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ABSTRACT

An accurate nonnegativity preserving limiter is presented for use with discontinuous Galerkin (DG) dis-
cretizations of scalar advection equations. The nonnegativity of the tracer field is preserved through the
application of a mass conservative limiter that truncates negatives within each element and linearly rescales
the resulting DG polynomials to preserve element-mean mass. As a preliminary step, the DG fluxes through
each side of the element are limited in a manner similar to flux-corrected transport to ensure that the element-
mean mass remains nonnegative during each individual stage of the time integration. In this paper, it is proven
that such a truncation and mass aware rescaling (TMAR) does not change the order of accuracy of the
underlying unlimited DG approximation. Numerical tests with two-dimensional deforming flows confirm that
the method remains accurate and efficient while preserving nonnegativity. In comparison to some popular
previous approaches, TMAR limiting is particularly well suited to approximations that use high-degree
polynomial expansions (quartics or higher) to capture features that are only moderately well resolved.

1. Introduction

Discontinuous Galerkin (DG) finite element methods
are an increasingly popular means of producing nu-
merical approximations to systems of hyperbolic con-
servation laws. Methods from this family are attractive
because they are high-order accurate, geometrically
flexible, h—p adaptive, compactly defined, and scale well
on distributed memory systems (Giraldo et al. 2002). In
this paper we will consider DG approximations to the
one- and two-dimensional transport of an inert scalar
tracer advected by a flow with velocity u(x, t) through a
spatial domain () having suitable boundary conditions.
Letting (x, r) denote the tracer concentration and
p(x, t) the density, the tracer evolution satisfies

LoD+ (u) =0, (x1) € OXR"

P(x, 1= 0) = ¢ (x). (1)
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Using the dry mass continuity equation, the preceding
may be written in the advective form:

W wvy=0. @)
ot

Analytic solutions to (2) satisfy the boundedness
condition that if m=y,=M for all x €}, then
m=y(x, ) =M for all t=0 and all x € ). When the
flow is nondivergent (i.e., V-u=0), solutions to (1)
satisfy the same boundedness condition. However, even
in divergent flows, solutions to (1) will nevertheless still
satisfy the nonnegativity condition that if 0 = ¢, for all
x € O, then 0=ys(x, t) or all =0 and all x € . In the
following we focus on the case of nondivergent flow with
constant density p =1 to keep the mathematical nota-
tion associated with solutions to (1) concise, but our
results are easily extended to divergent flows and non-
uniform density fields.

Beyond emulating a physical quality of the analytic
solution, maintaining the nonnegativity of the numerical
solution can be of great importance to stability, particu-
larly when (1) is generalized to include nonlinear source
and sink terms such as chemical reactions or cloud mi-
crophysical processes. In practice, the tendencies from
these sources and sinks are often integrated separately
from the advective tendencies through techniques like
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operator splitting. An example of this type of a problem
in a geophysical context is the reactive transport system
considered in Lauritzen et al. (2015). If spurious negative
species concentrations are generated in the transport split
step, they can quickly destabilize the solution by inducing
reactions in the chemistry split step that would otherwise
be impossible (Durran 2010). When a high-order method
such as a DG scheme is used to simulate the transport of
data, which contains poorly resolved steep gradients,
Gibbs-like oscillations can generate spurious negatives. It
is, therefore, often necessary to augment the standard
DG discretization by adding a limiter to preserve non-
negativity when simulating tracer transport in the pres-
ence of nonlinear sources and sinks.

Proposed limiters have taken a variety of approaches
such as adding artificial viscosity (Hartmann and Houston
2002; Persson and Peraire 2006), extending classical TVB
limiters (Cockburn and Shu 1989; Cockburn et al. 1989),
weighted nonoscillatory (WENO) DG limiters (Qiu and
Shu 2004, 2005a, 2005b), the solution of a quadratic
minimization problem (Guba et al. 2014), and a posteriori
limiting (Dumbser et al. 2014). For a brief review of these
methods, see Dumbser et al. (2014). Another widely used
method for keeping DG approximations to conservation
laws nonnegative is to adapt the bounds preserving lim-
iter proposed in Zhang and Shu (2010, 2011), hereafter
the ZS limiter, for use as a nonnegativity preserving
limiter (Rossmanith and Seal 2011; Qiu and Shu 2011;
Guo et al. 2014). The ZS limiter ensures nonnegativity by
introducing a conservative linear rescaling originally
proposed in Liu and Osher (1996) that, when combined
with a suitably limited time step, prevents the element-
integrated tracer mass from becoming negative. The ZS
limiter is attractive for several reasons: it preserves high-
order accuracy, is locally defined, and is straightforward
to implement alongside existing methods (Zhang and
Shu 2010).

We propose an alternative limiter that enjoys many of
the same benefits as the ZS limiter but can perform
better for higher-degree polynomial approximations
with similar computational effort. Like the ZS approach,
nonnegativity is preserved in two stages. In the first
stage a flux-corrected transport (FCT) adjustment is
made to the numerical fluxes just before the integration
step to ensure that the element-integrated tracer mass
remains nonnegative after the step. After the step, the
local DG polynomial representation is corrected to
remove any negatives that might have developed within
the element using a nonlinear adjustment that truncates
negatives values to zero while rescaling the concentra-
tions at the other nodes to conserve mass.

The remainder of the paper is structured as follows.
In section 2 we describe the basic DG framework and
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the ZS limiter. Section 3 presents the proposed non-
negativity preserving truncation and mass aware resca-
ling (TMAR) limiter. Section 4 examines the empirical
performance of the TMAR limiter on several one-
dimensional and two-dimensional test problems.
Section 5 investigates the computational expense of
implementing the TMAR limiter, and section 6 con-
tains our conclusions.

2. The groundwork
a. Basic DG formulation

The proposed method is based on the standard
Runge-Kutta DG (RKDG) formulation presented in
Hesthaven and Warburton (2008), Durran (2010), and
Ramachandran et al. (2011). We divide the computa-
tional domain () into nonoverlapping elements s; and
approximate the solution ¢(x, t) within element s; as an
expansion of basis polynomials ¢, (x) defined locally
over each element,

d)si(x, 1) = g,ai’k(t)q)k(x) for xes,, 3)

where the summation is taken over the total number of
basis polynomials. For one-dimensional problems, the most
common choices for the basis polynomials are Legendre
polynomials (leading to modal methods) or Lagrange
polynomials (leading to nodal methods). Lagrange poly-
nomials of degree N are chosen to interpolate the N + 1
Gauss-Legendre-Lobatto (GLL) quadrature nodes x,
which have been mapped to s;.

The DG approximation to (1) is obtained by multi-
plying the differential equation by the test function
¢(x) and formally integrating by parts over s; to get

cciithiQ’)S;(X’ D, (x)dx = 'Li¢sl_(X, nHu(x,r) - Vo, (x) dx

[ #6000 n0,00ds o,
@)

where n is the outward-facing unit normal on the
boundary of s;. The flux term F(¢,) = ¢, (s, Hu(s, 1) in
the boundary integral in (4) is not uniquely defined be-
cause ¢ can be discontinuous across element interfaces.
To specify a unique approximation this term is replaced
with a numerical flux function F(-, -). A simple choice
for transport equations is the upwind flux:

up, if u-n=0
ugp, if w-n<0’

Fdy b)) = { 5)
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where ¢, refers to the local (or interior) solution at the
interface and ¢, refers to the neighbor (or exterior)
solution. Although upwind fluxes result in a first-order
scheme in standard finite-volume methods, they do
not adversely affect the spectral convergence of DG
schemes.

Substituting the expansion (3) into (4) leads to the
matrix equation:

da,
M— =G, 6
7 (6)
where a; is the vector of expansion coefficients on ele-
ment s;, M is the mass matrix with entries:

M, = [ 0,00, dx Q)
and G is the vector:
G, = J ¢, (x,Hu(x,1) - Vo, (x) dx

- L F(y,$,) - no,(s) ds. ®)

The integrals in (7) and (8) are approximated using
numerical quadrature. Nodal methods typically per-
form the quadrature on the GLL nodes, while modal
methods use more accurate Gaussian quadrature. As a
consequence of the orthogonality of Legendre poly-
nomials, M is diagonal for modal methods, which allows
(6) to be integrated using explicit time-stepping
schemes. On the other hand, if the mass-matrix in-
tegral in (7) for a nodal method were to be evaluated
exactly, M would be dense (Durran 2010, p. 344), cou-
pling the time derivatives for all expansions coefficients
within each element and leading to implicit algebraic
equations for the a; at each new time step. However, if
the nodal mass matrix is instead approximated using
the GLL integration rule implied by the underlying
interpolation grid, the resulting mass matrix will be
diagonal. This technique, sometimes known as mass
lumping (Karniadakis and Sherwin 2005, p. 57), is used
to obtain our nodal solutions. Regardless of quadrature
technique, the semidiscrete system in (6) is integrated
using the three-stage, third-order strong stability pre-
serving Runge-Kutta (SSPRK) method in Gottlieb
etal. (2009) for the numerical simulations performed in
this paper.

It is computationally expensive, particularly in mul-
tidimensional problems, to ensure the solution is non-
negative at all x within element s;, and it is unnecessary.
In practice all that is required is that the solution be
nonnegative over the set of subelement data that would
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be used in more general problems to compute (via op-
erator splitting) interactions between tracer species that
require nonnegativity. For nodal methods the natural
choice for the subelement data is simply the numerical
solution at the tensor-product GLL nodes, which as a
consequence of Lagrange interpolation, are the values
of the expansion coefficients themselves. For modal
methods in d-dimensional space, we specify the subele-
ment data to be the averages over a uniform Cartesian
subgrid denoted by six, k=1, ..., (N + 1)d such that
§; = Ugsix. Letting |s;x| denote the length, area or vol-
ume of s;4, the average mass over each subgrid element
can be evaluated as

5]

by=r| o xnx ©)
Sik

The set of modal expansion coefficients a, in element
s; can be mapped to the set of ¢;, by a projection
operator P such that ¢, = Pa;,. After the subgrid-
element averages are adjusted for nonnegativity, a
reconstruction operator R is applied to map these
modified averages back to the polynomial coefficients
at the beginning of the next time step. Because the
subelement data have the same number of degrees of
freedom as the original polynomial approximation,
the matrix representation of P will be nonsingular and
R will be its inverse P~

b. ZS nonnegativity preservation

As the first half of a two-part formulation, the ZS
limiter preserves element-mean nonnegativity through a
restriction on the length of the time step (Zhang and Shu
2010). The largest time step for which element-mean
nonnegativity is guaranteed is obtained by preserving
nonnegativity at the set of . GLL nodes, where L is the
smallest integer for which an L-point GLL quadrature is
exact for polynomials of degree N (i.e., 2L —3=N).
Then if the quadrature weights w; are expressed as-
suming the coordinate in each DG element has been
rescaled to the interval [-1, 1], the largest Courant
number w,,. for which a one-dimensional or Strang
split multidimensional ZS method is guaranteed to
preserve element-mean nonnegativity satisfies the
following:

At LW
= < —r
Hiny = MAX |u] Ay = min—=. (10)
Zhang and Shu (2010) also showed that two-dimensional
schemes must obey the more restrictive condition:

i, = min 2K, (1)
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where

At At

M= max ‘M|E7 y =

(x,y)eQ

If the mesh is isotropic and max|u| = max|v|, this con-
dition will correspond to a maximum time step that is
half as large as in the corresponding one-dimensional
problem.

After the integration step, the values at some of the
GLL nodes may have become negative. These negatives
must be eliminated before the next forward step, and the
ZS limiter removes them through a linear rescaling. If
¢ is the local DG approximation to ¢ over the element s;
with element-mean ¢, the rescaled polynomial ¢* is
computed as

-9
m=af

dF=0(p— ) + &, 0=min{ 1}, (12)

where

(13)

m = min ¢(x*),
x*el’

and in the most straightforward implementation, I" is
simply the set of L. GLL nodes in element s;.

Zhang and Shu (2011) noted that a more efficient
implementation is possible, which in one-dimensional
problems requires just three points: the two points at the
edges of the element and a third internal point x* whose
value ¢(X*) can be written in terms of the values of ¢ at
the edges. This gain in efficiency becomes important in
two or more dimensions, when it can significantly reduce
the number of points at which ¢(x*) needs to be eval-
uated. For example, in two-dimensional problems with
Cartesian elements, I' will consist of points along the
edges of the element plus an additional internal point X*
whose value ¢(X*) may be determined from integrals of
the aforementioned edge values. The minimum number
of nodes along each edge required to integrate a one-
dimensional polynomial of degree N exactly are L
Gaussian quadrature points such that 2L —1=N. Al-
though it might seem faster to use the L GLL nodes
along each boundary at which the solution is already
known, in two dimensions it is more efficient to use the
minimum number of Gaussian quadrature points be-
cause that set will have the largest minimum weight wy
and, therefore, allow the largest time step. Use of this
larger time step offsets the extra computational effort
required to evaluate the solution at the Gaussian
quadrature points along each boundary.

Using the minimum number of nodes to preserve
nonnegativity, as above, yields the largest minimum wy
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and permits the largest possible time step as per (10) or
(11), but it can allow negative values to develop on
tensor product mesh, which contains N + 1 nodes along
each coordinate. Therefore, an additional application of
(12) is required in which I' is the set of all nodes on the
tensor product mesh. In our three-stage third-order
SSPRK time integration, negatives are eliminated by
applying (12) at the minimal number of nodes prior to
each Runge-Kutta stage, and after the last stage (prior
to the evaluation of any hypothetical coupling between
scalars that requires nonnegativity), (12) is applied one
additional time to eliminate negatives at the tensor
product nodes.

3. TMAR nonnegativity preservation
a. One-dimensional formulation

In the context of simple forward time differencing, the
basic DG algorithm is modified in two ways:

1) The numerical fluxes at element boundaries are
adjusted prior to each forward step to ensure that
the mean tracer concentration in each element re-
mains nonnegative after the step.

2) After each time step, the solution inside the element
is conservatively modified to remove any negative
tracer concentrations in the discrete subelement
data.

Let us consider the first adjustment. If ¢(x, ¢) is an
approximate solution generated by a DG method, then a
scheme for a forward-in-time update of each element
mean, or equivalently a numerical approximation to (4)
when ¢,_;, can be written as follows:

In In At n
¢ =8~ P any bian)

_F(d);_(l/z)? d):r—(l/z))n]‘ (14)
To ensure that ¢*! =0, the standard upstream fluxes
in (14) are replaced with modified fluxes F;';(l py de-
termined as described in Smolarkiewicz (1989). This ap-
proach is a special case of the flux-corrected transport
algorithms that were originally developed for finite-
volume methods but have also been employed for
element-mean nonnegativity in finite-element methods
(Restelli et al. 2006; Ullrich and Norman 2014). The de-
tails of this algorithm can be found in Durran (2010) and
Smolarkiewicz (1989), and a detailed implementation of
this method in two dimensions is presented in section 3b.
For higher-order SSPRK time stepping, the FCT adjust-
ment is applied to the fluxes during each forward step in
the integration, and since the SSPRK methods are convex
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combinations of forward Euler steps, the full multistage
update will also satisfy the element-mean nonnegativity.
One important benefit of this FCT algorithm is that it
does not impose an additional limitation on the length of
the time step.

The second step of the proposed limiter applies a
nonlinear truncation and mass aware rescaling (TMAR)
to the N + 1 subelement values in which negatives are
truncated to zero and the remaining nonnegative values
are rescaled to conserve mass. Such a rescaling will al-
ways be possible because the mean value of the ap-
proximate solution produced by the FCT limited
forward step ¢, is nonnegative. The truncation produces
an intermediate approximation ¢, given by

+ _ ¢i,k if d)i,kzo
=30 if ¢, <0
ik

The element-mean mass after truncation $S+ is used to
compute a rescaling ratio:

(15)

Since ¢, =0 and the truncation adds mass to the ele-
ment, 0 =<r; = 1. Finally, the original subelement values
are replaced by

P* :{ri¢i,k if ¢,=0 (16)

00 if ¢,<0

whose element-mean satisfies

of=rd; =, (17)
guaranteeing conservation. In our three-stage third-
order SSPRK time integration, element-mean negatives
are avoided by applying the FCT flux limiter during each
Runge-Kutta stage. After the last stage (prior to any
hypothetical chemistry), the TMAR limiter is applied to
eliminate negatives at the tensor product nodes, or in the
case of modal DG, in any of the equal subelement
volumes.

Figure 1 illustrates the difference between the linear
rescaling used in the ZS limiter (shown in red) and the
TMAR adjustment described above (shown in green)
when applied to a sample fifth-degree nodal polynomial
¢(x) (shown in blue) having negative values at three of
the GLL nodes: two at the element edges and one near
the center. After applying the linear ZS rescaling, the
two largest magnitude negative nodal values have been
scaled to zero while the smaller magnitude negative in
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FIG. 1. Fifth-degree polynomial ¢(x) with negative values at
three GLL nodes (blue) and the polynomial as modified by linear
the ZS rescaling in (12) (red) and by TMAR (green). The GLL
nodal values are indicated by black dots.

the center is pushed into positive values. Moving this
node into positive values requires an unnecessarily large
amount of mass be redistributed from the other positive
nodes to maintain conservation. In contrast, the TMAR
modification, which simply sets the value at this node to
zero, produces less damping at the positive nodes.

Neither the TMAR nor the ZS-adjusted solutions
need be nonnegative at every point in the element.
Nonnegativity is ensured only for the set of subelement
data that could potentially be used in a subsequent
time-split calculation of chemical reactions or cloud-
microphysical tendencies. In the case shown in Fig. 1, the
subelement data are the nodal values, and the TMAR-
adjusted result remains slightly negative over a small
region.

We conclude this section with a theorem guaranteeing
that TMAR limiting does not degrade the high-order
accuracy of the underlying DG method; the proof is
given in the appendix.

Theorem 1. Let ¢ (x) be the unmodified Mth-order
DG approximation to i(x) in s; at some arbitrary time,
subject to the constraint that ESI, =(. Then the TMAR
limited solution dfs“i (x) is also an Mth-order approxima-
tion to (x).

b. Two-dimensional formulation

The TMAR limiter described in section 3 can be
readily extended to multidimensional problems. Let 51-,]-
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denote the average value of the degree N local DG ap-
proximating polynomial within a rectangular element
sij- A DG scheme for updating $i,j in a forward Euler
step from time ¢ will satisfy the following:

— — At i+(112)
n+l _ Jn __
b =i AxAy{L » [ ,+(1/2)(}’) F} (1/2)()’)] dy
e

Yit(112) " ,
+ J (G (12) () = G- 1) ()] dx} ,

Yi-(1h)
(18)

where Ax and Ay are the length of the elements along the
x and y coordinates, respectively; and F7 +(1/2)(y) and
G/, (1 (x) are the numerical flux functions at time "
through the interfaces perpendicular to the x and y co-
ordinates, respectively. Equation (18) can be rewritten
more compactly in terms of the mean fluxes F i=(112) and
Gj=1p) through each interface as

In In At n [
ot =) - FA)’ [AY(F 12~ Fioy)

+ Ax(G! )~ }1(1/2))]' (19)

Notice that (19) is in the same form as a finite-volume
update to 5;3 using the mean fluxes. With this in mind,
we apply the standard multidimensional FCT algorithm
presented in Zalesak (1979) to (19) to determine cor-
rected mean fluxes F; =12 and G+(1/2), which will not
drive q,’)” negative. For completeness this approach is
summarlzed below:

1) Let Q;; be the maximum outward flux sustainable
over a single time step without forcing qﬁz;’l negative:

yAxAy

Q= At

2) Let P;; be the net mean flux out of element s;;, given
by

P, = Ay[max(0, F, 1)) — min(0, F_ ;)]

+ Ax[max(0, G}, (1)) — min(0, Gy )]-

3) Determine the ratio by which the mean fluxes will be
corrected to ensure that a negative concentration will
not be generated:

. QiJ
Ri’j = min <1,PiJ gl B

where & is a small parameter (nominally 10~
times a typical magnitude for ) that is added to
avoid division by zero.
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4) Evaluate the corrected mean fluxes such that

F* _ Rl]Fl+(1/2) if F?+(1/2) =0
i+(12) — . = ’
Rz+l]F1+(1/2) it FY ) <0

&t R;; G]+(1/z) it G\ =0
R R G it G <0

ij+1 7 j+(1/2) j+(72)

This approach yields a modification to the mean fluxes
that will keep 5,»,1- nonnegative. However, in practice it is
the pointwise fluxes, evaluated at quadrature locations
around the boundary of the element that are required
for numerical evaluation of the integrals in (18).
Therefore, it is necessary to map the modification to the
mean fluxes into an equivalent modification of the
pointwise fluxes. Let &, and w; denote the one-
dimensional GLL quadrature points and weights along
the element boundary centered at (x;;a), y;). The
mean flux through this boundary is the linear combina-
tion of the pointwise fluxes:

z Wi Fisan) (&)- (20)

1+(1/2)

We adopt the simple approach of applying the FCT
multiplicative correction factor for the mean flux to each
pointwise flux. In other words, if F,t(uz) =cF i+(12) for
some correction factor 0 =c=1, then the modified
nodal fluxes F; +(1/2)(§k) that will be used in the forward
step are given by F+(1/2)(§k) = cFiiap)(€x)-

These FCT flux corrections are applied in each stage
of the SSPRK integration so that the element-mean
concentrations will be nonnegative after the last stage.
Immediately after this last stage (before any hypothet-
ical chemistry step), the TMAR limiter is used to trun-
cate negatives and rescale the positive concentrations in
the discrete subelement data. The rescaling ratio is
computed in a manner similar to (15),

ro==1 (21)

where $l+] is the mean value of the truncated ap-
proximation over the two-dimensional subelement
data. The limited subgrid-element averages d) or
k=1, ..., (N +1)* are then given by

P TP 1 $i=>0 22)
O U

A proof similar to that for Theorem A in the appendix
shows that this two-dimensional limiter does not reduce
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FIG. 2. Convergence results under 4 refinement: log-log plot of the L, error as a function of the number of elements for (a) C!, (b) C? and,
(c) C7 cosine bell tests with initial conditions defined in (23). Each test uses a nodal basis with N =5 and a time step of At = 0.5Ax?.

the asymptotic convergence rate of the underlying DG
approximation.

4. Numerical tests
a. One-dimensional tests

One of the most important benefits of implementing
DG methods is that they allow the flexibility of refining
the approximate solution by either adding additional
elements (k4 refinement) or using local polynomials
of higher degree (p refinement). Therefore, we will
consider the influence of each limiter on the A- and
p-convergence rates for smooth initial data. Let
7(x) = 4|x — 1/4| and define an initial tracer density as a
member of the family of cosine bells:

[1 + cos(m')r § =1
P, (%) = 2

0 otherwise

. (23)

where g =1, 2, or 4. Because iy, , has 2g — 1 continuous
derivatives (, is C*'), larger values of g permit
greater convergence rates as the degree p of the DG
polynomial truncation is increased. Although i, is
nonnegative, for all values of g considered here, the
initial profile contains gradients steep enough to gen-
erate negative concentrations in the unlimited numeri-
cal solution. In these tests, ¢ is advected by a constant
wind speed u = 1 around the periodic domain Q = [0, 1].

Figure 2 illustrates the impact of the limiting methods
on the / convergence of the L, error. The three methods
shown use a nodal basis of fifth-degree polynomials
with a time step chosen for the SSPRK3 integration so

that At (Ax)®, which guarantees that spatial conver-
gence rates are observed. For the C! and C? tests the
observable convergence rates (i.e., the slopes in Fig. 2)
are constrained by the smoothness of the analytic solu-
tion, which limits the observed order of accuracy to be
roughly second and fourth order, respectively. However,
in the third panel the optimal sixth-order accuracy of the
method is observed in the unlimited-method results.
While both limited solutions are slightly less accurate
than the unmodified solution, their convergence rates
nevertheless closely match the unlimited convergence
rate for all three initial conditions considered. This re-
sult is consistent with the proofs that both methods
preserve the original convergence rate of the unlimited
method under 4 refinement.

Figure 3 examines the impact of limiting on
p-convergence rates for the same initial conditions consid-
ered in Fig. 2. To measure the impact of p refinement we
define the effective spacing Ax, = Ax/N to be the aver-
age grid spacing between the GLL nodes. A time step
At o (Ax) VD% is chosen so that the spatial convergence
rates are observed, and the local polynomial degree is
refined from 4 to 9 using a fixed mesh of 32 elements. As
in the h-refinement tests, the convergence rates are
influenced by smoothness of the exact solutions. The
unlimited and the TMAR solutions both produce very
similar errors that decrease as the polynomial degree
increases (i.e., as Ax, decreases), attaining roughly
fourth-order convergence for the C! test, eighth order in
the C? test, and approximately twenty-second order in
the C7 test. On the other hand, the errors in the ZS so-
lutions are not reduced as the polynomial-order in-
creases in the C' and C? tests. The ZS solutions do show
some improvement under p refinement in the C7 test,
although this may be primarily due to the reduction in
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FIG. 3. Convergence results under p refinement: log-log plot of the L, error as a function of the effective spacing Ax, for (a) C', (b) C?, and
(c) C7 cosine bell tests. Each test uses a nodal basis with a 32 element mesh and a time step of At = 0.5Ax™V*+13,

the magnitudes of the undershoots generated in the
unlimited solution in the C7 case, which tends to reduce
the differences between the unlimited and both limited
solutions. In summary, the TMAR limiter does a good
job of maintaining the original accuracy of the unlimited
solution under p refinement.

b. Two-dimensional tests

We now examine the performance of the TMAR
limiter applied both to fully two-dimensional DG
methods and to dimensionally split DG schemes, which
advance the solution through pairs of one-dimensional
integrations (Strang 1968). Table 1 lists numerical values
for the maximum permissible one-dimensional Courant
numbers for polynomial degrees between 2 and 5 when
using SSPRK3 time stepping. The maximum permissible
time step taken in the unlimited and TMAR methods is
determined based on the maximum possible Courant—
Friedrichs-Lewy (CFL) number for stability. An unsplit
unlimited method or TMAR-limited method has a
maximum stable At that is smaller by a factor of 2712
than the values listed in Table 1. For ZS-limited
methods, the time step condition given by (10) for split
methods or (11) for unsplit methods must be satisfied
to guarantee element-mean nonnegativity. Adopting a
strategy similar to that in many practical applications,
our solutions are obtained using a time step that brings
the maximum local Courant number throughout the
integration to approximately 95% of its limiting value.

In multidimensional problems, complex velocity fields
can stretch and deform initially smooth data into thin
filaments creating poorly resolved concentration gradi-
ents regardless of how well the initial conditions are
resolved. This behavior occurs in our test case, in
which a sheared swirling flow deforms an initially

circular tracer distribution into a narrow coil before
reversing and returning the tracer to its original shape.
This test was originally described in LeVeque (1996).
The velocity field is periodic over a time interval
0=t=T =5 and is defined by the streamfunction:

1 . . t
Y(x,y,t)=— sin(mx)* sin(my)* cos <1) , (29
T T
and the relations:
ow ov
1) =— f=——. 25
u(x,y,t) 7y’ vy, 1) = —= (25)

The initial data y,(x, y) for this test are a C* cosine bell
centered at the point (xo, yo) = (1/4, 1/4) given by (23),
with g = 2 and 7(x) replaced with 7(x, y) defined by

)= A —x -y 17 (26)

where the initial radius is 7y = 1/4. Tests involving the
same flow and initial condition were considered in
Ullrich and Norman (2014). Figure 4a shows the exact
solution at t =0 and 7, while Fig. 4b shows a reference

TABLE 1. Maximum permissible Courant numbers u,,,, for DG
methods of polynomial degree 2-5 schemes with SSPRK3 time
stepping. The ZS values are from Zhang and Shu (2010); modal and
nodal values are from Ullrich (2014).

/'Lrnax
Degree Modal Nodal ZS
2 0.210 0.450 0.167
3 0.130 0.255 0.167
4 0.090 0.168 0.083
5 0.067 0.120 0.083
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FIG. 4. Exact solution for the C? cosine bell tracer concentration field in the reversing deformation flow in (25) at
times (a) 0 and 7, and (b) converged solution for time 7/2. Contours are at intervals of 0.1.

solution computed using very high time and space res-
olution' at the time of maximum deformation ¢ = T/2.

Figure 5 shows numerical results at +=T7 for nine
different combinations of limiter and DG approxima-
tion strategies. Each DG approximation uses a 24 X 24
element grid with N =4, for a total of 120 degrees of
freedom (DOFs) along each coordinate. The results in
the top row were obtained using a fully two-dimensional
nodal DG implementation, while those in the bottom
two rows were obtained using dimensional splitting with
nodal (second row) and modal (third row) basis func-
tions. The columns show the unlimited (left), ZS-limited
(middle), and TMAR-limited (right) solutions. The
maximum and minimum values of ¢ are listed in each
panel, as well as the error measured from the analytic
solution in the L? and L* grid norms (labeled as E, and
E.., respectively).

All three of the unlimited approximations do a fair job
of maintaining the original amplitude of the exact so-
lution, although as expected, they also generate spurious
negative concentrations with magnitudes ranging up to
7% of the initial amplitude of the bell. These negatives
are completely removed in each of the limited solutions.
Relative to the unlimited solutions, the TMAR limited

! The reference solution was computed using N = 5, Ax = 0.00625,
and At =5.182 X 1074,

nodal solutions (Figs. 5c.,f) see a 5%-7% decrease in
their global maximum and a slight increase in both error
norms. TMAR limiting has an even smaller impact on
the accuracy of the modal solution, reducing its maxi-
mum amplitude by less than 1%. The superiority of both
the unlimited and TMAR-limited modal solutions over
their nodal equivalents arises from their use of the exact
mass matrix (7). While the TMAR-limited solutions
appear qualitatively similar to their unlimited counter-
parts with the negatives removed, all of the ZS limited
solutions are significantly degraded. The ZS limiter
produces substantial distortion of the originally sym-
metric tracer field, a 12%-25% reduction in the global
maximum, and a large increase to both error norms.

The performance of the ZS limiter can be improved
considerably by doubling the number of elements along
each coordinate to 48, as shown in the middle column of
Fig. 6. Nevertheless, as also shown in Fig. 6, the TMAR-
limited solutions remain superior at this higher resolu-
tion; they look nearly identical to the unlimited solutions
with the negatives removed and suffer very little deg-
radation in the maximum amplitude. In particular, the
TMAR-limited modal solution (Fig. 6i) is essentially
identical to the nonnegative part of its unlimited coun-
terpart (Fig. 6g).

We now consider the influence of the limiters on so-
lutions to the same swirling-flow problem under p re-
finement with the total DOF held constant. Figure 7



4780 MONTHLY WEATHER REVIEW VOLUME 144

Unlimited Zhang & Shu TMAR
]
a) b) c)
08| “E/=0:110_ Min=-0.067 E_=0446  Min=0.000 E =0232  Min=0.000
T E,=0.0156 Max=0.914 E,=00528 Max=0.647 E,=00230 Max=0.844
8 o6 [
Z s
2 04
c
>
0.2
0
1
d) e) f)
08 ~E_=0112  Min=-0.067 E_=0.347  Min=0.000 E =0.229  Min=0.000
_ E,=0.0159 Max=0.912 E,=0.0381 Max=0.786 E,=0.0223 Max=0.859
I os
o
=Z >
S o4
»
0.2
0
ir T :
9) h) i)
08/ E =0.0620 Min'=~0.041 E_=0.391  Min=0.000 E_=0.100  Min=0.000
_ E,=000843 Max = 0.956 E,=0.0470 Max = 0.853 E,=0.00917 Max =0.948
I o6
o
S >
£ o4
»
0.2 Q
0‘

0 0.2

0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.4 0.6 0.8 1

FIG. 5. Comparison of tracer concentration fields at t = T using (left) no limiting, (middle) ZS limiting, or (right) TMAR limiting.
(a)-(c) Unsplit nodal solutions, (d)—(f) split nodal solutions, and (g)—(i) split modal solutions. The domain is partitioned into a 24 X 24
element grid. Error norms and the domain maximum and minimum concentrations are noted in each plot. Contours are plotted every 0.1,

and regions of negative concentration are highlighted in light gray.

shows results obtained using the unsplit nodal scheme as
the polynomial degree is increased while the number of
elements is reduced to keep the total DOF constant. The
solutions in the top row were computed using a 30 X 30
element grid with local polynomial order N = 3. Thus,

along each coordinate there are 4 DOF per element and
120 DOF across the full domain. The second row shows
solutions computed using a 24 X 24 grid with N =4,
while those in the last row were generated on a 20 X 20
element grid with N =5.
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FIG. 6. As in Fig. 5, but using a grid of 48 X 48 elements.

In the unlimited case (left column of Fig. 7), using
higher-degree polynomials reduces the error in both
norms and the magnitudes of the negative undershoots.
Higher degree also helps maintain maximum tracer
concentration and the circular symmetry of the solution
at ¢ = T. Qualitatively similar improvements are seen as
N is increased in the TMAR-limited solution (right

column of Fig. 7), although as would be expected from
Fig. 5, the error norms and the reduction in the maxi-
mum concentration in the TMAR-limited solutions ex-
ceed those obtained without limiting. In contrast, the
quality of the ZS-limited solutions (middle column of
Fig. 7) degrades as N is increased, a behavior consistent
with that shown for our one-dimensional tests in Fig. 3.
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FIG. 7. Impact of polynomial refinement on tracer concentration fields at t = 7. Each panel uses a total of 120 DOF along each
coordinate. The limiting method is labeled at the top of each column and the degree of polynomial truncation is labeled to the left of each
row. Error norms and the domain maximum and minimum concentrations are noted in each plot. Contours are plotted every 0.1, and
negative regions are highlighted in light gray.

The difference in performance between the TMAR and ~ well as the modifications made to the negative nodal
ZS limiters in these tests can be largely explained by values, are different. When the ZS limiter is active, the
comparing their impact on the values at the nodes as il- local polynomial is modified so that the largest negative
lustrated in Fig. 1. Both limiters involve a linear rescaling undershoot is scaled to zero while smaller undershoots
applied to nonnegative nodal values, but that rescaling, as  take positive values. In contrast, when the TMAR limiter
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FIG. 8. Comparison of (a) unlimited, (b) TMAR-limited, and (c¢) ZS-limited solutions tracer concentration for the slotted cylinder at
t = T. Each panel uses an unsplit nodal basis with a 32 X 32 element mesh. Error norms and the domain maximum and minimum con-
centrations are noted in each plot. Contours are plotted every 0.1, and negative regions are highlighted in light gray. The exact solution is

outlined by the heavy black line.

is active, all negative undershoots are truncated to zero,
giving a smaller modification for all but the minimum nodal
value. By minimizing the magnitude of the adjustment at
the nodes with negative values, the TMAR limiter mini-
mizes the amount by which the positive part of the solution
must be damped to conserve mass. Also in contrast to
the ZS limiter, if the undershoot is at a node with a small
weighted contribution to the element-averaged mass,
the TMAR adjustment at that node has a correspond-
ingly small effect on the total adjustment required for
mass conservation. The mass-weighted adjustment used
in the TMAR approach can be particularly important
when using basis functions of high polynomial degree,
where most of the nodes are clustered near the edges of
each element and make relatively small contributions to
the mean mass.

As a final test, we examine the behavior of these
limiters in a case with large discontinuities by replacing
the initial tracer field used in the previous tests with a
unit-amplitude slotted cylinder of radius 0.15 centered
at (xo, ¥o) = (0.25, 0.5). The slot, in which the tracer
density is zero, includes all points within the cylinder for
which |x —x¢| <0.025 and y >y, +0.0625. Figure 8
compares unsplit nodal solutions at time 7 obtained
using no limiting, TMAR limiting, and ZS limiting with
N =5 and 32 elements (for a total of 192 DOF) along
each axis. Because of the discontinuous initial data, the
maximum magnitude of overshoots and undershoots in
the unlimited solution now exceeds 20% of the initial
height of the cylinder. The TMAR solution removes the
negatives and reduces the overshoot to about 12%

without significantly increasing the E, and E. errors.
The worst solution with the largest error norms is gen-
erated using the ZS limiter, which produces short-
wavelength noise that significantly distorts the solution.

5. Computational efficiency

We now turn to comparing the computational effi-
ciency of the schemes used to obtain the solutions in the
preceding two-dimensional deformation tests. The effi-
ciency of a given scheme is a function of the maximum
time step allowed by that scheme, the work required per
time step, and the accuracy of the result at a given spatial
and temporal resolution. The work per time step is both
machine dependent and influenced by the efficiency of
the code written for its implementation. All of our re-
sults are obtained using the same computing resource,
and we have endeavored to impose a similar degree of
optimization in the FORTRAN codes used to imple-
ment these methods. Despite these efforts, the following
results are subject to the caveat that they are still
somewhat machine and implementation specific.

Both the ZS and TMAR limiters require calculations in
connection with each substep of the SSPRK scheme as
well as a final adjustment to eliminate negatives after the
full SSPRK update. The work per time step required
in the final update, via (12) for the ZS method or (22) for
the TMAR scheme, is similar. Somewhat more work is,
however, required during each individual substep by the
FCT flux correction for the TMAR method than for the
most efficient ZS rescaling algorithm that uses the Gauss
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TABLE 2. Work per time step and total time required to integrate
deformation test for ZS and TMAR limiters applied to unsplit DG
using N =4 and an 192 X 192 element grid. Entries are normalized
by the values for the unlimited method.

Method CPU time per step Total time
Unlimited 1.00 1.00
VA 122 3.68
TMAR 1.34 1.34

points along each element boundary to implicitly evaluate
the solution at one additional interior point. Table 2
compares the average CPU time spent for a single time
step for the ZS and TMAR methods in the C3-cosine-bell
deformation-flow test using N =4 and 192 X 192 ele-
ments. The values in Table 2 are normalized by the time
required for a single step of the unlimited scheme.” On a
per-time-step basis, the ZS limiter requires 22% more
computation time than the unlimited scheme, while the
TMAR method requires 34% more time.

These results for the work per time step do not take
into account important differences in the maximum
permissible time step for each method. The time step for
the ZS scheme must satisfy the bound (11) in order to
guarantee nonnegativity (roughly w.,, =0.04 in this
case),3 while the TMAR limiter can use the maximum
time step for which the unlimited method is stable
(roughly ..« = 0.12). Thus, as shown in the last column
of Table 2, the ZS method takes about 3 times as long to
complete the integration as does the TMAR-limited
scheme. This comparison could, nevertheless, be less
favorable for the TMAR scheme in a massively parallel
implementation because the FCT modification of the
fluxes needs to be communicated among the various
elements, whereas the unmodified ZS fluxes does not
require such extra communication. If the modest addi-
tional parallel communication required by the FCT
limiter proves to be too inefficient, the FCT step in our
limiter can be avoided by limiting the time step to the
same value used in the standard ZS scheme.*

2Our benchmark unlimited integrations were also performed
using the three-stage third-order SSPRK scheme, allowing an easy
assessment of the computational overhead introduced by the
nonnegativity preserving algorithms. Nevertheless, if limiting were
not required, the SSPRK integrator could be replaced by a variety
of classical three-stage third-order Runge-Kutta schemes for
which the maximum stable time step increases by a factor of 1.73.

In a series of empirical tests, we found small negatives de-
veloped when the ZS limiter was used in this test case with time
steps for which w,,,, exceeded about 0.065.

*When element-mean nonnegative mass is ensured by limiting
the time step, rather than the fluxes, TMAR limiting must be
performed after each stage of an SSPRK integration (like the ZS
rescaling).
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F1G. 9. The L, norm of error as a function of computational time
spent to integrate the C3 cosine bell deformation test using unsplit
nodal and split modal methods in combination with TMAR or ZS
limiting. Data points are shown for these simulations, which use 24,
48, 96, or 192 elements along each coordinate.

Another key measure of efficiency is the time re-
quired to obtain a solution of a desired accuracy.
Figure 9 shows the L, error plotted as a function of the
CPU time required to obtain unsplit-nodal and split-
modal solutions to the C3-cosine-bell deformation-flow
test at t=T. All computations were performed with
fourth-degree polynomials and 24, 48, 96, or 192 ele-
ments along each coordinate axis. (The concentration
fields for the 24- and 48-element cases were plotted in
Figs. 5 and 6, respectively.) At any particular CPU time,
the TMAR-limited solution clearly gives a more accu-
rate result, with an L, error roughly an order of mag-
nitude smaller than that generated by the ZS-limited
solution. Note also is that for both limiters, the split
modal methods are more accurate than the corre-
sponding unsplit nodal results.

6. Conclusions

We have introduced a nonnegativity preserving limiter
for discontinuous Galerkin approximations to multidi-
mensional scalar transport problems with nonnegative
initial data. The proposed TMAR limiter truncates neg-
ative nodal values while simultaneously applying a mass
aware rescaling to the remaining positive nodal values.
This approach requires the element-mean concentration
field to be positive prior to the TMAR adjustment, and
this was ensured by an FCT-style correction to the stan-
dard DG fluxes computed at the element boundary in
each forward substep of the SSPRK time integration. The
limiter is also suitable for modal DG implementations in
which the nonnegativity of the solution is maintained
over subelement volumes of uniform size.
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TMAR limiting maintains the geometric flexibility,
compact formulation, and #—p adaptivity of the original
DG formulation. It also maintains the order of accuracy
of the underlying unlimited scheme. Our tests show that
it can perform better than the well-known limiter due to
Zhang and Shu (2010) in two-dimensional problems in
which localized initial tracer fields deform in a swirling
flow. TMAR limiting differs from the approach in
Zhang and Shu (2010) because it does not overcorrect
some negatives into positive values and because spuri-
ous undershoots at nodes near element boundaries,
which have relatively less influence on the element-
mean mass, exert only a correspondingly minor influ-
ence on the rescaling. The advantage of the TMAR
limiter is particularly pronounced when using DG
polynomials of modestly high degree (fifth or greater)
and relatively coarse spatial resolution. In our tests, the
TMAR limiter was also able to obtain solutions with L,
errors an order of magnitude smaller than those com-
puted over the same CPU time using the ZS limiter.

TMAR limiting may be easily extended to spectral
element methods in which the basic functions are tensor
products of Lagrange polynomials interpolating the
GLL nodes. As shown by Guba et al. (2014), a re-
striction on the time step similar to that used with the ZS
limiter will ensure that the element-mean mass remains
nonnegative after each forward step of an SSPRK in-
tegration. TMAR limiting may then be performed after
each forward step to preserve nonnegativity within each
element. The performance of the TMAR limiter in
spectral-element discretizations on the cubed sphere,
and the extent to which the TMAR approach preserves
tracer correlations, will be examined in a future
publication.
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APPENDIX

Proof of Theorem 1

Theorem 1. Let ¢ (x) be the unmodified Mth-order
DG approximation to (x) in s; at some arbitrary time,
subject to the constraint that ¢, =0. Then the TMAR
limited solution qu‘[ (x) is also an Mth-order approxima-
tion to ¥ (x).

Proof. Because ¢, (x) is an Mth-order approximation
to (x) it follows that
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max [i/(x) = ¢, (x)] = @ (Ax"), (A1)

so it suffices to show that the TMAR modification is
small in the sense that

max [¢F (x) — ¢, (x)] = 7 (Ax™). (A2)
xE.)'i i i

Since the coefficients in the Lagrange polynomial rep-
resentation of ¢*(x) are given by the modified nodal
values in (16):

max |4 (v) ~ ¢, (¥)| = max| 3, [¢}(x,) ~ b, (¥, ()]
(A3)

N
=<Cy X ()=, (x). (A4)
where Cy is a constant that depends only on N. Thus we
need to show that Yo |¢b* (xi) — by, (xe)| = 7 (AxM).

There are two cases to consider. First suppose that
b, (i) = 0, then ¢ (1) = 0, 50 by (x1) = & (1) = ().
Since ¢, (x) is an approximation to ¢ with error 7'(Ax™),
it follows that

[ (x) = b, ()| = () = &, ()| = /(Ax™).

On the other hand suppose that ¢ (x;)>0, then
¢ (xx) = ri,(xx) where r is given in (15). Noting that
ri = 1:

(AS)

|5 (x) = b, (e ) = (1= 1), () (A6)
Defining
¢ (x) if ¢ (x)=0
S )=0," d>x:(x,)<0 and
0 if ¢ (x)=0
by (x) = b() it ¢s:(x,)< 0 (A7)

and using (15), the coefficient (1 — r;) may be rewritten
as

M=

~
Il

0

Wz‘d);(x[)'

1—rl.=

(A8)

M=

W1|¢::(x1)|

1

Il
=

Substituting (A8) into (A6) and using the inequality
ZI,V:OWI\(;'):: (x1)| = wi, (xi) to bound the denominator in
(A8) from below gives
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1 N
8 0)=0, ()| =5 Twlo )l (A9)
k1=

From (A5) it follows that |p_ (x;)| =7(Ax™) for all
[=0,..., N. Thus,

6% ()~ 6, ()] = DAY = 2(Ax").  (AL0)

where Dy is a constant which depends only on N.
Therefore, |¢* (x) — by, (xi)| = ' (AxM) for all k, and the
TMAR limitiﬁg maintains Mth-order accuracy with re-
spect to A refinement.
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