xl)j5O (DxM) for all

l5 0, . . . , N. Thus,

jf
si
*(x

k
)2f

si
(x

k
)j#D

N
DxM 5O (DxM) , (A10)

where DN is a constant which depends only on N.

Therefore, jf
si
*(xk)2fsi

(xk)j5O (DxM) for all k, and the

TMAR limiting maintains Mth-order accuracy with re-

spect to h refinement.
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