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Abstract

We explore the nature of forgetting in a corpus of 125,000 students learning Spanish using the  
Rosetta Stone foreign-language instruction software across 48 lessons. Students are tested on a les-
son after its initial study and are then retested after a variable time lag. We observe forgetting consis-
tent with power function decay at a rate that varies across lessons but not across students. We find 
that lessons which are better learned initially are forgotten more slowly, a correlation which likely  
reflects a latent cause such as the quality or difficulty of the lesson. We obtain improved predictive 
accuracy of the forgetting model by augmenting it with features that encode characteristics of a stu-
dent’s initial study of the lesson and the activities the student engaged in between the initial and 
delayed tests. The augmented model can predict 23.9% of the variance in an individual’s score on the 
delayed test. We analyze which features best explain individual performance.

Keywords:  Forgetting;  Big  data;  Corpus  analysis;  Computational  modeling;  Second  language 
learning

1. Introduction

Psychologists have studied forgetting—the durability of memory over time—for over 
130 years. Beginning with experiments that Ebbinghaus (1885/1964) conducted on him-
self, traditional controlled studies have involved learning some material—typically paired 
associates or facts—to criterion, and then probing residual memory strength after varying 
lags. Memory strength might be measured by recognition or recall tests, or—as Ebbing-
haus did—the time saved when relearning the material. Observations of memory strength 
over time are used to fit a retention or forgetting function. This function shows a rapid,
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monotonic decline shortly after initial study, but the curve’s slope decreases over time and 
the curve levels off.

From Ebbinghaus forward, there has been intense interest in determining the quantitative 
relationship between the retention interval and memory strength. In a tour de force, Rubin 
and Wenzel (1996) reanalayzed 210 published data sets by fitting each to 105 different two-
parameter functions. Across the data sets, four functions appeared to fit about equally well, 
all of which are based on a logarithmic (or logarithm-like) scale of time. One of these is a 
power  function,  which  is  both  elegant  and  has  a  long  theoretical  tradition  (Wixted  & 
Carpenter, 2007; Wixted & Ebbesen, 1991, 1997):

y^ ¼ at b; ð1Þ

in which y^ is a prediction of memory strength (e.g., recall accuracy), t is the lag between 
study and test,  a is a constant that represents strength of initial learning, and b is a decay 
constant where larger b corresponds to faster memory decay. Wickelgren (1974) proposed a 
three-parameter version of the power function,

y^ ¼ að1 þ ctÞ b; ð2Þ

which has the advantage over Eq. 1 that y^ is defined at t = 0 and that y^ is constrained to 
lie in [0,1], allowing y^ to be interpreted as a probability correct or accuracy measure.

Forgetting has most often been studied in the lab in highly controlled conditions. Sub-
jects are presented with novel materials, for example, nonsense syllables or arbitrary word-
number associations or independent facts. Initial training is either designed to achieve an 
initial performance criterion or is undergone for a fixed number of trials or duration. Reten-
tion intervals are typically on the order of minutes to days. Re-exposure to the materials 
during the retention interval is either prevented or is highly unlikely due to the obscurity of 
the materials. In contrast, Harry Bahrick and colleagues have made heroic strides toward 
studying memory in naturalistic settings over retention intervals of up to 50 years, includ-
ing such domains as: names and faces from high school (Bahrick, Bahrick, & Wittinger,  
1975), the spatial layout of a city (Bahrick, 1983), various facets of Spanish as a foreign  
language (including grammar, idioms) (Bahrick, 1984), and algebra and geometry content 
(Bahrick & Hall, 1991). These studies show a rapid decline in memory and skill strength 
over the first 5 years, but are often characterized by a long period (35 years) of relative sta-
bilization in a “permastore” (Bahrick, 1984) followed by further decline. However, given 
noise in behavioral observations, it is difficult to rule out continuous decay with an increas-
ingly shallow slope, for example, power function (Wixted, 2004). Even highly motivated 
learners seem to show significant forgetting over long periods of time: Medical students 
forget roughly 25%–35% of basic science knowledge after 1 year, more than 50% by the 
next year (Custers, 2010), and 80%–85% after 25 years (Custers & ten Cate, 2011).

The emphasis of almost all studies of forgetting is on how memory strength varies with 
time and with characteristics of initial learning. Only occasionally are other
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covariates considered, and then, only one or two at a time. For example, Bahrick and Hall  
(1991) examined retention of algebra knowledge contingent on a student’s top level of math 
achievement.

The  advent  of  modern  electronic  methods  of  education  has  created  opportunities  to 
analyze  memory  at  scale.  Large  online  educational  programs  such  as  Rosetta  Stone 
Software, Khan Academy, and massively open online courses like Coursera and edX are 
capable of recording every interaction with a student at the level of keystrokes and mouse 
clicks. With such data, is it possible to examine memory in naturalistic learning settings 
with genuinely interested learners, and to explore the effects of confounds and interac-tions 
that  psychologists  have  traditionally  avoided  in  laboratory  studies?  Beyond  using 
electronic-education tools to better understand memory, it should also be possible to apply 
our best memory models to enhance the course experience. For example, the tools could 
recommend study of the material predicted to be most fragile or the material whose study  
will obtain the greatest predicted learning gains.

Our research leverages data from a massively scaled on-line language learning applica-
tion with 125,000 users studying subsets of 48 lessons. In this corpus, there is no clear 
notion of a retention interval between initial learning and delayed testing because the tra-
ditional definition of a retention interval is that students avoid all contact with the mate-rial  
during the interval.  In  our  corpus,  students  continue to  be exposed to  related material.  
Instead of learning isolated facts that are easily distinguished from intervening activities,  
students  are  studying  a  series  of  interrelated  and  interdependent  lessons.  The  lessons 
incorporate  many  varieties  of  knowledge,  including  vocabulary,  syntax,  morphology, 
inflections and derivations, phonetics,  and phonology. Despite these confounds,  we also 
have indicators to provide some information about the students’ intervening activities, and 
can use these indicators—and other student-specific information—to model perfor-mance 
on a delayed test. With many lessons and many students, we can ask questions about how 
lessons differ from one another and how students differ from one another.

2. Background on the software

Rosetta Stone Ltd. develops technology-driven language and literacy training programs 
for use by schools, businesses, and government organizations. Its interactive software for 
foreign-language  learning  covers  over  30  languages,  from Arabic  to  Vietnamese.  Each 
course is composed of up to five language levels, which are designed to be taken in ser-ies.  
Each successive level builds on material learned in the previous level. Each level is divided 
into 16 lessons. Lessons also have cumulative content and are typically studied in series. A 
lesson is composed of a set of primitive activities. The essential content of the lesson is 
introduced in an activity labeled as the core. Depending on student preferences, students 
may engage in various specialty activities that cover similar content to that intro-duced in  
the core activity, but focus on particular skills such as vocabulary, pronuncia-tion, grammar,  
and reading.
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Between activities, students are taken to a home screen which displays a dashboard indi-
cating the completion status of various activities within the current lesson. The home screen 
includes a recommendation for what to do next, for example, to begin the next les-son in 
the curriculum, to review an old lesson, or to schedule a live coaching session. From the 
home screen, students may navigate to any lesson and any activity in the curriculum.

Each lesson includes an activity that serves as a review test. No new material is pre-
sented, but students are evaluated on content from the lesson’s core activity. Students tak-
ing the test receive a score indicating their mastery of the lesson. Because these scores are  
the basis for our investigation, we provide some details concerning the review test.

2.1. Review test

The review test requires students to respond to a set of challenges which vary by their 
prompting media—text, audio, or an image—and by the mode of interaction for responses
—clicking an image or text, speaking a phrase out loud, or typing a free-response answer.  
For example, students may be prompted with an audio clip of a sen-tence spoken in the  
foreign language—for example, “The woman is running”—and may be required to select 
from  among  four  images  depicting  various  scenes.  Fig.  1  shows  three  different 
combinations of challenge responses. In the left example, students are prompted to select a  
picture. In the center example, students are prompted to select from a number of text/audio 
options. In the right example, students must select from a set of text phrases to fill in the  
blanks in a sentence.

After  a  response  is  selected,  the  software  provides  feedback  indicating  whether  the 
response was correct or incorrect. Fig. 2 shows an example interaction with a challenge on a 
review test. In this case, the student first makes an incorrect initial choice, and then selects 
the correct response. The score for the review test is based on students’ initial responses, but  
because the activity is designed not just to evaluate but also to provide additional learning 
opportunities, each challenge is repeated until students respond cor-rectly. Students are not  
allowed to skip challenges in review tests.

Fig. 1. Three examples of different kinds of challenges, drawn from the Japanese product. In the first frame, the  
student listens to a phrase or sentence spoken in Japanese and responds by selecting the corresponding image. In  
the second frame, the student reads and/or listens to three possible descriptions of the image and responds by  
selecting the  correct  description.  In  the  final  frame,  the student  must  complete  a  sentence in  Japanese by 
selecting from a sequence of multiple-choice text options.
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Fig. 2. An example sequence of interactions a student can have on the review test.

As Fig. 1 illustrates, each display in the review test has multiple panels.  This design 
allows for multiple challenges to be created using the same display. Because each chal-
lenge  can  eliminate  a  response  alternative,  responses  to  later  challenges  in  a  sequence 
become increasingly constrained. Typically, panels in a display are rearranged following 
each challenge, and a display will have between 2 and 8 challenges associated with it. A 
typical review test consists of 8–10 displays, leading to on the order of 25–50 responses per 
activity.  Since  the  challenges  typically  involve  a  prompt  and  selection  from  a  set  of  
responses, we consider the challenges to be recognition (as opposed to recall) tests.

Students may quit part way through a review test, but—in contrast to other activity types
—students may not skip challenges or go back to previous challenges to amend responses  
and improve scores. Like the other types of activities, the only aspect of a review test that  
changes  on  consecutive  attempts  is  the  randomization  of  the  order  of  pan-els  within  
displays. These properties, along with the fact that only the initial response to a challenge 
can be scored as correct, make review test scores a sensible assessment of language skills.

Review tests are recommended to students at  predetermined points in a lesson’s cur-
riculum. Additionally, review tests from previous lessons are periodically recommended in 
order to mitigate forgetting. The algorithm for selecting old lessons to revisit, called the 
Adaptive Recall function (Keim, 2009), suggests review of a lesson 14 days after the initial  
review. Following the second review, subsequent  suggestions are  temporally distributed 
according to  an expanding spacing schedule  (Kang,  Lindsey,  Mozer,  & Pash-ler,  2014; 
Landauer & Bjork, 1978), contingent on the student’s performance. Students can ignore the 
recommendation,  and  also they  can choose  to  repeat  a  review test  at  any point  in  the  
curriculum.
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Because students often perform a review test multiple times—either due to prompting 
from the software or on their own initiative—the difference in scores between successive 
attempts  can  be  used  as  a  measure  of  a  lesson’s  retention.  We  use  this  measure  to 
investigate factors influencing forgetting. However, we note that the measure is not a pure 
measure of forgetting for three reasons. First, review tests are designed to instruct as well as  
evaluate.  Even  material  designed  primarily  as  an  assessment  can  support  knowledge 
retention (Bjork, 1994). Thus, knowledge may be strengthened as a result of the activity.  
Second,  the  specific  challenges  used  in  the  review activity  are  repeated  each  time the 
activity is performed (possibly in a different randomized order).  Thus, the review score  
reflects both mastery of the core lesson skills as well as episodic memory from previous  
attempts  on  the  specific  challenge  examples.  Third,  students  typically  have  significant  
contact  with course material  between the two review tests—practicing new lessons and 
other activities in the tested lesson—in contrast to typical memory studies that control for 
exposure between tests.

3. Data set

The software can be run either as a web-client online or as a stand-alone application. 
Activity logs are available only for students using the online software; these logs are con-
densed and stored on servers.  Our  investigation utilized anonymized activity  logs from 
insti-tutional usage. Some institutions mandate the use of the software; others make the use 
optional. We have no means of determining the usage policy governing individual students.

Our data set is drawn from the online Latin American Spanish course, levels 1–3, with 
the TOTALeTM software suite. This software suite, when it was launched in 2007, origi-
nally included only a self-study application, which is the core pedagogical activity in the 
suite. It was later expanded to include access to videoconferencing with a language coach to 
reinforce content  from the Course.  The data  used in this study were collected between 
January 2008 and March 2014, and therefore correspond to various versions of the soft-
ware depending on the date collected. All data points are anonymized, where each student is  
identified only by a unique integer value.

Our data set consists of 46.3 million observations of anonymized students performing 
activities, of which 6.1 million were review activities. These activities were distributed over 
a  total  of  48 lessons—16 in each  of  3  levels.  In  the  database,  each  review activity  is 
associated with a total score, representative of the aggregate performance over the whole  
activity.

Fig. 3 illustrates a typical student’s path through a lesson. The lesson is associated with a 
set of activities that are performed at various times. Students begin a lesson by completing 
the core activity before moving on to other activities (e.g., grammar) and eventually taking  
their initial review test. Following some lag, they may take the review test for a second 
time. Additional activities may be performed between the two tests. A student may choose 
to take the review test again after the delayed review. However, we removed these attempts 
from our data set and only consider the initial and first delayed reviews.
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We selected from the complete database all students and all lessons for which the stu-
dent completed two or more review activities. This subset consists of 545,629 student-les-
sons (i.e., instances where a student completed at least two review tests for a lesson) from 
125,112 unique students. Fig. 4 shows the count of students by lesson, arranged in the order 
in which they appear in the curriculum. The vertical axis is log-scaled to better represent the  
dynamic range. The most populated lesson has over 86,000 students; the least populated 
lesson has fewer than 1,000. The sawtooth pattern is due to the fact that students tend to 
drop out within a level of a course, and new students join at the begin-ning of each of the  
three levels.

Fig. 5 shows the distribution of lags—the time between the initial and delayed review 
tests. This bimodal distribution can be attributed to two features of the software. First, the  
course allows students the freedom to repeat activities at will. So, after students com-plete a 
review, they are free to simply repeat  it  immediately. Many do so to raise their  scores.  
Second, the mode of the distribution at roughly 14 days is due to the software design, which 
automatically schedules  a  repeat  of  the  review activity  2 weeks after  the  initial  review 
attempt. Although students have the ability to opt out of the scheduled review, this default 
suggestion is typically followed.
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Fig. 3. A typical sequence of student activities within a lesson.
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Fig. 4. Number of students per lesson for the three levels of our data set and all 16 lessons within a level.
The ordinate is scaled logarithmically to represent the full dynamic range.
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Fig.  5.  The distribution of lags between the initial  and delayed review test  in the data set.  The abscissa is  
displayed on a log scale to capture the dynamic range from minutes to years.

3.1. Review test scores

Each test is summarized in our database with a score ranging from 0 to 1. Only the  
aggregate score is available; responses to specific challenges are not. We use y0 and y to 
denote the initial and delayed aggregate scores, respectively.

The values of  y0 and y for  the  review activity are the  guessing-corrected proportion 
correct across the review activity. The guessing correction is made by subtracting from the 
raw proportion correct the baseline proportion correct that would be obtained by ran-dom 
selection of responses and then renormalizing to the range [0,1]. The baseline pro-portion is 
estimated for each display, and it depends on the type of response demanded from students.  
For displays that have N alternative responses, and M\N questions are asked in series, each 
requiring the selection of a distinct response, the expected propor-tion correct by guessing 

is  
PM

i¼1 ðN i  þ 1Þ 1, assuming that students use feedback from the first m questions to 
constrain  their  response  choice  for  the  m  + 1’th  question.  The  remainder  of  questions 
required spoken answers, prompted either by images, written phrases, or spoken phrases.  
For  these  questions,  we  set  the  baseline  proportion  to  be  the  false  alarm  rate  of  the 
automatic speech recognition software.

Fig. 6 shows the distribution of guessing corrected scores on the initial and delayed tests, 
y0 and y, respectively. Note that the vertical axis of the graph is log scaled, and that most of  
the guessing-corrected scores are above 0.7.

3.2. Forgetting in the wild

To begin our investigation of the data set, we ask whether forgetting is observed, and if  
so, whether it has the same qualitative properties as forgetting as assessed in controlled 
laboratory studies. We treat the lag between initial and delayed tests as a retention inter-val. 
However, unlike laboratory experiments, this lag is not an independent variable: Stu-dents 
determined  when  they  wished  to  re-test  themselves  on  a  lesson.  Our  data  set  further  
deviates from laboratory experiments in that during the lag, students often used the lan-
guage learning software and were thus engaged with the same or similar materials as that



932 K. Ridgeway, M. C. Mozer, A. R. Bowles / Cognitive Science 41 (2017)
F

re
qu

en
cy

 in
 c

or
pu

s

30%
20%

10%

5%

1% 

0.1% 

0.01%

0.1 0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.9 1

Score on Initial Test

F
re

qu
en

cy
 in

 c
or

pu
s

30%
20%

10%

5%

1% 

0.1% 

0.01%

00.1 0.2 0.3 0.4 0.5 0.6
0.7 0.8 0.9 1

Score on Delayed Test

Fig. 6. Distributions of scores on the initial and delayed review tests.

covered by the test. Although we have information about the student’s activities with the  
software during the lag, our initial exploration simply focuses on the effect of lag. Subse-
quent  investigations  in  this  article  will  consider  the  other  activities  a  student  performs 
during the lag.

We analyzed data from each of the 48 lessons separately. For each lesson, we created a 
scatter plot of scores on the delayed test versus lag. Due to the large number of stu-dents, it 
is  difficult  to  visualize  the  relationship  when  a  separate  data  point  is  plotted  for  each 
student. Consequently, we aggregated the data by forming groups of 50 students who took 
the delayed test at roughly the same lag. Fig 7 shows scatter plots for three les-sons, plotted 
on a log–log scale, where each point represents the mean score of a group of 50 students at  
their mean lag.

The  strong linear  relationship  on  a  log–log  scale  indicates  power  function  decay of 
knowledge. The solid line in each graph shows the best fit to a two-parameter power-law 
model (Eq. 1), y^ ¼ at  b, where y^ is the predicted score, t is the lag between initial and 
delayed review tests, and a and b are free parameters of the model. The power-law model is 
fit to the data of the individual students—not the group averages—in order to minimize the 
sum squared deviations of the log scores.1

The three lessons depicted in  Fig.  7 are those whose data are best  fit  by the power 
function. The three fits explain, from left to right, 90.2%, 94.6%, and 90.7% of the vari-
ance in the aggregated data (on the log–log scale). The three fits explain 24.0%, 26.7%, and 
28.1% of the variance in the individual student scores. Note that because the scores lie in a  
narrow  range,  0.85–1.00,  the  log  transform  of  the  score  does  not  induce  a  strong 
nonlinearity, and the fits are quite comparable for the untransformed scores.1
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The three lessons depicted in Fig. 8 are those whose data are most poorly fit by the power  
function. The three fits explain, from left to right, 21.7%, 33.0%, and 39.1% of the variance in  
the aggregated data (on the log–log scale). Although these fits are not bad, they explain only 
1.4% of the variance in the individual student scores in each of the three lessons.

The best fitting lessons tend to be those late within a level of a course and which have 
the fewest students enrolled. The worst fitting lessons tend to be those early within a level  
of the course, with the greatest number of students enrolled. This pattern makes sense given 
that early within a level, students of varying ability and degrees of interest participate, but  
those with the least interest tend to drop out over the lessons within a level. As a result,  
there is greater heterogeneity for the earlier, more populated lessons than for the later, less 
populated lessons. Additionally, the lessons often include, and serve as review of, material 
from earlier lessons. Therefore, later lessons are less likely to be reviewed and are thus  
retention can be better predicted by pure models of forgetting.
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For  each  lesson,  we  estimate  the  model  parameters  a and  b which  represent  initial 
learning and memory decay, respectively. Fig. 9 shows the resulting power-law forgetting 
curves for the 48 lessons. The marginal distributions of a and b, as well as a scatter plot of 
the pairwise values, are depicted in Fig. 10A. The strong negative correlation in the scatter  
plot suggests that lessons which are better learned initially are forgotten more slowly. The 
correlation does not inform us as to the cause of the relationship. The corre-lation could in 
principle imply that when students learn a lesson well initially, they forget it more slowly.  
But the correlation may instead be attributed to some underlying cause responsible for both 
effects. For example, more effective lessons might produce both bet-ter initial learning and 
slower forgetting. Another possibility is that noise in the data leads to the observed trade-off 
between  a and  b.  To rule out this possibility, we performed a simulation under the null 
hypothesis that the true a and b parameters do not vary mean-
ingfully across data sets. We generated 48 synthetic data sets, analogous to the 48 lessons in 
the actual data, each consisting of 5,000 samples from y = 0.95t 0.012 + g, represent-
ing a typical lesson forgetting curve (Fig. 9) with additive noise g sampled from a mean-
zero Gaussian density with standard deviation 0.15. Fitting the synthetic data in the same 
manner as the actual data, we obtain a and b estimates and generate a scatter plot for the 
synthetic data (Fig. 10B). Here, we observe a strong positive correlation—the opposite of 
what we observe with the actual data—suggesting that the observed a–b correlation is due 
to meaningful variation in a and b across data sets, and not to noise artifacts under the null 
hypothesis.  The simulation with synthetic  data  is  also interesting in  that  it  pro-duces  a 
roughly comparable distribution of b to what is found in the actual data, but the distribution 
of a is much tighter. This comparison of distributions provides evidence that initial learning 
(a) does vary across lessons, but it does not offer strong support for inter-lesson variability 
in decay rates (b).

In all fits, the forgetting rate, b, is relatively low compared to laboratory studies of free 
recall. Typical values in laboratory studies we reviewed range from 0.15 to 0.30. The
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Fig. 10. (A) Scatter plot of power law parameters for the 48 lessons. Each point in the scatter plot represents a  
single lesson’s  {a,  b} values. The histograms along the horizontal and vertical axes depict the marginal dis-
tributions of a and b, respectively. (B) Scatter plot of recovered parameters from an experiment with syn-thetic  
data in which 48 sets of observations were generated via noisy samples from a power function with fixed  
parameters a = 0.95 and b = 0.012.

decay rates in our fits are closer to 0.01. We suspect this lower decay rate is due to the fact  
that the material being tested is exercised in other activities the students perform. Further,  
even though we have corrected the scores for guessing, typical memory studies involve free 
recall, and the review tests in the software mostly involve recognition. Finally, the review 
tests include feedback, and the initial and delayed tests are nearly identical; consequently, 
there may be a learning benefit of performing the initial test.

3.3. Predictors of knowledge retention

Forgetting in the laboratory is typically characterized by a relatively small number of  
factors,  such  as  the  retention  interval  and  the  nature  of  initial  study (e.g.,  reading  vs.  
retrieval  practice).  In our data set,  we have the potential  for  considering a much larger 
collection of variables that might contribute to the durability of knowledge. For each stu-
dent in each lesson, we extracted features that seemed potentially useful as predictors of  
knowledge strength and retention. In the remainder of the article, we explore models that  
incorporate these features to predict performance. The following list enumerates 25 dis-tinct 
features that are included in our models.

1. Information about a student’s performance on prior review tests.

• The  student’s  score  on  the  initial  review  test,  a  fraction  in  [0,  1] 
representing  the  number  of  challenges  in  the  review  activity  the  student 



answered correctly on the first attempt divided by the total number of challenges 
attempted. This score is guessing corrected, as described earlier.
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•
•

•

•

The lag, in days, between the initial and the delayed review test.
The total time spent on the initial review test. This time, and all others that 
follow, is specified in seconds.
A count of the number of times that a student began but did not complete the 
review test between the initial and the delayed tests.
The total time that a student spent on incomplete review tests prior to the 
delayed test.

2.A binary variable indicating whether the delayed test was taken at the prompting of 
the software (i.e., whether it was scheduled with Adaptive Recall ).
3.The student’s score on the core lesson and amount of time spent in the core lesson. 
As discussed in earlier, core lessons introduce the material being tested.
4.Information about other (non-review) activities performed within the same lesson.

•
•

•

The total time spent between initial and delayed tests on all other activities. For 
each of eight distinct activity types (writing, grammar, listening, reading, 
listening and reading, speaking, pronunciation, and vocabulary), the count of the 
number of attempts on that activity type prior to the initial review test. For each 
distinct activity type, the count of the number of attempts on that activity type 
between the initial and the delayed review tests.

4. Methodology

One goal of this work is to compare the quality of alternative models. A model’s quality 
is determined by how well the model predicts performance of a particular student on a sec-
ond attempt at taking a lesson’s review test,  given the lag between the first and second 
attempts. In this section, we describe how we use our data set to evaluate each model.

Each lesson is  modeled independently.  We divide the overall  data  set  by lesson;  the 
lesson-specific data set  includes all  students who have performed the associated review 
activity at least twice. We use five-fold cross validation for model evaluation. This proce-
dure involves randomly partitioning the data set into five roughly equal sized groups of  
students.  For each partition,  we form a training set  consisting of data from all  students  
except those in the partition. We fit a model using the training set, and then evaluate model  
predictive performance using data from students in the held-out partition, which we refer to 
as the validation set. Aggregating validation-set predictions across the five partitions, we  
obtain a prediction for each student using a model that was not fit to that student. In order to  
perform the most meaningful comparison across alternative models, we use the same cross 
validation partitions for all models.

4.1. Performance metric

We evaluate a model m by comparing the score on the second review test for each stu-
dent in the validation set, which we denote as ylpi for student i in partition p of lesson l,
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to the model’s prediction, denoted ybm
lpi. For a given partition p of lesson l, we compute 

the normalized mean squared error (NMSE) for model m as:

NMSElp
m

where Nlp is the number of students held out in partition p of lesson l, ylp is the mean score 
of all students in the training set for partition p of lesson l, and the model’s predic-tions are  
restricted to the [0,1] range. The NMSE will typically range from 0 to 1, where 0 indicates 
that the model’s predictions are perfect, and 1 indicates that the model does no better than 
predicting the mean score of students the training set. The NMSE can also be interpreted as  
the proportion of variance in the data that the model fails to explain.

To compute the mean performance of model m on a lesson l, we average over partitions:

NMSEl
m

where Np = 5 is the total number of partitions. The overall mean for model m, NMSEm is 
simply the average over lessons:

1

NMSEm ¼

where Nl = 48 is the total number of lessons. This error metric weighs all lessons equally.  
Despite the wide disparity in the number of students who complete a lesson in our data set,  
we chose to weight each lesson equally, rather than each student or each student-les-son  
equally. This choice allows us to interpret our NMSE measure as a prediction of how well a  
model will generalize to new lessons. If our goal was to focus on students who were the 
heaviest users in our data set or lessons that were more popular in our data set, it might be 
more  appropriate  to  weight  the  NMSE  by  student-lessons  or  students,  respec-tively. 
Although the results we report in this article are based on a lesson-weighted NMSE, we  
have run all of our simulations with an NMSE weighted by student-lessons, and the two 
weightings yield essentially the same conclusions.

To compare the performance of models m1 and m2, we perform two-tailed t tests with 
lesson as the random variable and NMSEm

l
1 and NMSEm

l
2 as paired samples.

5. Baseline models



In this section, we compare alternative models for predicting a student’s delayed review 
test score, y. We begin with the two variants of the power model described earlier, one with  
two parameters (Eq. 1) and one with three parameters (Eq. 2). Both models
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assume forgetting as  a  power  function of  lag.  The  normalized  cross-validation  error  is  
almost identical for the two models (0.8858 and 0.8852 for the two- and three-parameter 
models, respectively, t(47) = 1.67, p = .10), indicating that the additional flexibility of the 
three-parameter  model  does  not  lead  to  superior  predictions  on  the  held-out  data.  
Consequently, in subsequent comparisons involving the power model, we utilize the two-

parameter model, y^ ¼ at b (Eq. 1).
Many alternatives to the power model have been proposed and explored by Rubin and 

Wenzel (1996). Rubin and Wenzel found several models to obtain roughly equivalent fits to 
the power model, including a model termed the exponential-power model, as defined
by:

y^

Although Rubin and Wenzel were unable to distinguish power and exponential-power 
models based on goodness of fits to the data they had available, we find that the normal-
ized cross-validation error is reliably worse for the exponential-power model than for the 
power model (0.9450 and 0.8858, respectively, (47)  = 11.36, p  < .01). Both models have 
two free parameters. The power function appears to be better suited for describing forget-
ting in our data set.

Beyond models traditionally used to characterize forgetting, we explored two addi-tional 
models based on a generic regression approach in which y is predicted from a vec-tor of  
features,  x, that characterize a student’s specific study history for the given lesson. With 
linear regression, we have

X

y^ ¼
wjxj;

ð4Þ
j

where  y  is  a  linear  function  of  the  feature  vector  and  the  model  has  coefficients  w. 
(Although scores are bounded to lie in the range [0,1], linear regression predictions are not. 
Nonetheless, the scoring function, Eq. 5, does not penalize scores outside the range.) The 
model includes a constant feature, x0 = 1, to provide a bias term on the prediction. With 
logistic regression, we have

y^ ¼

1 þ e 

which restricts predictions to the [0,1] range.

Fig. 11 shows the normalized cross-validation error for the three models. All models 
have predictive value, explaining between 10% and 20% of the variance in the scores. With 
lesson as the random factor and normalized prediction error on the model’s test set as a 
measure of model accuracy, the linear model performs significantly better than the power  
model (t(47) = 8.08, p < .01), indicating that prediction is enhanced by
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Fig. 11. Mean normalized prediction error for the power, linear, and logistic models. The error bars indicate 1  
SE of the mean across the 48 lessons, and they have been repeated-measures corrected to remove between-
lesson variance as described in Masson and Loftus (2003).

student-lesson specific features other than the lag between the first and second tests. The 
linear model also outperforms the logistic model (t(47) = 7.47, p < .01). This finding may 
be due to the fact that the y scores tend to be high and lie within a narrow range, even after  
guessing-rate correction: The mean y score is 0.90 with a standard deviation of 0.09. With 
scores  this  high,  the  logistic  model  operates  in  the  nonlinear  regime  of  the  sig-moid 
response function,  where the contribution of a feature to the prediction depends on the 
contribution of other features. The better performance of the linear model indicates that 
such interactions are not helpful in this data set.

6. Individualized models of forgetting

Student retention can be partly explained by a power model that takes into account the 
passage  of  time  and also  by  a  regression  model  that  takes  into  account  student-lesson 
specific features.  Because the regression models lack the ability to represent  power-law 
forgetting, and the power-law models have no notion of student-lesson specific features, it  
is natural to conjecture that integrating these two classes of models might yield even better 
predictions. In this section, we describe three variations on such a hybrid model.

In the power-law model of Eq. 1, y^ ¼ at b, the constants a and b are estimated for the 
entire population of students in a lesson. If we replace one or both of these constants with a 
function of the student-lesson specific features used in the linear model, then we can make 
power-law predictions that are individualized to the students’ study history.

We define a(x) to be a linear function of the student-lesson specific features x:



As in the linear model, x includes a constant feature, x0 = 1, to provide a bias term. This 
function will predict an individualized scaling factor that takes into account
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student-lesson specific  features.  By replacing  a with  a(x)  in Eq.  1,  we define our  first 
combined model, called Hybrida(x):

y^ ¼ aðxÞt b ð7Þ

We can also individualize the forgetting rate b via a function b(x):

This function allows us to define two model variations that predict an individualized 
forgetting rate for a set of student-lesson specific features. In model Hybridb(x),  b is indi-
vidualized:

y^ ¼ at bðxÞ
ð8Þ

In model Hybrida(x),b(x), both a and b are individualized:

y^ ¼ aðxÞt bðxÞ: ð9Þ

The nonlinear procedure used for fitting parameters of the hybrid models is described in  
the Appendix. Fig. 12 shows the normalized error for these three models. In addition, the 
error for the power and linear models is copied from Fig. 11 for reference. Of the three  
hybrid models, only the models individualizing the scale factor  a showed any improve-
ment over the reference linear and power models. Hybrida(x) performs significantly better 
than the previous best—the linear model (t(47) = 10.8, p < .01), and explains 24% of the 
variance on scores, about 4% more than the linear model. The model with only an individ-
ualized forgetting rate, Hybridb(x), performs significantly worse than the linear model (t(47) 

= 15.8, p < .01). The more complex Hybrida(x),b(x) model, a superset of Hybrida(x), does not 
provide a reliable performance advantage (t(47) = 0.37, p = .72).

Why  do  individualized  forgetting  rates  fail  to  improve  predictions?  One  hypothesis 

centers on overfitting: Hybrida(x),b(x)has many more free parameters than Hybrida(x).  To 
rule out this hypothesis, we conducted simulations with both L1 and L2 regularization, but 
did not improve on the results reported in Fig. 12. We are aware of few previous efforts that 
have explored individual differences in forgetting rates, other than a recent study by Van  
Vuuren and Cherney (unpublished data)  in which aphasic patients were trained to learn 
scripts and were then tested on their retention of the scripts. Van Vuuren and Cherney also 
found that allowing the power law forgetting rate to vary across indi-vidual did not improve 
model predictions. Because of the nature of this corpus-based study, we are among the first  
to be able to explore inter-individual variability in forget-ting rate. It is an intriguing but  
tentative conclusion that inter-individual variability in for-getting rate does not appear to be 
large, at least at least relative to inter-individual variability in the strength of initial learning.
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We reached a similar  conclusion earlier  for inter-lesson variability in forgetting rates  
versus initial-learning strength. Via the power model and a comparison of parameter val-ues 
obtained from human and synthetic data (Fig. 10), we concluded that inter-lesson variability  
in forgetting rates was consistent with sampling noise, whereas inter-lesson variability in 
initial learning strength was too large to be explained by sampling noise. The forgetting rate 

distribution obtained from the Hybrida(x) model, shown in Fig. 13, is quite similar to that 
we obtained with the power model.  One might be tempted to dismiss the variability as 
uninteresting,  except  the  strong  relationship  with  initial  learning  (Fig.  10A)  suggests 
otherwise.

7. Incorporating student effects

The models we have described to this point predict a student’s retention of a lesson based 
solely on information associated with that lesson. Might model predictions be
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Fig. 12. Mean normalized prediction error for the three Hybrid models, as well as for the linear and power  
models (duplicated from Fig. 11). The error bars indicate 1 SE of the mean across the 48 lessons and have been  
corrected to remove between-lesson variance as described in Masson and Loftus (2003).
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improved if we incorporated information from other lessons? After all, a student who has 
demonstrated good retention of lessons 1–10 seems likely to have good retention of les-son 
11. A full  investigation of incorporating prior-lesson data into our models is beyond the 
scope of this paper, but we conducted an initial exploration aimed at assessing an upper 
bound on the potential gains one could obtain by combining data across lessons.

To consider a student’s performance across lessons, we construct a mixed-effects model 
in the style of item-response theory (De Boeck & Wilson, 2004). The model includes the 
lesson-specific features considered in our earlier model, as well as cross-les-son features  
that  identify  the  specific  student.  Student  i  is  identified  by  a  one-hot  vector  s whose 
elements are all zero except for element i which has value 1. Extending our best model,  

Hybrida(x), we obtain a new model Hybrida(x,s), in which the coefficients associ-ated with x 
are lesson-specific, but the coefficient vector associated with s is shared across lessons. The 

coefficient  associated with si tells  us  about  student  i’s  ability.  If  stu-dent  i  consistently 
performs  better  across  lessons  than  student  j,  this  difference  can  be  represented  by  a 
difference in the corresponding coefficients. Consequently, a student who is above average 
on a set of lessons will be predicted to be above average on other lessons as well.

For our initial investigation, we wished to select a subset of lessons and students such 
that each student had completed all lessons. We chose the 14 most popular lessons in the 
course and identified 1,755 students who had each completed all 14 lessons. We did not use  
the full course because there are very few students who completed all of the lessons. We  
evaluated the model on each lesson using the same cross validation procedure used for the  
other models. We found a non-significant increase in mean normalized vali-dation-set error 
with  Hybrida(x,s) over  Hybrida(x) (0.863  vs.  0.853;  t(13)  = 0.37,  p  > .1).  Hybrida(x,s) 

performs worse than Hybrida(x) on only 5 of 14 lessons, although on one of those, it is 30% 
worse which washes out its gains.

Because the data set used in this experiment contains a lot of information about each 
student, our experimental conditions represent a best-case scenario for uncovering a bene-
fit to the inclusion of student-specific factors in the model. With 14 lessons and five-fold  
cross validation, 11 or 12 lessons were part of a training set used to constrain the stu-dent-
specific factor.  In natural use, when predicting a student’s performance on lesson n, we 
would have only the previous n 1 lessons for training.

Why aren’t student-specific factors helpful for predicting performance? Although some 
students are surely better on average than others, it appears that a student’s average per-
formance level isn’t pertinent given the other information available for prediction, most  
notably, the student’s initial score on a lesson.

8. Interpreting model coefficients

In this section, we interpret the coefficients of our best model, Hybrida(x), to obtain a 
better understanding of which features of a student’s study history are critical for predict-
ing the student’s retention of a lesson. To remind the reader, the model incorporates 26



K. Ridgeway, M. C. Mozer, A. R. Bowles / Cognitive Science 41 (2017)

features which are linearly combined to determine the base performance level,  a(x). Each 
feature j, xj,  is associated with a coefficient,  wj (Eq. 6).  We would like to interpret the 
magnitude of a coefficient as the importance of the corresponding feature in determining 
the base performance level, a(x). To facilitate this interpretation, all features in the train-ing 
set were renormalized to standard scores, that is, such that E[xj] = 0 and E½x2

j& ¼ 1. The 
mean  and  standard  deviation  used  to  renormalize  the  training  set  were  also  used  to  
renormalize  the  test  set.  This  procedure  does  not  affect  model  predictions,  but  it  does 
decouple  the  mean and variance  of  a  feature  from the  magnitude  of  its  corresponding 
coefficient, and thereby enables us to interpret the coefficient magnitude as the feature’s 
predictive utility.

Fig. 14 shows the coefficient magnitudes of 15 features of the Hybrida(x) model, sorted 
by importance.  The values depicted are the mean across the 48 lessons.  Shown are  all  
coefficients that are robustly nonzero across lessons, as determined by a t test at the p = .05 
level. Black and white coloring of the bars indicate negative and positive correla-tions with 
the score, respectively. Unsurprisingly, the student’s score on the initial review test (first  
row), and to a lesser extend their score on the core activity (fourth row), is a

Hybrid (x) Feature Weights

Initial Review Test Score

Scheduled by Adaptive Recall

Time Spent on Incomplete Attempts

Score On Core Activity

Number of Incomplete Attempts

Time Spent on Other Activities

Lag Time

Time Spent on Initial Review Test

Grammar Attempts (Pre-Initial Test)

Grammar Attempts (Post-Initial Test)

Listening/Reading Attempts (Pre-Initial Test)

Writing Attempts (Pre-Initial Test)

Pronunciation Attempts (Post-Initial Test)

Vocabulary Attempts (Post-Initial Test)

Listening Attempts (Pre-Initial Test)

0
Coefficient Mean

Fig.  14.  The features  that  reliably contribute  to  predictions in  the Hybrida(x) model,  as  determined by the 
magnitude of the feature’s corresponding coefficient (all feature values first converted to standard scores). The 
length of a bar indicates the coefficient magnitude and the sign is indicated by coloring, with black and white for  
negative and positive, respectively. Each bar indicates the mean coefficient across the 48 lessons and the 5  
validation splits within each lesson. Error bars indicate 1 SE of the lesson means. Shown are all features with  
nonzero means by a t test at the p = .05 level.
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positive predictor of their score on the delayed review test. Students who take the delayed  
review  test  at  the  point  when  recommended  by  the  software  (“scheduled  by  adaptive 
recall,” second row) perform worse than students who have initiated the exam on their own. 
When students start but do not complete earlier attempts at the review examination, the 
time they spent on these incomplete attempts (third row) has a negative correlation with 
score on the examination they eventually complete but total number of attempts (fifth row) 
has a positive correlation. Perhaps the reason for these opposing correlations is that the 
more time spent relative to the number of review attempts is an indication that students are 
trying but quitting due to difficulty with the material. The time spent on the initial review 
test (eighth row) is slightly positively predictive, which might indicate that students who 
take the test more carefully tend to perform better. Oddly, the linear lag between initial and 
delayed test (“lag time,” seventh row) is a positive predictor of score, conflicting with the 
power-function  effect  of  lag  embodied  in  the  forgetting  term.  The  rel-atively  small  
compensatory effect of lag in a(x) may suggest that forgetting might be bet-ter modeled by 
a function other than the power function. There is a similar opposing effect between the 
time spent on other than the core activity (sixth row) and the number of various specific 
activities conducted before and after the initial test (rows 9–15): attempting a large number 
of other activities relative to the amount of time spent on these activities predicts better  
delayed-test scores, but engaging in fewer activities or spending a lot of time per activity  
predicts worse scores.

In explaining student retention, how important is the temporal dimension to forgetting, t 
b, versus the effect of student-specific features, embodied in a(x)? One answer is obtained 
by examining Fig. 12, which shows that power-function forgetting explains 11.4% of the 
variance in the data, whereas Hybrida(x), which incorporates the student-spe-cific features, 
explains 23.9% of the variance. Thus, the contribution of temporal forget-ting is about as  
great  as  the  contribution  from  all  the  student-specific  features  in  aggregate.  As  an 
independent means of examining the contributions of different factors to model prediction, 

we constructed a modification of HybridQa(x) in which  a(x) is  defined as a product of 

terms instead of as a sum, i.e., aðxÞ ¼ xw
j
j . This model, HybridaP ðxÞ, turns out to have 

the  same  explanatory  power  as  Hybrida(
j
x).  The  advantage  of  HybridaP ðxÞ is  that  it 

expresses the log score as a linear function of log features:

X
ln y^ ¼ wj ln xj b ln t:

j

Because this formulation places forgetting, represented by coefficient  b,  on the same 

footing as the individual features, represented by coefficients  {wj}, we can directly com-

pare the magnitudes of all coefficients—the {wj} as well as b. With all variables expressed 
as  standard  scores,  b has  a  mean (across  lessons)  of  0.32,  whereas  the  largest  feature 
coefficient, associated with the initial review test score, has a mean of 0.29, indicating that 
forgetting is at least as important as initial test performance. The ranking of coefficients and 

their magnitudes are almost identical to those we obtained from Hybrida(x) (Fig. 14).
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9. Conclusions

In this article, we examined retention of foreign language skills using a large naturalis-tic 
data set of self-directed students. We attempted to understand the factors contributing to 
retention by constructing models that predict performance on a delayed test. We con-sidered  
many factors influencing retention, including information about a student’s perfor-mance on 
prior tests,  the lag between initial  and delayed tests,  and detailed information about the  
student’s  participation  and  performance  in  specific  instructional  activities  cover-ing 
material related to the test. The key take-home messages we have gleaned from our analysis 
are as follows.

1. Power-law forgetting is observed in the naturalistic corpus. As in controlled 
labo-ratory studies, power-law decay appears to be a reasonable characterization of 
for-getting over time. This parallel seems nontrivial, given that our data contrast with 
those from laboratory studies in three key respects. First, students in our corpus were 
likely exposed to the test material between tests, either by engaging in addi-tional  
activities related to the corresponding lesson or by advancing to new lessons with 
overlapping  material.  Language  courses  tend  to  build  on  earlier  material;  con-
sequently, material covered in lesson 1 is likely to be encountered again in subse-
quent lessons. A delayed test on lesson 1 will not assess pure forgetting because a 
student’s knowledge state has been contaminated by exposure to the same material in 
other  lessons.  Second,  the  review  tests  are  designed  as  instructional  activities;  
students receive feedback that likely alters their knowledge state. Third, many of the 
test questions were of a multiple-choice format, serving as more of a recogni-tion  
memory test than a cued-recall test. As a result of these three factors, the for-getting 
rate we observe in our naturalistic data set is  low compared to that in controlled  
laboratory  studies.  Indeed,  we  are  not  modeling  pure  forgetting  as  observed  in 
laboratory studies, but rather the interaction between memory mecha-nisms and the 
specific  curriculum.  The  presence  of  these  interactions  suggestion  that  modeling 
forgetting in situ requires a big-data approach: If the curriculum is altered such that a 
lesson is placed in a different context, previously built models will no longer fit well. 
Nonetheless, it is intriguing that the basic form of forgetting parallels that observed in  
laboratory-based research.
2. Our  corpus  included  48  lessons  which  yield  different  levels  of  initial  
learning by students and different degrees of retention. We find that lessons which are  
better  learned  initially  are  forgotten  more  slowly.  To  be  clear,  we  have  merely 
observed a correlation.  This correlation is  strong (Fig.  10A) and we ruled out  an 
artifactual explanation for the correlation in terms of data set noise (Fig. 10B). The 
correlation  could  imply  one  of  two possibilities.  First,  when a  particular  student 
learns a lesson better, that student will  forget more slowly. Second, an underlying 
unobserved cause  influences  both  initial  learning  and  forgetting  rates.  The  cause 
might be vari-ation in lesson difficulty or quality, or different amounts of overlap 
between lessons
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such that material which is better integrated into the course is learned better ini-tially 
and appears to be forgotten more slowly due to indirect exposure via other lessons. To 
distinguish  these  two  possibilities,  randomized  controlled  experiments  would  be 
required in which students are taught to various criteria and then forget-ting rates are  
assessed  (e.g.,  Rohrer,  Taylor,  Pashler,  Wixted,  &  Cepeda,  2005).  Even  if  the 
correlation does not reflect an underlying memory process, it is of prac-tical use in  
predicting  student  performance:  Lessons  that  are  learned  more  slowly  should  be 
reviewed sooner.
3.We find no evidence that forgetting rates vary from student to student. In contrast, 
individuating baseline scores via student-specific features improves prediction accu-
racy. We wish to be cautious in generalizing these results beyond our data set for two 
reasons. First, in related work using laboratory-based cued-recall measures (Mozer & 
Lindsey,  2016),  we  do  find  evidence  for  meaningful  inter-student  varia-tion  in 
forgetting  rates.  Second,  although  forgetting  rates  vary  meaningfully  by  les-son 
(perhaps reflecting inter-lesson interactions as described above), the narrow range of  
scores in our data sets may reduce the opportunity to observe individual differences in 
forgetting rates.

4.Typically in cognitive modeling, researchers are concerned with fitting population 
data. In memory studies, the data are means across a population of subjects and a  
population of items. Moreover, the data are cross-sectional because each individual  
can be tested at only one point in time due to the observer effect, that is, memory  
retrieval affects subsequent memory strength. Consequently, the cross-sectional pop-

ulation data may not reflect the longitudinal trajectory of an individual. However, in 
the present work, our models make highly specific predictions—for a particular stu-
dent on a particular test for a particular lesson. The predictive methodology we use 
for evaluation overcomes limitations of cross-sectional studies and allows us to draw 
conclusions concerning the longitudinal trajectory of individual memory traces. The 
methodology also appears promising to help discriminate among competing theories 
that were heretofore difficult to distinguish. For example, Rubin and Wenzel (1996) 
were unable to discriminate between power and exponential-power models of forget-
ting, yet our data reveal the superiority of the power model.

5.Performance  following  a  retention  interval  has  traditionally  been  modeled  by 
power-law decay of knowledge. Power-law decay could explain 11.4% of the varia-
tion in delayed-test scores of individual students. In contrast to this approach based 
on  psychological  theory,  we  also  investigated  a  black-box  modeling  approach  in 
which scores were predicted from a set of features describing the study history of a  
student. The most successful of these models, simple linear regression, explained
19.5%  of  score  variance.  Our  key  modeling  insight  was  to  combine  the  two 
approaches—leveraging  insights  from  both  psychological  theory  and  data-driven 
modeling—to obtain predictions that explain 23.9% of score variance.

Should we be satisfied with models that explain only one quarter of the variance in the 
scores? Although we hope that others could improve on our results, we suspect that
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predictive accuracy is limited by the information missing from our data set. For example,  
we know only the overall score on the initial review test; it may be useful to have this score  
broken down by question or activity. We also have no information about the con-tent of  
each lesson and the interrelationships among lessons, which might increase the value of  
cross-lesson  data  for  prediction.  Nonetheless,  there  are  certainly  avenues  that  can  be 
investigated even with the current data. For example, we may be able to leverage the data 
set itself to draw inferences about the set of knowledge components—skills and facts—
required  for  each  lesson  (Lindsey,  Khajah,  &  Mozer,  2014)  and  use  these  inferred 
knowledge components to better represent the activities a student engages in between the 
initial and delayed tests.

Our research has practical implications, not only for language learning software, but for 
computer-assisted tutoring in general. Because all knowledge and skills are forgotten if not  
practiced, review is critical. The software’s review tests are designed to serve this function.  
However, as students progress through a course—regardless of the subject—the body of 
knowledge and skills they are tasked to master continues to grow. For example, even a 
single level of the Rosetta Stone software has as many as 16 lessons that could potentially  
be reviewed. Students typically are not excited about review activities that interfere with the 
ongoing  demand  to  master  new material.  Even  if  willing  to  review,  stu-dents  are  not  
particularly adept  at  metacognitive  judgments  about  when to review (e.g.,  Cohen,  Yan, 
Halamish,  &  Bjork,  2013;  Nelson  &  Dunlosky,  1991).  Ill-timed  review—re-view  that 
occurs too soon or too late—has less benefit than review at the point of desir-able difficulty 
(Bjork, 1994).

Review must therefore be efficient and well-timed. Predictive models offer the poten-tial 
of  prioritizing review in a  manner that  is  optimal to a  particular  student.  For  example,  
review might be recommended at the point when the predicted knowledge strength drops 
below  a  certain  threshold.  This  heuristic  has  been  successful  in  improving  long-term 
retention  (Khajah,  Lindsey,  & Mozer,  2014;  Lindsey  et  al.,  2014;  Pavlik  & Anderson, 
2008).

Many  electronic  tutoring  systems,  including  the  Rosetta  Stone  software  and  Khan 
Academy, provide students with a dashboard showing students the state of master of each 
lesson or skill, and possibly identifying which are due for review. We envision that this  
dashboard might  provide more nuanced predictions concerning the student’s knowledge 
state. Such individualized dashboards offer the metacognitive insight that students lack and 
should serve to guide students in a more directed manner than qualitative guidance typically 
offered by psychological theory.
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Note

1. We also fit data with the three-parameter power-law model but found, using 
a cross-validation measure of model performance to be described in a later section,  
that the three-parameter model explained no more of the variance in the data than the 
two-parameter model. On the grounds of parsimony and interpretability, all results 
we report are for the two-parameter model.
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Appendix: Nonlinear Optimization Procedure

Fitting  the  power  law models  to  the  data  requires  nonlinear  optimization.  We  used 
MATLAB’s  fminsearch function,  which  performs black-box optimization  on  arbi-trary 
functions.  Specifically,  we used a wrapper function called  fminsearchbnd,  which adds 
bound constraints  to  the  parameters  of  the  optimized  function.  For  the  two-para-meter 
power law model,  a was bound to lie between [0,+∞) and b between [ 1,0]. Initial values 
for  a were drawn from a uniform random distribution between [0.9,1], and initial val-ues 
for b were drawn from a random uniform distribution between [ 0.5,0], which represent a 
common range for forgetting rates. For the three-parameter power law model,  the same 
bounds and initial values were used for a and b. The c parameter was bound to lie between 
[0,+∞) and was drawn from a uniform random distribution between [0.9,1].

This procedure can be extended to fit the two-parameter models that replace a and/or
b with functions a(x) and b(x).
First, we fix the coefficients of  a so that the value of a(x) is fixed for each data point. 

These  fixed  a(x)  values  are  then  used  to  estimate  the  coefficients  of  b(x),  using  the 
fminsearch  procedure. Likewise, the new b(x) coefficients are then fixed, and the a(x) 
coefficients are estimated using least-squares regression. This procedure is repeated  until 
the percent change in root-mean-square error of the prediction on the training set, compared 
to the last iteration, falls below a threshold (in our case, 0.0001%).
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