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Abstract 
 

Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among 
various techniques, shear wave elastography has emerged as a promising tool to estimate local 
arterial stiffness from observed dispersion of guided waves. In this paper, we develop efficient 
models for computational simulation of guided wave dispersion in arterial walls. The models are 
capable of considering fluid-loaded tubes, immersed in fluid or embedded in solid, which are 
encountered for in vitro/ex vivo, and in vivo experiments. The proposed methods are based on 
judiciously combining Fourier transformation and finite element discretization, leading to 
significant reduction in computational cost while fully capturing the complex three-dimensional 
wave propagation. The developed methods are implemented in open-source code, and verified by 
comparing with significantly more expensive, fully three-dimensional finite element models. We 
also validate the models using shear wave elastography of tissue-mimicking phantoms. The 
computational efficiency of the developed methods indicates the possibility of leading to real-
time estimation of arterial stiffness, which would be beneficial in clinical settings.  

Keywords: arterial stiffness, guided waves, finite element, viscoelasticity, fluid-structure 
interaction 

1. Introduction 

It has been established that variation of arterial mechanical properties are correlated to various 
cardiovascular diseases [1-5]. For instance, increased arterial stiffness is associated with high risk of 
stroke [4, 6-8], myocardial infarction [9], end stage renal disease [10], diabetes [11], hypertension [12-
15], and atherosclerosis development [8, 16]. Decreases in arterial stiffness can also occur in some cases, 
such as aneurysm [17]. Therefore, improving the prognostic ability and diagnosis techniques for early 
detection of arterial variations, has been attracting a widespread attention to decrease cardiovascular 
mortality rates. 

Several methods have been introduced to measure the arterial stiffness globally and locally. One of the 
most common global techniques is based on analysis of arterial pulse wave traveling through the artery 
which can provide an estimate of the Young’s modulus of the arterial wall [18-20]. Despite its widespread 
acceptance, it suffers from several limitations; distance measurement is prone to error [21]; time 
measurement requires consideration of a relatively long distance due to low resolution [22], boundary 
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conditions are unrealistic (isolation in vacuum and carrying inviscid fluid [23]), and finally linearization 
of Euler fluid dynamic equation [24] despite strongly nonlinear propagation of the pulse wave. Therefore, 
measuring the Pulse Wave Velocity (PWV) only provides an average modulus of the arterial tree 
throughout the length measured, most typically involving the aorta. 

As arterial properties vary at different sites [17, 25], a local, instantaneous and quantitative modulus 
estimator is highly desirable. In recent years, Acoustic Radiation Force (ARF)-based imaging has formed 
a well-known noninvasive tool for localized tissue characterization. In ARF-based methods, an ultrasonic 
wave is transmitted into the tissue and the motion is monitored spatially and temporally using phase shift 
or cross-correlation based algorithms. In general, ARF methods can be categorized based on the type of 
excitation pulses as (a) quasi-static: such as sonorheometry [26]; (b) transient: such as acoustic radiation 
force impulse imaging [27], shear wave elasticity imaging [28], supersonic shear imaging [29], shear 
wave spectroscopy [30], and spatially modulated ultrasound radiation force [31]; and (c) harmonic: such 
as vibro-acoustography [32], harmonic motion imaging [33], crawling wave spectroscopy [34], and 
shearwave dispersion ultrasound vibrometery [35, 36]. The description of the various ARF methods can 
be found in [37]. 

Among the imaging techniques, shear wave elastography (SWE) has emerged as a promising diagnostic 
tool in the estimation of shear wave speed, which is directly correlated to the tissue mechanical properties. 
To date, SWE has been examined for various organs such as liver [36], kidney [38], prostate [39], bladder 
wall [40] and arterial wall [22, 41]. In bulk tissues, boundary conditions do not significantly affect shear 
waves propagation. However, in confined geometries such as thin layered organs, shear waves become 
guided and dispersive, i.e. they travel with different velocities at different frequencies. This phenomena 
makes the property assessment more complicated, but on the other hand sensitivity of different wave 
modes provides additional information that can be used for detecting possible anisotropic architecture 
[42] or fiber orientation [43]. 

Strong contrast between the arterial wall shear wave velocity and the external tissue (and internal 
blood) facilitates guided propagation of shear waves in arterial walls. For mathematical modeling and to 
reduce the complexity of the analytical solutions for cylindrical waves [44, 45], an immersed plate has 
been examined in many studies as an approximate model [22, 23, 46-51]. Another approximation is wave 
propagation in annuli (see e.g. [52]). More complicated practiced models include the hollow tube [41, 53], 
fluid-filled tube [53, 54], and the recent immersed and fluid-filled 3D finite element model [55]. Also 
similar researches have been conducted for studying the guided wave propagation in bones [56-59]. 

In this work, in a simultaneous effort to improve the accuracy and efficiency of mathematical modeling, 
we propose an extremely efficient model based on cylindrical waveguide formulation that allows 
consideration of fluid inside as well as fluid or tissue around the tube. The exterior fluid simulates the in 
vitro/ex vivo experimental setups and the exterior tissue is suitable for in vivo tests. We provide a brief but 
inclusive formulation, open-source implementation [60], verification, and in vitro validation of the 
presented approach using vessel-mimicking phantoms. 

2. Shear wave elastography 

As arteries are hollow cylindrical structures filled with liquid (blood) and embedded in a softer 
surrounding tissue, shear waves become guided and undergo dispersion that is affected by the geometry 
and modulus of the artery. The geometry and modulus can thus be estimated by examining the dispersion 
properties of guided waves, which is the basis for SWE. As shown in Figure 1, SWE involves three steps. 
(i) Acquisition of data is performed by applying an ultrasonic pulse excitation focused on the wall of the 
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artery to generate shear waves propagating along the arterial wall (Figure 1 (a)). Propagation is then 
measured by recording the normal particle displacement at the top of the wall or averaged through the 
wall; an example displacement measurement, obtained from a phantom tube, is shown in Figure 1 (b). (ii) 
The displacement is transformed in space and time to obtain frequency-wavenumber (f-k) representation 
as shown in Figure 1 (c) (see [22]). The peaks in the f-k displacement can be processed to obtain phase 
velocities ( / )pc f k  of different wave modes as a function of frequency (see Figure 1 (d)); and (iii) the 
final step is to estimate the arterial modulus by inversion, i.e. back-calculate the modulus by matching the 
measured dispersion curves in Figure 1 (d). 

 

Figure 1 Schematic of the steps in SWE to determine arterial material properties: (a) experimental setup 
where the guided waves are generated and recorded at the surface; (b) trace representing the measured 
response histories; (c) transformed signal in frequency-wavenumber (f-k) domain; (d) dispersion curves 
obtained by processing the f-k signal; (e) properties estimated through inversion, i.e. matching the 
measured dispersion curves with those computed from (f) the forward model.  

Inversion of the dispersion data, i.e. back-calculating arterial properties from measured dispersion data 
in Figure 1 (d), is performed through an optimization procedure, where the difference in measured and 
simulated dispersion curves is minimized. The simulated dispersion curves are obtained with the help of 
so-called forward model, which takes as input the geometry and modulus of the artery, and computes the 
theoretical dispersion curves. Since the iterative inversion procedure often requires a large number of 
forward models, efficiency of forward models is a critical first step and forms the focus of the present 
contribution. Specifically, we develop robust three-dimensional models based on efficient semi-analytical 
waveguide formulation, which are discussed in the remainder of the paper. 
 

3. Semi-analytical finite element (SAFE) method for waveguides 

In this paper we introduce semi-analytical models for forward modeling of the immersed and fluid-
filled tubes with cylindrical and non-cylindrical cross-sections. The proposed approach, while capturing 
full three-dimensional tube motion, significantly reduces the computational cost as it only requires a one-
dimensional (1D) discretization for cylindrical cross-sections and two-dimensional (2D) discretization for 
non-cylindrical cross-sections. The resulting efficiency increase is expected to eventually facilitate fast 
SWE inversion. In this section, starting with general governing differential equations, we derive a model 
requiring only 2D discretization for cylindrical and noncylindrical waveguides. In the subsequent section, 
we derive an even more efficient model requiring only radial discretization, when the waveguide is 
cylindrical. We have provided the implementation of these methods in an open-source MATLAB® 

software named WaveDisp [60]. 
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3.1 Governing equations 

Consider the waveguide in Figure 2 (a), where a solid tube is filled with fluid and immersed in infinite 
fluid. The governing equations include the elastodynamic equation for the solid tube, acoustic wave 
equations for the fluid, interface conditions for the solid-fluid interface, and the radiation condition for the 
fluid at infinity, namely, 
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where U  and σ  are the displacement and stress vectors in the solid domain S , P  is the pressure field 
in the fluid domain F , S  is the solid medium density, and F  and Fc  are the density and pressure 
wave velocity of the fluid medium, respectively. Note that ( ) L  is the symmetric gradient matrix 
operator, and ( )  x  and ( ) x  are divergence and gradient defined in the system of coordinates 

1 2 3( , , )x x xx . The solid-fluid interface is represented by FS , σ  is the tensor representation of the stress 
vector σ , r  denotes the radius, and Sn  and Fn  are respectively the unit vectors for the solid and fluid 
domains. 

Remark on nonlinearity: The use of linear elastodynamic and acoustic equations are justified given that 
the ARF excitation causes small deformations and stresses in the artery, and small changes in the acoustic 
pressure in the blood and surrounding fluid. Moreover, the ARF excitation and the associated data 
acquisition is performed in a very short period compared to the cardiac cycle. This indicates that there is 
no significant change in the blood pressure and the resulting hoop stresses. Thus, while the arterial 
modulus is governed by the prestress of the artery itself and may change within the cardiac cycle, our 
eventual goal is to estimate the tangent modulus at the instance of ARF excitation and data acquisition. 

 

Figure 2 (a) Geometry of the three-dimensional (3D) waveguide, and (b) 2D discretization of solid cross-
section fluid buffer region and infinite fluid with perfectly matched discrete layer (PMDL) elements. 

(1a) 

(1b) 

(1c) 

(1d) 
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3.2 Dispersion relation: continuous eigenvalue problem 

Given that the objective is to obtain the dispersion relations, i.e. axial wavenumber – frequency pairs 
that satisfy the governing equation, we consider displacements and pressures of the form, 

1 2( , ) zi t ik zx x e  
U u  and 1 2( , ) zi t ik zP p x x e  

 , where   is the temporal frequency and zk   is the 
longitudinal wavenumber. This leads to a continuous eigenvalue problem of finding the ( , )zk  pairs that 
satisfy the following equations with the eigenvector { }T Tpu : 
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where 1 2( , )x xX  represents the system of coordinates in the cross-section. Note that zzD , zD X
, zDX , 

DXX  are the material property coefficients and zL X , zL X , 1LXX , 2LXX  are the matrix operators, which can 
be derived from ( ) L  in (1a), for different system of coordinates. The above continuous eigenvalue 
problem forms the basis for waveguide dispersion analysis.  

 
3.3 Semi-analytical finite element method (SAFE) for noncircular cross-sections 

To discretize the eigenvalue problem in (2), the domain is discretized through finite element 
approximation within the cross-section, which is often referred to as semi-analytical finite element 
(SAFE) method [45] (also referred to as thin-layer method in the contexts of geophysics [61]). The reason 
for the name is that analytical expansion is needed in the z  direction (of the form  1 2( , ) zi t ik zx x e  

U u ), 
while finite element discretization is employed across the cross-section, e.g. the waveguide shown in 
Figure 2 (a) is discretized with a two-dimensional mesh as shown in Figure 2 (b). Note that distortion in 
the mesh deteriorates the numerical convergence, thus care must be exercised while using unstructured 
grids. Alternatively, a mapped mesh can be used whenever possible.  

We elaborate this approach by starting with more details of the governing equation, where Cartesian 
coordinates are used in the cross-section. Thus, in the solid domain, elastodynamic equation for the 
harmonic waves is given in Equations (2a) and (1a). In this problem, { }z

T
x yu u uu  is the displacement 

vector and the stress vector { }T
xx yy zz yz xz xy      σ Dε  is related to the strain vector 

{ }T
xx yy zz yz xz xy       ε L u  through 6 6D  where the nonzero entries for an isotropic medium are 

2
11 22 33 S pD D D c   , 2

44 55 66 S sD D D c    and 2 2
12 13 23 3221 31 2 )(S p sD D D D D D c c       . 

Parameters 1/2( / )s Sc G   and  
1/2(2 2 ) / (1 2 )sp cc     are the shear and pressure wave velocity 

(2a) 

(2b) 

(2c) 

(2d) 
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where ,G   are the solid medium shear modulus and Poisson’s ratio, respectively. The nonzero entries of 
6 3  matrix operators L  and L are, 
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(2,2) (4,3) (6,1) 1, and (3,3) (4,2) (5,1) 1.
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In the fluid domain, the equation of motion in (2b) with constant F  takes the form, 
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where 2 2 2 2 2( ) ( ) / ( ) /x y          . 

The main idea of the SAFE method is to discretize the field variables u  and p  in the cross-section, i.e. 
( , ) ( , )Sx y x yu N u  and ( , ) ( , )Fp x y x y pN , where ,S FN N  are the finite element shape functions for 

solid and fluid domains, respectively. Substituting these in continuous eigenvalue problem in Equations 
(2) results in the discrete version: 
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where 2 inf 2 inf/S F  K K  is the normalization factor that improves the conditioning of the system. 

Contribution matrices of solid domain 2 0, ,S S SK K M , fluid medium 2 0, ,F F FK K M  and the fluid-structure 
interaction matrix SFC  are defined in Appendix A. 

Clearly the accuracy of the dispersion relation from the discrete eigenvalue problem in Equation (5) is 
determined by the discretization of the field variables in the cross-section. As shown in Figure 2 (b), the 
solid domain, and the fluid inside, if any, are discretized in 2D with high-order FEM. Also, a rectangular 
fluid region surrounding the fluid is discretized with finite elements. The discretization of the fluid-
structure interface condition in Equation (2c)  is performed in a consistent way, as described in Section 
5.5.1 of [62]. Fluid outside the tube is discretized using perfectly matched discrete layers (PMDL) [63, 
64], which is a discrete variant of the highly successful perfectly matched layers (PML) [65]. The details 
of the PMDL discretization can also be found in Section 5.5.2 of [62]. 

 
3.4 Filtering of dispersion curves 

The discrete eigenvalue problem in Equation (5) is solved by sweeping through frequency, resulting in 
( , )zk  pairs, where  mode1,..,ni  represents the index of propagation modes. These dispersion curves 

are often presented as phase velocities ph / ( )zc k i i , plotted as a function of frequency. Attenuation 

curves are plotted as the imaginary part of the wavenumbers, i.e. ( )zk  i i . It must however be noted 
that not all the eigenvalue pairs are necessarily observed in experimental data. Picking out the feasible 
solutions depends on the physics of the problem. For the soft materials considered in this paper, as 
discussed above, energy inside the solid domain does not leak into the fluid domain. Therefore to obtain 



7 
 

these non-leaky waves, one should only choose the purely real wavenumbers zk  and ignore the complex 

zk  solutions. Besides, the phase velocity of the non-leaky wave modes cannot exceed the pressure wave 

velocity in the fluid, therefore the criterion max
ph/ min( , )z fk c c   has to be considered as well, where max

phc  
is the maximum desired phase velocity. 

 
3.5 Group velocity computation 

By writing (5) in the form R K 0 , or L K 0†  where 2( , )z zk k  K A C  and R L,   are the right 
and left eigenvectors, group velocity can be obtained as, 
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Note that A  and C  can both be functions of frequency, e.g. in the contexts of viscoelasticity and 
frequency-dependent absorbing layers. It is worth mentioning that eigenvalue derivatives can be also 
obtained without computing the eigenvectors using the perturbation approach presented in Equation (10) 
of [66]. 

4. Fourier-Spectral SAFE method for axisymmetic waveguides 

Given that arteries can plausibly be represented as axially symmetric (cylindrical) waveguides, we 
propose to exploit the geometry to further reduce the computational cost of SAFE method described in the 
previous section. Note that the proposed approach is motivated not by characterizing arteries with 
significant localized plaque, but early increase in arterial stiffness that is hypothesized to precede 
significant plaque formation [67, 68]. 

We employ Fourier series expansion in the azimuthal direction, and spectral finite elements in the radial 
direction. The advantage of the Fourier series is that the two-dimensional eigenvalue problem is 
decoupled into a set of one-dimensional eigenvalue problems in the radial direction. Use of spectral FEM 
in the radial direction further increases the efficiency of the problem, owing to the exponential 
convergence of spectral FEM. The remainder of the section contains the details of the formulation of the 
Fourier-Spectral SAFE method.  
 
4.1 Dispersion relation for cylindrical waveguides 

We use cylindrical coordinates for describing the waveguide geometry with axisymmetric cross 
sections as shown in Figure 3 (a). The elastodynamic equation of the solid tube for the harmonic waves 
(of the form ( , ) zi t ik zr e   
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1 ( ) 1 ( ) 1( ) ,

( ) 1 ( ) 1( ) ,

S S S S
r z z

S S S S
r z z

r ik
r r r r

ik
r r r

  

  





   
    

 

   
    

 

L L L L L

L L L L L
  (7) 



8 
 

where nonzero entries of 6 3  matrices , , ,S S S
z
S

r  L L L L  are, 

 
(1,1) (5,3) (6,2) 1, and (2,2) (4,3) (6,1) 1,

(3,3) (4,2) (5,1) 1, and (2,1) (6,2) 1.
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Figure 3 (a) Geometry of the immersed fluid-filled tube in 3D, and (b) 1D discretization of solid and 
inner fluid with high-order finite elements and linear PMDL elements for the exterior infinite fluid. 

The acoustic equation in the fluid domain with constant F  is given in (4) where
2 1 2 2 2( ) ( ( ) / ) / ( ) /r r r r r              . The radiation condition for the fluid domain at infinity is 

given by (2c) and the interaction of fluid and structure at the interface are governed by the continuity of 
traction and balance of mass, given in (2d). 
 

4.2 Fourier series expansion in azimuthal direction 

The continuous eigenvalue problem in (2) using the operators defined in the previous section needs to 
be discretized in the r  and   directions. However, given the regularity of the cross-section, we employ 
more efficient Fourier-spectral discretization in place of discretizing the cross-section with finite 
elements. Specifically, after using Fourier transform in the longitudinal direction, we use Fourier series 
expansion in the azimuthal direction, namely ( , , , ) ( , , , ) zi t ik z in
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zp r n k e        where 0,1,2,3,...n   is the circumferential Fourier number. This results in the 

decoupled system of 1D differential eigenvalue problems in the radial direction, 
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where 6 6( )S T S
pq p qD L D L  for ,, ,{ },rp q z   and SL  matrices are defined in (8). By discretizing the 

solution in the radial direction, i.e.  ( , , , ) ( ) ( , , ) zi t ik z in
S zr z t r n k e      

U N u  and 
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N  where ,S FN N  are the solid and fluid domain shape functions 
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along the radius, the final discrete eigenvalue problem can be obtained as the one presented in (5) where 
2 0, , ,S S SK K M  2 0, ,F F FK K M  and SFC  are presented in Appendix B. Note that these matrices are 

functions of circumferential Fourier number associated with different propagating modes. Note that any 
anisotropy can be simply included by using the desired 3D anisotropic coefficient matrix 6 6D , however 
it is not the focus of the current study. 
 

4.2 Radial discretization: spectral FEM and PMDL 

The formulation in (9) is valid irrespective of the numerical discretization employed in the radial 
direction. As shown in Figure 3 (b), the inner fluid and the tube are discretized with spectral finite 
elements for computational efficiency (due to exponential convergence).  

For modeling the infinite fluid around the tube, Perfectly Matched Discrete Layers (PMDL) are used. 
Note that PMDL lengths must be chosen based on the underlying physics. When the shear wave velocity 
in the solid (e.g. tissue) is less than the acoustic wave velocity in the fluid, solid-born wavemodes are 
non-leaky or trapped (purely evanescent perpendicular to interface, see e.g. [69]). In order to model these 
modes properly, PMDL elements with purely real length should be used, which are best to choose as, 

 
1

max1
1 P2

P Sch

2
with , 1,..., .

( 1 ) ( / ) 1

j
f

j

f

cLL L j n
n j c c

 

  
  

  (10) 

where 1L  is the minimum length,   is the geometric (increase) ratio, max  is the maximum frequency of 
interest for obtaining the dispersion curves, and Schc  is the Scholte (interface) wave velocity, which can 
be computed from the closed-from expressions (see e.g. [70]). Note that often a handful of PMDL layers 
are sufficient to discretize the entire unbounded domain. Further details on the provided criterion in (10) 
can be found in Section 5.4.2 of [62]. 

Note that as in vitro experiments are done with phantoms or arteries immersed in fluid, PMDLs are 
used for modeling the infinite fluid around the tube. Also, because the proposed tube model can be 
multilayered [62], the surrounding fluid can be replaced by an additional solid (tissue) layer for in vivo 
experiments. However, considering an infinite tissue around the artery requires designing the PMDL 
layers to appropriately model the wave-propagation physics at the solid-solid interface, which is beyond 
the scope of this paper. Also note that the Fourier-Spectral SAFE formulation can employ other 
constitutive laws, e.g. including hyper elasticity and anisotropy (see reviews of existing models in [71-
75]). 

Remark on computational cost: For the example presented in the next (verification) section, the Fourier-
Spectral SAFE model needs 1.98 seconds on a 2.83 GHz desktop computer, for 65 frequencies. The 3D 
FE model was run in parallel, and took 361 seconds on forty eight 3.1 GHz processors. Assuming 80% 
parallel efficiency, the Fourier-Spectral SAFE method is 7,700 times more efficient than 3D FE model, 
while fully capturing the complicated 3D wave propagation and dispersion. Note further that the cost of 
Fourier-Spectral SAFE model can be further reduced by limiting the number of frequencies, further code 
optimization as well as utilizing modern computing platforms, e.g. graphical processing units (GPUs). 
Such techniques coupled with the already modest computational cost could eventually lead to real-time 
prediction of arterial stiffness using SWE data.  
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5. Verification 

We verify the proposed models by comparing with fully three-dimensional finite element (FE) models 
previously employed for arteries [55]. To this end, we consider a rubber tube filled with and immersed in 
water. Inner radius of tube and the wall thickness are in 3mmr   and 1mmh  , respectively. Material 
properties of rubber are  157kPaG  , 0.495   and 3=1037 kg/mS . Bulk modulus of water is 
assumed to be 92.2 10 kPaF    with the density of 3=1000 kg/mF .   

In the Fourier-Spectral SAFE model, the tube wall is discretized with one quartic (5-noded) finite 
element, and the inner fluid region is discretized using two quartic elements. To model the non-leaky 
waves we use 6 PMDL elements (with 4   and Sch 10.36 m/sc   using (10)). Figure 4 shows the 
calculated phase and group velocity curves for the circumferential Fourier number 1n  . The Figure also 
compares the curves with the first flexural mode of an immersed plate with the same thickness and 
material properties. It can be seen that the difference is significant, implying that use of plate models for 
inversion would lead to significant errors in modulus estimates. 

 

Figure 4 (a) Phase velocity, and (b) group velocity curves obtained by the Fourier-Spectral SAFE model 
in Figure 3 (b) for the cylindrical waveguide compared with the immersed plate waveguide. 

For the SAFE model, the two-dimensional discretization is performed using a mesh similar to that 
shown in Figure 2 (b) but for a perfect circular cross-section. The solid circular cross-section is 
discretized using 2 and 32 quadratic elements in the radial and azimuthal directions, respectively. We also 
used 6 PMDL elements in each stretch direction to model the exterior fluid. 

In contrast to SAFE models which are eigenvalue problems in the frequency domain, the 3D FE model,  
which is borrowed from [55], involves simulation of the actual experiment in the time-domain. As shown 
in Figure 1(a), in the 3D FE model, the tube is (virtually) excited with a pulse that mimics the radiation 
force on the surface and the radial component of the displacement is recorded along a line of 220 points 
with  spacing  z = 0.18018 mm over a time window of t = 0-8 ms with t = 0.04 ms. The obtained 
displacement contour in space-time domain is shown in Figure 5. The dispersion curves are then obtained 
by performing Fourier transform followed by peak-picking as shown in Figure 1.  
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Figure 5 Time-space displacement contour using the 3D model in Figure 3 (a). 

The verification is performed in two separate steps: (a) consistency between SAFE (Section 3.3) and 
Fourier-Spectral SAFE (Section 4) models for cylindrical waveguides, and (b) consistency between 
Fourier-Spectral SAFE and 3D FEM. 

Consistency between results from SAFE and Fourier-Spectral SAFE: Figure 6 contains a comparison of 
dispersion curves computed using the two approaches. Note that the SAFE model simultaneously 
retrieves all the wavemodes corresponding to all the circumferential Fourier numbers, to the extent they 
are resolved by the discretization. For the sake of clarity, in Figure 6, we only show the first mode 
associated with each circumferential order 0, ,6n  . The figure clearly shows a good match between 
Fourier-Spectral SAFE and SAFE models, indicating the effectiveness of the proposed Fourier-Spectral 
SAFE model in predicting the complicated wave dispersion properties. 

 

Figure 6 Phase velocity curves obtained by the Fourier-Spectral SAFE model (Figure 3 (b)), and the 
SAFE model (Figure 2 with cylindrical cross-section). 
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Figure 7 Phase velocity curves obtained by the Fourier-Spectral SAFE model (Figure 3 (b)) and the 3D 
FE model (Figure 3 (a)). The slight discrepancy is attributed to the errors in the 3D analysis due to, e.g. 
discretization and boundary conditions. 
 

Consistency between Fourier-Spectral SAFE and 3D FEM: Figure 7 shows the comparison between the 
dispersion curves extracted from the time-domain simulation with the 3D FE model and the proposed 
Fourier-Spectral SAFE model. Again, a good match is observed indicating the accuracy of the 
significantly simpler and more efficient Fourier-Spectral SAFE model. In fact, the Fourier-Spectral SAFE 
method appears to suffer less from discretization errors, while we suspect that the 3D FE model’s non-
smooth dispersion curves are a result of errors from discretization, imperfect absorbing boundary 
conditions, and the fact that not all modes may be sufficiently excited by the radiation force at all the 
frequencies. 

6. Validation 

To validate the Fourier-Spectral SAFE model, we consider phantom SWE experiments on fluid-filled, 
immersed rubber tubes and show that the dispersion curves predicted from the proposed model match 
closely with the experimental dispersion curves.  

Three sets of tubes were made with outer diameters of 8 mm and wall thicknesses of 1 mm to mimic an 
adult carotid artery. A different rubber mixture was used for each set of tubes, VytaFlex 10 (V10), 
VytaFlex20 (V20), and ReoFlex 30 (R30) (Smooth-On, Inc., Macungie, PA). SWE measurements were 
made with a Verasonics system (V1, Verasonics, Inc., Kirkland, WA) and a linear array transducer (L7-4, 
Philips Healthcare, Andover, MA) in a degassed water tank with water inside and surrounding the tubes. 
Acoustic radiation force was used to generate the waves with a 200 s push at 4.09 MHz and plane wave 
imaging at a frame rate of 14.925 kHz was used for measuring the propagating waves. 

Three samples from each mixture were poured for testing with the Hyper-Frequency Viscoelastic 
Spectroscopy (HFVS) instrument [76]. Figure 8 shows the mean storage (G) and loss modulus (G) 
values of the entire measurements. The densities of the urethane rubbers V10, V20, and R30 are reported 
as 31000,  1000,  and 1010 kg/m  respectively. 
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Figure 8 (a) Storage and (b) loss modulus for VytaFlex 10 (V10), VytaFlex20 (V20), and ReoFlex 30 
(R30) materials. 

The vertical component of the velocity with respect to the ultrasound transducer was recorded along a 
linear array of 128 elements with a reconstructed spatial sampling of x = 0.154 mm over a time window 
of  t = 0-13 ms with t = 0.067 ms. We repeated the experiment five times and extracted the experimental 
dispersion curves by the procedure discussed in Figure 1.  

 

Figure 9 Viscoelastic 1D model (for 1,2,3n  ) compared with experimental results for (a) VytaFlex 10 
(V10), VytaFlex20 (V20), and (c) ReoFlex 30 (R30) rubber tubes. 
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Figure 9 compares the result of the experiments with the theoretical predication using the measured 
viscoelastic material properties ( + )G G iG  . Theoretical dispersion curves for flexural modes with 
circumferential wavenumber 1,2,3n   were calculated from the material properties measured with 
HFVS. The theoretical curves generated using HFVS data show a good agreement with the measured 
wave propagation results. We emphasize that taking into account the viscoelasticity (frequency dependent 
and complex shear modulus) of the rubber tubes is crucial to matching the theoretical and experiential 
curves. Besides, pronounced viscoelastic response of animal and human arteries has been observed in 
many studies (see e.g. [77-83]). 
 
6.1 Important implication: multimodal dispersion curves 

An outcome of the current study is that the experimental dispersion curve is a superposition of multiple 
theoretical dispersion curves, as opposed to a single theoretical dispersion curve. While it is tempting to 
think that the main dispersion curve is the dispersion curve associated with the first fundamental mode
( 1)n  , this is not always the case. Depending on the frequency, higher modes ( 1)n   may have larger 
contribution. Thus higher modes can no longer be neglected; the dispersion curve obtained from the 
experiment would traverse around the fundamental and higher order modes. This is referred to effective 
dispersion curve (also see [66]) and has important implication with respect to inversion; incorrectly 
matching to single theoretical dispersion curve could lead to erroneous estimates of the arterial wall 
properties.  

While in this specific example, we noticed that the experimental curve overlapped with three different 
theoretical dispersion curves, it is possible that the number of involved theoretical curves may not be 
three, and would depend on the frequency range of observation and potentially the characteristics of the 
ARF excitation. Careful parametric study would be needed to determine and include all significant 
theoretical dispersion curves, before robust inversion can be performed. 

7. Sensitivity studies 

Effect of material properties: Since the eventual goal of SWE is the inversion for the properties of the 
arterial wall, we perform sensitivity analyses with respect to influential parameters, i.e. shear modulus, 
wall thickness and internal radius. We consider the tube with properties mentioned in Section 5. For the 
first mode with circumferential Fourier number 1n  , sensitivity of the dispersion curve to these 
parameters are studied in Figure 10. Note that while changing each parameter, the other two are kept 
constant at the default values used in Section 5, namely  157kPaG  , 1 mmh   and in 3mmr  . It is 
evident from this study that the shear modulus and wall thickness play a more significant role than the 
internal radius of the tube. The sensitivity to modulus and thickness, while not surprising, confirms that 
SWE could lead to estimation of these two parameters, which appear to be more important biomarkers 
[22, 50, 55]. 

Effect of arterial cross section: The artery may sometimes not be cylindrical due to non-uniform 
thickening or accumulation of plaque. To examine the effect of non-uniform wall thickness, Figure 11 
compares the dispersion curves for the tubes with cylindrical and non-cylindrical cross-sections (both 
filled with and immersed in fluid). Note that the fundamental flexural mode of the cylindrical tube with 
circumferential number 1n  , converts to two branches for the non-cylindrical tube, which is attributed to 
the break in axisymmetry. These modes are known as fast and slow fundamental flexural modes and the 
branching is due to asymmetry of the cross-section (see e.g. [84]). It can also be observed that the higher 
modes are much more sensitive than the fundamental mode. 
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Figure 10 Sensitivity study of tube dispersion curve with respect to (a) shear modulus, (b) thickness, and 
(c) internal radius. The default parameters for these simulations were  157kPaG  , 1mmh   and 

in 3mmr  . 

 

Figure 11 Phase velocity curves obtained by 2D model for (a) cylindrical, and (b) non-cylindrical tubes. 
 

8. Discussion and Conclusion 

Towards the final goal of estimating local arterial stiffness from observed guided wave dispersion, we 
developed efficient models for computing dispersion curves embedded and immersed tubes.  In contrast 
with regular finite element discretization in all three spatial directions, we utilize the semi-analytical finite 
element (SAFE) method to reduce the problem into two-dimensional eigenvalue problem. In addition, we 
utilize the cylindrical nature of arteries to further reduce the computational cost by judiciously combining 
Fourier series in azimuthal direction and high order finite elements in the radial direction. In addition, we 
have utilized a recently developed method of perfectly matched discrete layers to capture the effect of 
surrounding fluid. The resulting method, named Fourier-Spectral SAFE method, captures fully three-
dimensional wave propagation characteristics with less than 2 seconds on a regular desktop computer (as 
opposed to 3D FE model, which takes 6 minutes on a 48-processor parallel computer). Such a drastic 
reduction in computational cost is encouraging because, with further code optimization, it could lead to 
real-time prediction of arterial stiffness, which would be significant in clinical settings. 

The Fourier-Spectral SAFE method for cylindrical waveguides, as well as a 2D SAFE method 
applicable for non-cylindrical waveguides, are implemented in open-source software WaveDisp [60]. 
These methods are verified by comparing with much more expensive, fully 3D FE models, clearly 
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indicating the effectiveness of the proposed methods. Finally, we validated the proposed methods with 
SWE experiments on tissue-mimicking phantoms, where a close match is observed between experimental 
and computed dispersion curves. 

An important observation from the validation study is that the experimentally observed dispersion curve 
does not just match with a single analytical dispersion curve. Instead, it is an overlap of three different 
analytical dispersion curves, especially in the lower frequency range. The studies thus far invert for 
arterial stiffness by matching with single theoretical dispersion curve (see e.g. [22, 49, 50, 52]). In light of 
our observation, it appears crucial to match with multiple dispersion curves instead, especially because in 
vivo data may be more reliable at lower frequencies. 

 While the presented results show promise for the proposed methods, much work remains to be done 
building on this foundation. The next steps include (a) ex vivo validation for real arteries, which may 
require some uncertainty quantification, (b) development of inversion algorithm to estimate arterial 
stiffness, followed by (c) corroboration with other methods to measure arterial stiffness, and (d) clinical 
trials. 
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Appendix A: Semi-discretization in 2D Cartesian coordinates (SAFE method) 

Expanding the governing equation in (1a) by using (3) gives, 
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where 6 6( )S T S
pq p qD L D L  for ,, },{xp yq z  and SL  matrices are defined in (3). We use Fourier 

transform in the z  direction and discretize the solid and fluid domains in the x y  plane, i.e. 
( , , , ) ( , ) ( , ) zik z

S zx y z x y k e u N u  and ( , , , ) ( , ) ( , ) zik z
F zp x y z x y p k e N  where zk  is the axial 

wavenumber. Shape function matrix is defined as the Kronecker product 3 3S S  N N I  where 
1[ ,..., ]Sm

S S SN NN  is the shape function vector for a 2D -nodedSm  element in the solid domain and 
1[ ,..., ]Fm

F F FN NN  is the shape function vector for a 2D -nodedFm  element in the fluid region. The 
resulting quadratic eigenvalue problem can be written as, 

 
2 2 1 0 2

2 2 2 0 2 ,
S S S S

Sz z SF
T F F F

FSF z

k ik
k



 

        
    

        

0K K K M C
0C K K M




  (A2) 

where 2
z

S S
zK K , 1 ( ) ( )S S S T S S T

xz xz yz yz   K K K K K , 0 ( )S S S S S T
xx yy xy xy   K K K K K , 2F F

zzK K , and 
0F F

xyK K  with, 

 
1 1

1 2

, , ,

, , ,

, , ,

,

yz z

S T S T S T
xx Sx xx Sx xy Sx xy Sy xz Sx xz S

S T T S T S T
yy Sy yy Sy Sy yz S S zz S

S T F T F T
S S S xy F F F zz F F F

F

z

T T
F F F F SF S f

d d d

d d d

d d d

c d

  



  

  

 

  

 



     

     

     

  

  

  

  



K B D B K B D B K B D N

K B D B K B D N K N D N

M N N K B B K N N

M N N C N n ,F d


 N

  (A3) 

where 3 3Sx Sx  B B I , 3 3Sy Sy  B B I , 1[ / ,..., / ]Sm
Sx S SdN dx dN dxB , 1[ / ,..., / ]Sm

Sy S SdN dy dN dyB  and 
1[ / ,..., / ;Fm

F F FdN dx dN dxB 1 / ,..., / ]Fm
F FdN dy dN dy . Also 1 2{ 0}T

f n nn  is the unit normal for the 

fluid at each interface. By rearranging the degrees of freedom ( x  then y  and z ), the quadratic eigenvalue 
problem in (A2) can be converted to the generalized eigenvalue problem in (5) with, 
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and }T T T T
S z Sx z Sy Szik ik     . Note that the size of the generalized eigenvalue problem in (5) is the 

same as the original quadratic eigenvalue problem in (A2). 
 

Appendix B: Semi-discretization in radial direction (for Fourier-Spectral SAFE method) 

Expanding the governing equation in (1a) by using (8) gives, 
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where 6 6( )S T S
pq p qD L D L  for ,, ,{ },rp q z   and SL  matrices are defined in (8). We use Fourier series 

in  , Fourier transform in the z  direction, and discretize the solid and fluid domains along the r  
direction, i.e. ( , , , ) ( ) ( , , ) zin ik z

S zr z r n k e    
u N u  and ( , , , ) ( ) ( , , ) zin ik z
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N  where zk  

is the axial wavenumber and n  is the circumferential Fourier number. The shape function matrix is 
defined as the Kronecker product 3 3S S  N N I  where 1[ ,..., ]Sm

S S SN NN  is the shape function vector 
for a 1D -nodedSm  element in the solid domain 1 2( )r r r   and 1[ ,..., ]Fm

F F FN NN  is the shape function 
vector for a 1D -nodedFm  element in the fluid region 2( ).r r  The resulting quadratic eigenvalue 
problem is similar to (A2) where 
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where, 3 3S S  B B I , 1[ / ,..., / ]Sm
S S SdN dr dN drB  and 1[ / ,..., / ]Fm

F F FdN dr dN drB . Also 

{ 1 0 0}T
f  n  is the unit normal for the solid-fluid interface using the appropriate sign at each interface. 

By rearranging the degrees of freedom ( r  then   and z ), the quadratic eigenvalue problem in (A2) can 
be converted to the generalized eigenvalue problem in (5) with, 
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and }T T T T
S z Sr z S Szik ik      . Note that the fluid contribution matrices in (B2) are only defined for the 

exterior fluid half-space 2( )r r . The associated matrices and interaction terms have to be considered for 
the fluid inside the tube 1( )r r , if exists. 


