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Abstract The local asymptotic stability and stability switches of the positive equilibrium
in a logistic population model with mixed instantaneous and delayed density dependence
is analyzed. It is shown that when the delayed dependence is more dominant, either the
positive equilibrium becomes unstable for all large delay values, or the stability of equilibrium
switches back and force several times as the delay value increases. Compared with the
logistic model with the instantaneous term and a delayed term, our finding here is that the
incorporation of another delayed term can lead to the occurrence of multiple stability switches.
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1 Introduction

Delay differential equations have been used as models for various natural phenomena and
engineering controlled events [7,10,14,25,30]. The most significant dynamical behavior for
many delayed differential equations is that a large delayed negative feedback can give rise
to sustained oscillations [10,30]. The emergence of time-periodic dynamical behavior can
usually be explained by the stability change of an equilibrium of the system and associated
Hopf bifurcation which generates a small amplitude periodic orbit. Typically when using the
value of delay (let’s call it 7) as a bifurcation parameter and as the value of 7 increase, an

X. Yan
Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
e-mail: xpyan72@163.com

J. Shi (X))

Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA
e-mail: jxshix@wm.edu

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-015-9432-3&domain=pdf

114 J Dyn Diff Equat (2017) 29:113-130

equilibrium changes from a stable one to an unstable one at a threshold value (bifurcation
point) T = 79, and the system possesses a periodic orbit for 7 slightly passing tp.

In a model with a single negative delayed feedback, the loss of stability of the equilibrium
at T = 10 is permanent as the equilibrium is unstable all all T > 7. For example, for the
Hutchinson’s model

u(t) =u(@) (I —u(—1)), (L.D)
one can solve the bifurcation values
2 1
m:gﬁgjz,neNUWL (12)

and at each T = 1, one pair of complex-valued eigenvalues of the characteristic equation
moves across the imaginary axis to enter the right half of the complex plane. Thus for t > 1,
the characteristic equation has n pairs of complex eigenvalues with positive real part, and
in particular, the equilibrium u, = 1 is stable for 7 < 7 and it is unstable for all T > 7.
Thus the parameter range for stability of u, = 1is 7 € [0, 79), and the one for instability is
(70, 00).

This stability change scenario also occurs in many other models. However in some other
systems, there is a different stability switch scheme as the delay t increases. That is, there
exist bifurcation values t,El) and 1,52) for n € NU {0} such that

0< ‘L'(gz) < ‘L'(gl) < 11(2) < ‘L'](l) << 1:@)1 < r;()l)_l <7® <@ )

Jjo— Jo jorl STy <

(1.3)
For0 < j < jo—1,ateach t = t]@, one pair of complex-valued eigenvalues of the
characteristic equation moves across the imaginary axis to enter the right half of the complex
plane, while at each 7 = rj(.l), one pair of complex-valued eigenvalues of the characteristic
equation moves across the imaginary axis to enter the left half of the complex plane. That is,
if the stability is lost at T = 1';2), then it is regained at T = D 50 that the stability switches
back and force for the first jy pairs of bifurcation points. This stability switching-back can

2)

only happen finitely many times, thus for 7 > 7 o the stability is lost for good and no more

switching-back will occur. This is due to the algebraic form of r;i) fori =1,2:
‘L'J(-l) = Tél) + Aty - jm, ‘L'](-Z) = Téz) + At - jm. (1.4)

Because At — Aty > 0, so eventually the sequences {1}2)} and {rw} stop to appear
alternatively, that is where the switching-backs end and the stability is lost for all large 7.

Several examples of stability switches have been shown in recent studies. In [12], parame-
terranges for the linear delay differential equation u” (1) = au(t)+bu'(t)+cu(t—1)+du’(t—
7) undergoing stability switches were given. In [31], multiple stability switches were found
for a planar predator-prey model. In [17], for a delayed model of CTL Response to HTLV-I
infection, it was shown that a stability switch occurs and multiple periodic orbits coexist in
some parameter range. The bifurcation sequences in [17] are like the one in (1.3) with two
subsequences. In [16], it was shown that the model in [17] can also produce three Hopf bifur-
cation sequences and more complicated dynamics is possible. Recently such switching-back
is also found in an intraguild predation model [11], as well as for a model of host-pathogen
interaction incorporating density-dependent prophylaxis [24]. The models in [11,17,24] are
all with three equations and a single delay, while the model in [31] has two variables and a
single delay. Stability switches are also observed in some models with two delays, see for
example, [22,32].
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In this paper, we consider the stability switches in a scalar delay differential equation
which is a generalized Hutchinson’s model with the form

@) =u@) [l —au(t) —bu(t —11) — cu(t — ©)]. (1.5)

If ¢ = 0, then the model (1.5) is reduced to the following modified Hutchinson’s equation
(see [8,25,30,33))
u() =u@) [l —au(t) —bu(t —1)]. (1.6)

The model (1.6) has been studied extensively by many authors and it has been shown that if
the instantaneous dependence is dominant, i.e. a > b, then the unique positive equilibrium
u = 1/(a 4+ b) of the model (1.6) is globally asymptotically stable for any 7 > 0, see
for example, [5,6,15,21,25,29,30], and the global stability holds even for equation with
more general type of delay term and diffusion term [13]. If the delayed dependence is more
dominant, i.e. a < b, then it has been shown that [8,25,33] there exists a critical value 7o > 0
given by

a+b a

T) = ————= arccos (—7) ,

b2 —a? b
such that the positive equilibrium u« of the model (1.6) is locally asymptotically stable when
7 € [0, 79) and it is unstable when t > tp. In addition, the model (1.6) undergoes a Hopf
bifurcation at i when 7 increases across any critical value

T, = 4o b (arccos (_Z) + 2n7r) , neN.
b2 — 42 b
While a quite complete analysis can be made for the single delay model (1.6), the analysis

for a model with two distinct delays (1.5) is much more difficult. It is easy to see that the
model (1.5) has two equilibriau = 0 and u = u* := 1/(a + b + ¢), where u = 0 is unstable
for any 71, 7o > 0. Linearizing (1.5) at u™ gives the characteristic equation

A+ p+ge D 4re 2 =0, (1.7)
where
p=au* >0, g=bu* >0, r=cu*>0. (1.8)

Stability criteria on the parameters (p, g, r, 71, 72) for (1.7) for various cases has been
obtained in [2,9,18,20,23,27,28,34] and references therein.

In this paper we consider a special case of (1.5) with 7o = 27y. In this case the model
(1.5) reduces to

u() =u@) [l —au(t) —bu(t —t) — cu(t — 21)], (1.9)
u(s) =¢(s) =0, s €[-27,0] '
and the corresponding characteristic Eq. (1.7) has the form
A4+ p+qge ™ +re P =0. (1.10)

The distribution of roots of the transcendental polynomial equations similar to (1.10) has been
discussed recently in [3,19]. In this paper we completely classify the local stability of the
positive equilibrium u, for all possible parameter (p, g, r) with p, g, r > 0 (or equivalently
(a, b, c) with a, b, ¢ > 0). We decompose the parameter space into parameter regions with
following stability schemes:

(I) globally asymptotically stable for all T > 0.
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Fig. 1 Stability regions in the (b, ¢) plane when a > 0 is fixed

(II) locally asymptotically stable for all T > 0 (whether globally stable is not known).

(IIT) a single stability switch, that is, locally asymptotically stable for = € [0, 79), and
unstable for T > 1.

(IV) possible multiple stability switches, that is, # = u™ is locally asymptotically stable

when
TE [0, réz)) U (1'0(]), 1'1(2)) U---U (1';(})_1, 1.'](02))

and it is unstable when

re (réz), rél)) U.--U (tj(()zll rj(UlL) U (rj(.f), oo) .

In particular we find that the region IV is not empty, thus two delayed negative feedbacks
do not always produce oscillations when the delay value is increased. In some intermediate
delay values, the stability can be regained with a proper combination of delay values of t

and 2. For any fixed a > 0, the regions I-IV are plotted in Fig. 1. Indeed these regions can
be precisely described as follows:

I={b,c):b,c>0,b+c <a},
HZ{(b,C):0<c§§,a—c<b<a+c}

U{(b,c):%<c<a,a—c<b<\/8c‘(a—c)},
III:{(b,c):b>a,0<c<b—a}U{(b,c):b>0,c>max{a,b—a}},

§<c<a,\/86(a—c)<b<a+c},

We remark that effort in some early work was to identify the “stable region”, where the local
stability holds for all T > 0. That stable region is I U II in our notation, and the complement
IIT U IV would be unstable region. Our classification is more refined which also identifies

v = {(b, o)

@ Springer



J Dyn Diff Equat (2017) 29:113-130 117

more delicate properties of the system (1.9). In the unstable region III U IV, a stability switch
always happens, and in region IV, it is possible to have multiple stability switches (a condition
to guarantee that is given in Sect. 3). Compared to earlier work in [11,17,22,24,31,32] for
systems of equations, multiple stability switches as the delay value increases is shown for
(1.9) which is scalar equation but with two (linearly dependent) delays. We consider (1.9)
as a possibly minimal model for the occurrence of multiple stability switches in a delay
differential equation.

In Sect. 2, we analyze the roots of characteristic Eq. (1.10), and in Sect. 3 we prove the
stability switches in different cases. Some numerical simulations are given at the end of Sect.
3. Throughout this paper, we use N to denote the set of all positive integers and Ng = NU {0}
to be the set of all nonnegative integers.

2 Transcendental Polynomial Characteristic Equation

In order to consider the local asymptotic stability of the positive equilibrium of (1.9), in this
section we analyze the distribution of the roots of the characteristic equation

FO,T)i=A4+p+qge " +re =0 (2.1)

on the complex plane while the parameter t varies. If all the roots of (2.1) have negative real
parts, then the positive equilibrium u = u* of (1.9) is locally asymptotically stable, and it is
unstable if (2.1) has at least one root with positive real part.

We first consider the existence and number of the real-valued roots of (2.1) when t > 0.
Let A € Rand e™*7 = x. Then x > 0 and when t > 0, solving A in (2.1) is equivalent to
solving x in an equation

Inx 2
fx,t):= —T—i-p—I—qx—l—rx =0. 2.2)

Consequently the Eq. (2.1) has a real-valued negative (or positive) root A if and only if the
Eq. (2.2) has areal root x > 1 (or 0 < x < 1). In what follows we analyze the existence and
number of real positive roots of the Eq. (2.2).
It is easy to verify that for a fixed T > 0, the function f(x, t) defined as in (2.2) has the
properties
lim f(x,7t)=o00, f(1,7) >0, lim f(x,7t)=o00. 2.3)
x—0+ X—00

In addition, the equation
of 1
—x,1)=2rx+q— —=0
0x X

has a unique positive root

—q++q*+8rt!
4r '

xo(7) = (2.4)

The following result gives the nonexistence, existence and number of positive real roots
of the Eq. (2.2).

Proposition 1 Suppose that p, g, r > 0. Then there exists t* € (0, 1/(q + 2r)) such that

1. when 0 < © < t%* the Eq. (2.2) has two positive real roots x1(t) and x»(t) with
1 <x1(r) < x2(v) and lim x1(t) = 1and lim xp(t) = oo;
=0t =0t

2. the Eq. (2.2) has a unique positive real root x; > 1 when v = t¥;
3. the Eq. (2.2) has no positive real root when t > t*.
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Proof From (2.3) and fy(x, ) = 0 has a unique real positive root, one can conclude that
the number of real positive roots of (2.2) is determined by the sign of f(xo(7), 7): (2.2) has
0 (or 1, or 2) positive real root(s) if f(xo(t), ) > 0 (or =0, or < 0).

From (2.4) one can obtain that 0 < xo(t) < 1 when 7 > 1/(g + 2r), xo(r) = 1 when
T =1/(qg +2r)and xo(tr) > 1 when 0 < t < 1/(g + 2r). Accordingly, (Inxo(7))/7 <0
when © > 1/(g + 2r). Moreover, notice that p + gx +rx> > p > 0 for all x > 0 since
p.q,r > 0. Consequently, when 7 > 1/(q + 2r), f(xo(t), ) > 0 and thus (2.2) has no
positive real root.

Now we restrict T so that 0 < t < 1/(¢g + 2r). Since lirg+ xo(t) = 00, it follows that

T—

lim Inxg(t) = oo. In addition,
=0t

—qT +/q*t? + 8rt

li — i —o, 25

i, zxo(e) = lirg, 4r 2:5)
2¢%T + 8r —2g/q2t2 +8 1

lim tx3(c) = lim 2L —2avarT+drr 1 (2.6)

=0t =0t 16r2 2r

From (2.5) and (2.6) we know that lim+ f(xo(t), 7) < 0, and thus when 7 > 0 is small
7—0

enough, the Eq. (2.2) has two positive real roots x1(t) and x2(7) with 1 < x1(7) < xo(7) <
x2(7) since xo(t) > 1 and f (1, r) > 0. Meanwhile, this also implies that lim+ x2(1) =00
7—0

since lim+ x0(7) = 0o. On the other hand, when t > 0, the Eq. (2.2) is equivalent to
—0

pT +qTx + rex? —Inx = 0. 2.7

It is clear that when t = 0, the Eq. (2.7) has only one root at x = 1. Therefore, we know that
lim x;(7) =1.

=0t

Finally we consider the monotonicity of f(xo(t)) with respect to T in (0, 1/(g + 2r)).
We have

df (xo(t), 1) _ 9f (x0(x), ) dxo(r) | 3f (x0(7), 7)
dt ax dt at

Since xo(t) > 1 when 0 < t < 1/(g + 2r), we have

of xo(@). 7) _ Inxo(r) _

2.8
T 72 28)
In addition, from (2.4) we know that

of (xo(7), T

W) o) +q 2.9)

ox ()

Combining (2.8) and (2.9), we have that df (xo(t), 7)/dt > 0 and hence f(xo(7), 7) is
strictly increasing for v € (0, 1/(g + 2r)). Together with the discussion above, we know
that there exists a unique t* € (0, 1/(¢g + 2r)) such that f(xo(tr),7) = 0 when t =
™, f(xo(r), 7) > O when v > t* and f(xo(7), 7) < 0 when 7 < t*. This completes the
proof. O

From Proposition 1, we can derive the following result on the existence and number of
negative real roots of the Eq. (2.1).

Theorem 1 Suppose that p,q,r > 0and let t € (0, 1/(q + 2r)) be given by Proposition
1. Then the Eq. (2.1) has no non-negative real-valued root for any T > 0, and the following
results hold.
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1. If0 < t© < t% then (2.1) has exactly two negative real-valued roots 1 (t) and r(t)
with X2 (t) < A1 (7), andlii%)\l(r) =—(p+q+r), h%M(T) = —ooand liTm r(T) =
T T ThT*

lim A2 (7).
ThT*

N

If t = t%, then (2.1) has exactly one negative real-valued root.
3. If t > t¥, then (2.1) has no negative real-valued root.

Next we analyze the existence of purely imaginary roots of the Eq. (2.1) and the crossing of
complex-valued roots through the imaginary axis. In applications, if the Eq. (2.1) has no purely
imaginary roots for any T > 0, then from a well-known result of roots of the characteristic
equation (see [27]) and the fact that the Eq. (2.1) has only a real-valued negative root when
t = 0, we know that all the roots of the Eq. (2.1) have negative real parts for any ¢ > 0.
On the other hand, if the Eq. (2.1) has a pair of purely imaginary roots for some 7 = 79
and the complex conjugate pair of (2.1) cross through transversally the imaginary axis when
T = 719 from the left half complex plane to the right half complex plane, then (2.1) has a pair
of conjugate complex roots with positive real part when 0 < 7 — 79 < 1.

Assume that +iw(w > 0) are a pair of purely imaginary roots of the Eq. (2.1). Then we
have

io+p +qe—iwt +r€—2iwr =0,

or
(w4 p)+q+re T =0. (2.10)

Separating the real and imaginary parts of the Eq. (2.10) yields

(p+r)coswt —wsinwt +g =0,

wcoswt + (p —r)sinwt = 0. (2.11)
One can obtain from Eq. (2.11) that

(a)z—l—pi—ri)c‘oswr—}—q(p—r):0, 2.12)
(0” + p* —r9)sinwt —qow =0.
Therefore, w satisfies the following equation
2
(@ +p* =) =¢*[(p — 1 + ], (2.13)
that is,
o'+ 207 =) =]+ (P =P (P g+ (p—qg+r)=0. (2.14)
Let
h(z) := 2 2.2\ 2 2 _
D=+20p" =)= lz+ (=1’ p+ag+r(p—q+r). (2.15)

Then from the analysis above one can see that the number of pairs of purely imaginary roots
of the Eq. (2.1) is the same as the number of positive roots of the equation .(z) = 0. Notice
that the discriminant of the quadratic function s (z) is given by

2
A=2 (p*—r?) - 42] —4(p—r)*(p+q+r)(p—q+r) = ¢* [q2 +8r(r — p)]. (2.16)
Hence, for the positive roots of the equation /(z) = 0, we have the following observation.

Lemma 1 Let the function h(z) be defined by (2.15). If p = r, then the equation h(z) = 0
has only a positive root z = ¢>. If p # r, then
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(1) the equation h(z) = 0 has no positive root when one of the following conditions holds:
q> +8r(r—p) <0, or 2.17)
p—q+r=>0, and 2(p* —r*) —q*> = 0; (2.18)

(ii) the equation h(z) = 0 has only a positive root when one of the following conditions
holds:

p—q+r <0, or (2.19)
p—q+r>0 2p2—rH)—¢*><0, and ¢*> +8r(r — p) =0. (2.20)
(iii) the equation h(z) = 0 has two positive roots when
p—q+r>0, 2(p2 —r2) —q2 <0, and q2 +8r(r — p) > 0. (2.21)
Assume that @?(w > 0) is a positive root of the equation #(z) = 0. Then from (2.13) we
can observe that w®> + p> — r? # 0. Therefore, we have from (2.12)

q(r—p) : qo
COSwT = m and sinwt = m (222)

Thus, if £iw(w > 0) are a pair of purely imaginary roots of the Eq. (2.1), then the corre-
sponding values of 7 are given by

1 —1f_40r—p) . .
Tj = ; |:COS ! (m) +2]ﬂ] , J € Np. (223)

Therefore for given p, g, r > 0, if one of the conditions (2.19), (2.20) or (2.21) is satisfied,
then the Eq. (2.14) has a positive root @ > 0, and the characteristic equation (2.1) has a pair
of purely imaginary roots =i when T = 7; defined as in (2.23).

In order to consider the way of the complex roots of the Eq. (2.1) crossing through the
imaginary axis when T = 7;, we need the following result.

Lemma 2 Let 7 = w*(w > 0) be a simple positive root of the equation h(z) = 0. Then
w* + p> +3r2 —4pr #0. (2.24)
Proof 1tis clear that when p = r,
w2+p2+3r2—4pr =w’ > 0.

If p # r, then from Lemma 1, h(z) = 0 has a simple positive root if (2.19) or (2.21) is
satisfied, and /(z) = 0 has a non-simple positive root if (2.20) is satisfied.
Case 1: If p # r and (2.19) is satisfied, then

4> +8r(r—p) > (p+r)* +8(r—p)=(p—3r)°=0. (2.25)
It follows from (2.16) that A > 0 and we have

wz_q2—2(p2—r2)+«/2
= 3 .

(2.26)

From (2.16) and (2.26), one can obtain that

:q2+8r(r—p)+ﬂ:¢2(¢z )>0

o+ p* +3r2 —dpr Ay R
q

5 5 (2.27)
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Case 2: If p # r and (2.21) is satisfied, then

2 2 512_2(172_”2)—\/2

= = N 228

” = o 5 (2.28)
or 2 2 2 f
—2(p* - A

o =wdi=2 (P 2r)+ . (2.29)

From (2.27) we can get that w3 + p? + 3r2 — 4pr > 0. By (2.16) and (2.28), we have
AWA —q?
w? + p? +3rF —dpr = 7f(\2ﬁz 4 # 0, (2.30)
q
since A — g* = 8¢2%r(r — p) # 0 when p # r. O

By using Lemma 2, we can establish the existence of the complex-valued root for t near
Tj.
J

Lemma 3 Let F (A, t) be defined as in (2.1). Assume that 7 = ®*(w > 0)isa simple positive
root of the equation h(z) = 0 and the Eq. (2.1) has the purely imaginary roots £iw(w > 0)
when t = 1;(j € No). Then F)(*iw, tj) : C — Cis invertible. In particular, there are a
neighborhood O of . = iw and an interval I containing t; such that when t € I, the Eq.
(2.1) has a complex root M(t) = a(t) +iB(t) such that a(z;) =0, B(1r;) = w > 0, and

iod  iwf(1 —1;0)

M) =d (7; iB'(t;) = = 2.31
() =/ () +iB(7) = 5 = T g 2.31)
where . A
0 = ge U 4 2re” 0T (2.32)
Proof For F : C x R — C, one can calculate that
F(h, D] = (1 —qre™ —2rte”7)[£], £ eC. (2.33)
Hence
. . NN ETAYES! . &1
F: LT = (1 = (1 A ,Tj , 2.34
aiw, 7)1 + i&2] = ( l)<u o )(Ez) (1 HA(® T’)(%‘z) (2.34)
where

p=1—grtjcoswt; —2rtjcos2wt;, u=qrt;sinwt; + 2rt; sin2w7;.
Then Fj (iw, ;) is invertible if and only if the 2 x 2 matrix A(w, 7;) is invertible, which is
equivalent to p? 4+ u? # 0. Indeed from Lemma 2,
G*w(@* + p* +3r2 —4pr)
(w2 + p2 _ r2)2

u=71;(q +4rcoswr;)sinwt; = T; #0.

This proves that F) (fiw, ;) is invertible. Now it follows from the implicit function theorem
that there are a neighborhood O of A = iw and an interval I containing t; such that when
7 € I, there exists a unique A(7) = a(t) + if(7) such that F(A(r),7) = 0,a(r;) =0
and B(trj) = w > 0. Moreover, again from the implicit function theorem, A(7) is C!, and
N(t)) = —F Yo, tj)[F: (i, t))]. Since F; = —A(ge T + 2re™>7), then combining
with (2.33), we obtain (2.31). ]
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Now let z = w?(w > 0) be a simple positive root of the equation 4(z) = O and iw is a
purely imaginary root of the Eq. (2.1). Then by (2.31), we know that

(1) _iwd —ioT|0)?  —olm0) +io[Re®) — 7;0]%) 2.35)
dr =y,  [1—1;02 11— 1,602 ’ '
According to (2.22), one can derive
—Im(0) = (¢ + 4r cos wt) sin wt;
2 2 2 2
3re—4
_ g o +p”+3r pr) (2.36)
(wz + p2 _ }’2)2
Thus from (2.35) and (2.36) we obtain that
. [dRer(r) . [qPw@? + p? +3rF —4pr)
Sign | ——— = Sign 5 5
dr |, (w” + p*—r?)
= Sign(a)2 + p2 +372 = 4pr)
= Sign[w? + (p — r)(p — 3r)]. 2.37)

3 Stability Switches of the Positive Equilibrium

In this section, we shall discuss the stability switches of the positive equilibrium v = u* of
(1.9) according to the analysis obtained in Sect. 3 for the corresponding characteristic Eq.
2.1).

3.1 Nonexistence of Stability Switch

If all the roots of the characteristic Eq. (2.1) have negative real parts for any 7 > 0, then the
positive equilibrium u = u™* of (1.9) is absolutely stable, i.e. # = u™ has no stability switch
for any v > 0.

From Lemma 1 we know that when (2.17) or (2.18) holds, the equation /(z) = 0 has no
positive root and hence all the roots of the characteristic Eq. (2.1) have negative real parts
for any t > 0. In addition, if (2.20) is satisfied, then the equation /(z) = 0 has a double root

» @2 —20p—1?)

It follows from (2.37) that

Rel
Sign [7d eA(®)

] = Sign(¢g® + 8r(r — p)) = 0.
dt =1

J

Therefore, in this case we know that all the roots of the characteristic Eq. (2.1) have nonpos-
itive real parts for any T > 0.

Based on the discussion above, we have the following result about the nonexistence of
stability switch of u = u™*.

Theorem 2 Assume that p # r, and one of (2.17), (2.18) or (2.20) holds. Then the positive
equilibrium u = u™ of (1.9) has no stability switch for all T > 0.
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3.2 Single Stability Switch

If there is a certain 7y > O such that all the roots of the characteristic Eq. (2.1) have negative
real parts when 0 < 7 < 10, (2.1) has at least a root with positive real part when t > 7¢, and
one pair of complex roots of (2.1) crosses through the imaginary axis transversally at T = 79
from the left half plane to the right half, then we say that the positive equilibrium u = u™* of
(1.9) has a single stability switch at T = tp. Meanwhile, the model (1.9) undergoes a Hopf
bifurcation at u = u* when T = 1.

Here we give the conditions under which ¥ = u* has only a single stability switch. We
first consider the case when (2.15) has only one positive root.

Theorem 3 Assume that p, g and r satisfy either p =r, or p # r and (2.19). Let  and 7;
be defined by (2.26) and (2.23), respectively. Then the positive equilibrium u = u* of (1.9) is
locally asymptotically stable when 0 < t < 1y and it is unstable when t > 1. Furthermore,
(1.9) undergoes a Hopf bifurcation at u = u* when v = t; for j € Ny.

Proof From Lemma 1, the characteristic Eq. (2.15) has only one positive root @ which is
given by (2.26), and at 7; given by (2.23), a pair of complex-values roots of (2.1) crosses the
imaginary axis transversally. Moreover from (2.27) and (2.37), we know that

. dRe)(7)
Sign | ——— > 0, 3.1
df T=T;
for j € Ny, which implies that u = u* is unstable for all T > 1. O

Secondly we consider the case when p, g, r satisfy the condition (2.21). In this case, since
A > 0 and the equation 4(z) = 0 has two different positive roots z; and zp with z1 < z2,
where z; = a),% and w,%(k = 1, 2) are defined respectively by (2.28) and (2.29), then we can

define 7{(j € No) by

w 1 1 q(r —p) . .
= - - 2 , Np. 3.2
7 o [cos (w2+p2—r2) + jn] Jj €Ny (3.2)

If in addition we assume that p < r, then
2(p* —4pr+3r2) =2(p —r)(p—3r) > 0,
and consequently from (2.37) one can see when p < r, we have (3.1) holds for both t}l) and
‘L'J(-Z). In virtue of the analysis above, we have
Theorem 4 Assume that p, q and r > 0 satisfy (2.21) and

p<r (3.3)

Let w1 and wy be defined by (2.28) and (2.29) respectively, and r;k) (k =1,2; j € Ng) be
given by (3.2). Then the positive equilibrium u = u™* of (1.9) is locally asymptotically stable
when () <1 < min{rél), 152)} and it is unstable when t > min{r(l), ‘L'éz)}. Moreover (1.9)

undergoes a Hopf bifurcation at u = u™ when t = r;k) fork=1,2,j € No.
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3.3 Multiple Stability Switches

In this subsection, we analyze possible multiple stability switches of the positive equilibrium
u = u* of (1.9). To this end, throughout this subsection, we always assume that p, g and r
satisfy (2.21) and p > r, or to be more explicit,

p>r, p—q+r>0, 2(p2—r2)—q2<0andA>0. 3.4

In this case, the equation A(z) = 0 has two real positive roots z; = a)f and zp = w% with
| < wy defined by (2.28) and (2.29) respectively, and r/(.k) withk =1, 2, j € Ng are defined
by (3.2). '

In view of (2.16), (2.30) and (2.37), we obtain that

. |:dRek(r)
Sign| ————

] = Sign(+/A — ¢?) = Sign(r — p).
dt T_T/{U

Thus we know that when p > r,

dRe) (1)

— <0, (3.5)
dr |0

J
while from (2.27) we have that

dRel

dRer@®) -, (3.6)
dt r:r]@

Under the assumption (3.4), the two sequences 7|’ defined by (3.2) have the following
properties:

Lemma 4 Assume that (3.4) holds and w1 < wj are defined by (2.28) and (2.29) respectively.

Then r]@ < r;l)forj € Ny, and t;k) < t;lfi_)l fork =1,2and j € Ny.

Proof From (2.22) we can see that

Wi
tan wkt;k) = —,
r—=p

Since p > r, it follows that the function tan wt is monotonically decreasing in w. Thus from

.. . 1 2 .
the condition w; < wy one can derive w 'L'j( ) s w) t; ), that is,

k=1,2.

2
Tj( ) w1
Tj
Therefore, r](.z) < rj(.l) . The assertion that r}k) < t}{?l is obvious from (3.2). ]
Let A1y, k = 1, 2, be defined by
k o 27w .
A= o =T k=12and j € Mo, 3.7)

Hence Aty — Aty > 0 since w1 < w;. The following observation on the order of t;z) and

T;l) lead to multiple stability switches.
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(2) (1)
1 %

Lemma 5 Assume that (3.4) holds and t© > 0. If for some jy € N,

rl(2) _ T(gl)

io—1 < < Jo, 3.8
Jo At — Ag 0 (3.8)
then
1 2 . . 1 2 2 1
1:; ) < I;Jr)l for 0<j<jo—1, and t;o)*l < r](.o) < rj(.OJ)rl < r}o). 3.9
Proof Notice from (3.7) that for j € N,
V= a0+ = -nan+1Y. k=12, (3.10)
@ _
where/ e Nand/ < j.ForO0<j < jo—1< 1L 0 wehave
AT — A
1';1) = ‘L'él) + jAT < 11(2) + jAT = Tﬁ_)l.
(@ _ LW
rfrL+— 90 o Jjo — 1, then we have
A‘[l — A‘L’z
1 1 . 2 . 2
o) =1+ Go— DAn < 1P + (o — DA =10
71(2) — T(gl) (2) ()
Similarly, if m < jo, then we have 7 ol < Tjy - ]

To show the multiple stability switches of the positive equilibrium of (1.9) in a rigorous
way, we first prove the following preliminary results.

Lemma 6 Let F (A, t) be defined as in (2.1).

(i) Forany t > 0, F(-, t) is an analytic function for ) € C.
(ii) Let A be a nonzero root of F(-,t) = 0 with Rel > 0. Then |A| < p+q +r.
(iii) Let M (t) be the number of roots (counting multiplicity) of F (-, T) = 0 with positive
real parts. Then M (0) = O and iffor t1 < © < 1o, F (-, ) = 0 has no purely imaginary
roots, then M (t) is a constant on [ty, T2].

Proof The analyticity of F(-, t) is clear from its form in (2.1) as it is well-known that
polynomials and exponential functions are analytic. If ReA > 0, then |e=*| < 1 and thus
we observe that when || > p 4+ ¢q +r,

F(, 1) p+qge T 4 re T p+qg+r
= < < 1.
A A [A]
Therefore |A| < p + g + r. Finally M(0) = 0 since when t = 0, all roots of (2.1) have
negative real parts, and the remaining result is well-known, see [4,10,26]. O

We also recall the Rouché’s Theorem (see for example [1,30]).

Lemma 7 Let y be a simple closed curve (non-intersecting) in the complex plane and let
f(z) and g(z) be functions analytic in the complex plane satisfying

[f(2) —g@| <|f@I, zey.

Then in the domain enclosed by y, the number of zeros (counting multiplicity) of f(z) and
g(z) are same.
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ioy” p p A o

(a) (b)

Fig. 2 Graphs of Jordan curves I't and "'~

Now we establish the stability of u = u, for different r-values in terms of M(7), the
number of roots of (2.10) with positive real parts.

Proposition 2 Assume that p, q, r satisfy (3.4), w1 < wy, and assume that (3.8) holds for
some jo € N. Let M (t) be defined as in Lemma 6.

Q) Ifrel0,1?)orr e (r}‘jl, r]@)forl < j < jo, then M(z) = 0.

(i) Ift e (r](.z), r](.l))forO < j < jo—1, then M(z) = 2.
(i) IfT > T, then M(t) > 2.

Proof In virtue of M (0) = 0 and Lemma 6, one obtains that M () = 0when0 <7 < ‘c(§2).

Ifr = Téz), then from Lemma 3, there are disks U+ centering respectively at +iw, with

radius p4 € (0, w/2) and an interval /4 containing réz) such that when t € I, Eq. (2.1)
has a unique pair of conjugate complex roots A = «(t) + iB(7) in U+ such that

o (7)) =0, ' (7) > 0and § (7”) = @2 > 0. 3.11)
@

Therefore, when 0 < 7 — 7™ < 1, the Eq. (2.1) has at least one pair of complex roots with
positive real parts.

We prove that when Téz) <1< Tél), (2.1) has only one pair of complex roots with
positive real parts so that M(t) = 2. Let R = p + g +r + 1 and take a Jordan curve I' "
(see Fig. 2(a)) in the complex plane as

't ={ip:Be[-R, —wy— ps]U[—w2 + py, w2 — p+]U w2 + py, R}
U{peC:Reu >0, |utiom|=ps}U{neC:Reu>0,|ul =R}

Then we can see that, by shrinking 7 if necessary, (i) for t € I, the Eq. (2.1) has no roots
on I'"; and (i) for A € '"and 7 € I,

FO.1)—F (x, T(g%)\ < ’F (A, f(gb)\ .
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Therefore, by Lemma 6 and the Rouché’s Theorem 7, we know that the sum of multiplicity
of roots of (2.1) inside I" cannot change when = € I,. Notice that (2.1) has no roots inside
I't when t < réz) and T € Iy. Thus, it follows that except the roots in Uy, the Eq. (2.1)
has no other roots in the right half-plane when 7 > 'L'(gz) and t € I, thatis, M(7) = 2 when
T > 'L'(z) and t € I;. From Lemma 6, M (7) = 2 as long as t( ) <1< r(l)

Ifr = ‘L'(l) then the transversality condition (3.5) and Lemma 3 again imply that there
exist disks Vi centering respectively at +iw; with radius p_ € (0, w;/2) and the interval

I_ containing 1:( ) such that when 7 € I_, the Eq. (2.1) has a unique pair of complex roots
w(t) = ay (1) :i: iw(7) in V4 such that

Qs (rél)) =0, o ('L’él)> < 0and B, (‘L’él)) =w; > 0.

By shrinking /_ if necessary, we can assume that ;(7) does not lie on the boundary of Vi
for t € I_. Take the Jordan curve I"~ (see Fig. 2 (b)) in the complex plane as

'~ ={ip:Bel-R,~w1 — p-]1U[~w1 + p—, w1 — p1] U [w1 + p—, R]}
U eC:Reu <0, |utiow|=p-}U{ueC:Reu>0,|ul =R}

Again, by shrinking /_ if necessary, we can see that for L € '~ and 7 € I_,

Fou0) = F (k") < |F (o).

Thus according to Lemma 3.6 and the Rouché’s Theorem 7 we know that the number of
roots (counting multiplicity) of (2.1) inside 1"~ is the same forall t € I_. For t < rél) and
T € I_, the number is 2 because M (t) = 2 and a4 (t) > 0. Therefore it must also be 2 for

T > rél) and 7 € I_. But for such 7, o, (7) < 0, so u(7) lies in the open left half-plane. It

follows that M(tr) =Ofort € I_and T > ‘L’él) and thus from Lemma 6 we can derive that

M (t) = 0 when r(l) <T< 1(2)

Similarly, one can show that M(r) = 0 when 7 € (t(l)], t/(.z)) forj=1,2,---, jo and
M(t) =2whent € ( (2) (.l)) for j =1,---, jo — 1. Thus we prove the conclusions (i)
and (ii).

Finally, we prove the conclusion (iii). Similar to the previous proof, we can demonstrate

that M(t) =2 whent € ( (02), 7/(023rl) and M(t) =4 whent € ( /(ozil /(01)) Indeed from

(3.8) and (3.9), every time 7 increases across ‘L' , then M (1) increases by 2, while every time
T increases across rl then M (t) decreases by 2. But when 7 > 1: the number of 1:](2)

(0, 7) is larger than the number of r}l). Hence M(t) > 2 when 7 > 'L'j(-o), and (2.1) has at
least a pair of complex roots with positive real parts. O

The results in Proposition 2 directly imply the following main theorem in this section.

Theorem 5 Assume that p, q, r satisfy (3.4), w1 < w», and assume that (3.8) holds for some
Jjo € N. Then the positive equilibrium u = u* of (1.9) has 2jo + 1 times stability switches
and then becomes eventually unstable, that is, u = u™ is locally asymptotically stable when

refon?)u (. e®) o (o 2)

and it is unstable when

2 @D 2) (€3] 2
TEe (tO ) ) U (tj()*l’ tj()*l) v ( o OO) )
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Fig. 3 Time series of the model (1.9), a = 2, b = 2.5 and ¢ = 1.5, with different values of t and initial data

¢(s) =0.3 fors € [—217,0]

Finally to verify our theoretical prediction in Theorem 5, we use a specific example for
(1.9) to demonstrate the stability switches. In (1.9), we take a = 2,b = 2.5 and ¢ = 1.5,

then u* = 1/6 and
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1 5 1
PE3 AT T
It is easy to verify that p, g and r satisfy the condition (3.4). Therefore, from (2.28) and
(2.29) we have

\/612—2(172—#)—\/2
w] =

~ 0.1443,
2
2 _9o(p2 _ g2 A
and wzz\/q (p . P +VA o ss.
Thus Aty = 13.8564w, Aty = 8.48537 and
7(") = 14,5104 + 1385647 and r}z) =8.1061 + 8.4853jm, j € Ny. (3.12)

Now we can get

L@ _ 0

1 0
L0 ~1.2003 € (1, 2).
A‘L’] — A‘Ez

In fact, from (3.12) one obtains that
T(gz) < r(gl) < rl(z) < rl(l) < rz(z) < r3(2) < rz(l) < e

as the bifurcation values can be calculated as

réZ) ‘L'(gl) r1(2) rl(l) ‘[2(2) ‘E3(2) ‘[2(1)

8.1061 14.5104 34.7634 58.0416 61.4207 88.0780 101.5728

Therefore, from Theorem 5 one can get that the positive equilibrium u = 1/6 of (1.9) has
5 stability switches, that is, u = 1/6 is locally asymptotically stable for

T E [O, 1:52)) U (r(gl), 1'1(2)) U (rl(l), 1:2(2))
and it is unstable when
re (2. ) U (e, 1) U (2, o0)
Numerical simulation for various t values are shown in Fig. 3.
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