

The Journal of the Acoustical Society of America

[HOME](#)[BROWSE](#)[MORE ▾](#)

[Home](#) > [The Journal of the Acoustical Society of America](#) > [Volume 141, Issue 5](#) > [10.1121/1.4987646](#)

[◀ PREV](#) [NEXT ▶](#)

Free

Published Online: June 2017

Detecting glides and their place of articulation using speech-related measurements in a feature-cue-based model

Adrian Y. Cho

- Harvard-MIT Program in Speech and Hearing BioSci. and Technol., 50 Vassar St., Rm. 56, Speech Commun. Group, Cambridge, MA 02139, aycho@g.harvard.edu

Anita Y. Liu

- Speech Commun. Group, Res. Lab. of Electronics, MIT, Quincy, MA
Jeung-Yoon Choi and Stefanie Shattuck-Hufnagel
- Speech Commun. Group, Res. Lab. of Electronics, MIT, Cambridge, MA

The Journal of the Acoustical Society of America **141**, 3583 (2017); doi:
<http://dx.doi.org/10.1121/1.4987646>

Acoustic sensing . Speech analysis . Acoustical measurements . Acoustic modeling .
Computer modeling

ABSTRACT

An algorithm was developed for detecting glides (/w/, /j/, /r/, /l/, or /h/) in spoken English and detecting their place of articulation using an analysis of acoustic landmarks [Stevens 2002]. The system uses Gaussian mixture models (GMMs) trained on a subset of the TIMIT speech database annotated with acoustic landmarks. To characterize the glide tokens extracted from the speech samples, the following speech-related measurements were calculated: energy in four spectral bands (E1-E4), formant frequencies (F1-F4), and the time derivatives of E1-E4 (E1'-E4'); the fundamental frequency (F0) and magnitude difference of harmonics (H1-H2, H1-H4) were also included. GMMs were then trained on a subset of the tokens to learn the characteristics of each category for two distinct tasks: distinguishing glide landmarks from the set of all landmark types (identification task), and determining the place of articulation given a glide landmark (categorization task). The classifier used the maximum posterior probability of a speech sample conditioned on each of the trained GMMs. The performance of the algorithm was evaluated with median F-scores, and results suggest that the measurements at acoustic landmarks provide salient cues to glide detection and categorization.

Resources

AUTHOR

LIBRARIAN

ADVERTISER

General Information

ABOUT

CONTACT

HELP

PRIVACY POLICY

TERMS OF USE

FOLLOW AIP PUBLISHING:

Website © 2017 AIP Publishing LLC. Article copyright remains as specified within the article. Scitation