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Abstract

Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among
various techniques, shear wave elastography has emerged as a promising tool to estimate local
arterial stiffness from observed dispersion of guided waves. In this paper, we develop efficient
models for computational simulation of guided wave dispersion in arterial walls. The models are
capable of considering fluid-loaded tubes, immersed in fluid or embedded in solid, which are
encountered for in vitro/ex vivo, and in vivo experiments. The proposed methods are based on
judiciously combining Fourier transformation and finite element discretization, leading to
significant reduction in computational cost while fully capturing the complex three-dimensional
wave propagation. The developed methods are implemented in open-source code, and verified by
comparing with significantly more expensive, fully three-dimensional finite element models. We
also validate the models using shear wave elastography of tissue-mimicking phantoms. The
computational efficiency of the developed methods indicates the possibility of leading to real-
time estimation of arterial stiffness, which would be beneficial in clinical settings.

Keywords: arterial stiffness, guided waves, finite element, viscoelasticity, fluid-structure
interaction

1. Introduction

It has been established that variation of arterial mechanical properties are correlated to various
cardiovascular diseases [1-5]. For instance, increased arterial stiffness is associated with high risk of
stroke [4, 6-8], myocardial infarction [9], end stage renal disease [10], diabetes [11], hypertension [12-
15], and atherosclerosis development [8, 16]. Decreases in arterial stiffness can also occur in some cases,
such as aneurysm [17]. Therefore, improving the prognostic ability and diagnosis techniques for early
detection of arterial variations, has been attracting a widespread attention to decrease cardiovascular
mortality rates.

Several methods have been introduced to measure the arterial stiffness globally and locally. One of the
most common global techniques is based on analysis of arterial pulse wave traveling through the artery
which can provide an estimate of the Young’s modulus of the arterial wall [18-20]. Despite its widespread
acceptance, it suffers from several limitations; distance measurement is prone to error [21]; time
measurement requires consideration of a relatively long distance due to low resolution [22], boundary
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conditions are unrealistic (isolation in vacuum and carrying inviscid fluid [23]), and finally linearization
of Euler fluid dynamic equation [24] despite strongly nonlinear propagation of the pulse wave. Therefore,
measuring the Pulse Wave Velocity (PWV) only provides an average modulus of the arterial tree
throughout the length measured, most typically involving the aorta.

As arterial properties vary at different sites [17, 25], a local, instantaneous and quantitative modulus
estimator is highly desirable. In recent years, Acoustic Radiation Force (ARF)-based imaging has formed
a well-known noninvasive tool for localized tissue characterization. In ARF-based methods, an ultrasonic
wave is transmitted into the tissue and the motion is monitored spatially and temporally using phase shift
or cross-correlation based algorithms. In general, ARF methods can be categorized based on the type of
excitation pulses as (a) quasi-static: such as sonorheometry [26]; (b) transient: such as acoustic radiation
force impulse imaging [27], shear wave elasticity imaging [28], supersonic shear imaging [29], shear
wave spectroscopy [30], and spatially modulated ultrasound radiation force [31]; and (¢) harmonic: such
as vibro-acoustography [32], harmonic motion imaging [33], crawling wave spectroscopy [34], and
shearwave dispersion ultrasound vibrometery [35, 36]. The description of the various ARF methods can
be found in [37].

Among the imaging techniques, shear wave elastography (SWE) has emerged as a promising diagnostic
tool in the estimation of shear wave speed, which is directly correlated to the tissue mechanical properties.
To date, SWE has been examined for various organs such as liver [36], kidney [38], prostate [39], bladder
wall [40] and arterial wall [22, 41]. In bulk tissues, boundary conditions do not significantly affect shear
waves propagation. However, in confined geometries such as thin layered organs, shear waves become
guided and dispersive, i.e. they travel with different velocities at different frequencies. This phenomena
makes the property assessment more complicated, but on the other hand sensitivity of different wave
modes provides additional information that can be used for detecting possible anisotropic architecture
[42] or fiber orientation [43].

Strong contrast between the arterial wall shear wave velocity and the external tissue (and internal
blood) facilitates guided propagation of shear waves in arterial walls. For mathematical modeling and to
reduce the complexity of the analytical solutions for cylindrical waves [44, 45], an immersed plate has
been examined in many studies as an approximate model [22, 23, 46-51]. Another approximation is wave
propagation in annuli (see e.g. [52]). More complicated practiced models include the hollow tube [41, 53],
fluid-filled tube [53, 54], and the recent immersed and fluid-filled 3D finite element model [55]. Also
similar researches have been conducted for studying the guided wave propagation in bones [56-59].

In this work, in a simultaneous effort to improve the accuracy and efficiency of mathematical modeling,
we propose an extremely efficient model based on cylindrical waveguide formulation that allows
consideration of fluid inside as well as fluid or tissue around the tube. The exterior fluid simulates the in
vitrolex vivo experimental setups and the exterior tissue is suitable for in vivo tests. We provide a brief but
inclusive formulation, open-source implementation [60], verification, and in vitro validation of the
presented approach using vessel-mimicking phantoms.

2. Shear wave elastography

As arteries are hollow cylindrical structures filled with liquid (blood) and embedded in a softer
surrounding tissue, shear waves become guided and undergo dispersion that is affected by the geometry
and modulus of the artery. The geometry and modulus can thus be estimated by examining the dispersion
properties of guided waves, which is the basis for SWE. As shown in Figure 1, SWE involves three steps.
(i) Acquisition of data is performed by applying an ultrasonic pulse excitation focused on the wall of the
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artery to generate shear waves propagating along the arterial wall (Figure 1 (a)). Propagation is then
measured by recording the normal particle displacement at the top of the wall or averaged through the
wall; an example displacement measurement, obtained from a phantom tube, is shown in Figure 1 (b). (ii)
The displacement is transformed in space and time to obtain frequency-wavenumber (f-k) representation
as shown in Figure 1 (c) (see [22]). The peaks in the f-k displacement can be processed to obtain phase

velocities (¢, = f/ k) of different wave modes as a function of frequency (see Figure 1 (d)); and (iii) the

final step is to estimate the arterial modulus by inversion, i.e. back-calculate the modulus by matching the
measured dispersion curves in Figure 1 (d).
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Figure 1 Schematic of the steps in SWE to determine arterial material properties: (a) experimental setup
where the guided waves are generated and recorded at the surface; (b) trace representing the measured
response histories; (c) transformed signal in frequency-wavenumber (f-k) domain; (d) dispersion curves
obtained by processing the f-k signal; (e¢) properties estimated through inversion, i.e. matching the
measured dispersion curves with those computed from (f) the forward model.

Inversion of the dispersion data, i.e. back-calculating arterial properties from measured dispersion data
in Figure 1 (d), is performed through an optimization procedure, where the difference in measured and
simulated dispersion curves is minimized. The simulated dispersion curves are obtained with the help of
so-called forward model, which takes as input the geometry and modulus of the artery, and computes the
theoretical dispersion curves. Since the iterative inversion procedure often requires a large number of
forward models, efficiency of forward models is a critical first step and forms the focus of the present
contribution. Specifically, we develop robust three-dimensional models based on efficient semi-analytical
waveguide formulation, which are discussed in the remainder of the paper.

3. Semi-analytical finite element (SAFE) method for waveguides

In this paper we introduce semi-analytical models for forward modeling of the immersed and fluid-
filled tubes with cylindrical and non-cylindrical cross-sections. The proposed approach, while capturing
full three-dimensional tube motion, significantly reduces the computational cost as it only requires a one-
dimensional (1D) discretization for cylindrical cross-sections and two-dimensional (2D) discretization for
non-cylindrical cross-sections. The resulting efficiency increase is expected to eventually facilitate fast
SWE inversion. In this section, starting with general governing differential equations, we derive a model
requiring only 2D discretization for cylindrical and noncylindrical waveguides. In the subsequent section,
we derive an even more efficient model requiring only radial discretization, when the waveguide is
cylindrical. We have provided the implementation of these methods in an open-source MATLAB®
software named WaveDisp [60].



3.1 Governing equations

Consider the waveguide in Figure 2 (a), where a solid tube is filled with fluid and immersed in infinite
fluid. The governing equations include the elastodynamic equation for the solid tube, acoustic wave
equations for the fluid, interface conditions for the solid-fluid interface, and the radiation condition for the
fluid at infinity, namely,
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where U and ¢ are the displacement and stress vectors in the solid domain g, P is the pressure field
in the fluid domain Q,., p, is the solid medium density, and p, and c, are the density and pressure
wave velocity of the fluid medium, respectively. Note that L_(-) is the symmetric gradient matrix
operator, and V_-(-) and V_(:) are divergence and gradient defined in the system of coordinates
X =(x,,X,,X;) . The solid-fluid interface is represented by I',, ¢ is the tensor representation of the stress
vector o, r denotes the radius, and ng and n, are respectively the unit vectors for the solid and fluid

domains.

Remark on nonlinearity: The use of linear elastodynamic and acoustic equations are justified given that
the ARF excitation causes small deformations and stresses in the artery, and small changes in the acoustic
pressure in the blood and surrounding fluid. Moreover, the ARF excitation and the associated data
acquisition is performed in a very short period compared to the cardiac cycle. This indicates that there is
no significant change in the blood pressure and the resulting hoop stresses. Thus, while the arterial
modulus is governed by the prestress of the artery itself and may change within the cardiac cycle, our
eventual goal is to estimate the fangent modulus at the instance of ARF excitation and data acquisition.

Figure 2 (a) Geometry of the three-dimensional (3D) waveguide, and (b) 2D discretization of solid cross-
section fluid buffer region and infinite fluid with perfectly matched discrete layer (PMDL) elements.



3.2 Dispersion relation: continuous eigenvalue problem

Given that the objective is to obtain the dispersion relations, i.e. axial wavenumber — frequency pairs
that satisfy the governing equation, we consider displacements and pressures of the form,

“eitE and P = p(x,,x,)e ", where weR is the temporal frequency and k_ € C is the

U= u(xl s xz ) e
longitudinal wavenumber. This leads to a continuous eigenvalue problem of finding the (w,k,) pairs that

satisfy the following equations with the eigenvector {u” p}”:
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where X =(x,,x,) represents the system of coordinates in the cross-section. Note that D
D, are the material property coefficients and L_,,L_,, L., L%, are the matrix operators, which can

be derived from L_(:) in (la), for different system of coordinates. The above continuous eigenvalue
problem forms the basis for waveguide dispersion analysis.

3.3 Semi-analytical finite element method (SAFE) for noncircular cross-sections

To discretize the eigenvalue problem in (2), the domain is discretized through finite element
approximation within the cross-section, which is often referred to as semi-analytical finite element
(SAFE) method [45] (also referred to as thin-layer method in the contexts of geophysics [61]). The reason
—iot+ik,z

)

for the name is that analytical expansion is needed in the z direction (of the form U=wu(x,,x,)e

while finite element discretization is employed across the cross-section, e.g. the waveguide shown in
Figure 2 (a) is discretized with a two-dimensional mesh as shown in Figure 2 (b). Note that distortion in
the mesh deteriorates the numerical convergence, thus care must be exercised while using unstructured
grids. Alternatively, a mapped mesh can be used whenever possible.

We elaborate this approach by starting with more details of the governing equation, where Cartesian
coordinates are used in the cross-section. Thus, in the solid domain, elastodynamic equation for the

harmonic waves is given in Equations (2a) and (1a). In this problem, w={u, u, u, 1" is the displacement
vector and the stress vector 6=De¢={0, 0, 0. 0,0, GW}T is related to the strain vector
e=Lu={e ¢, 6. 7.7, 7/x},}T through D, , where the nonzero entries for an isotropic medium are
Dy, =D,, =Dy; = ps Ci , Dy,=Dy=Dy=psc; and D, =D, =D;=D; =D,y=D;,=p; (0127 _ch) .

Parameters ¢, =(G/ pg)"? and ¢, =c ((2-2v)/ (1—21/))1/2 are the shear and pressure wave velocity



where G, v are the solid medium shear modulus and Poisson’s ratio, respectively. The nonzero entries of

6x3 matrix operators L _ and L, are,

LU(-):L8(~)=LX£+Lyi+inkz, with L (1,1)=L%(5,3)=L(6,2) =1,
ox oy (3)

L’(2,2)=L’(43)=L(6,1)=1, and L}(3,3)=L}(4,2)=L}(51)=1.

In the fluid domain, the equation of motion in (2b) with constant p, takes the form,

2
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where V2()=8%()/ x> +0°()/ y*.

The main idea of the SAFE method is to discretize the field variables u and p in the cross-section, i.e.
u(x,y)=Ng(x,y)u and p(x,y)=N,(x,y)p, where N,,N, are the finite element shape functions for

solid and fluid domains, respectively. Substituting these in continuous eigenvalue problem in Equations
(2) results in the discrete version:

A e
k + =1t (5)
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where = K3 | /|| K5 |.; is the normalization factor that improves the conditioning of the system.

inf
Contribution matrices of solid domain K3, K;, M®, fluid medium K., K{, M" and the fluid-structure

interaction matrix Cg, are defined in Appendix A.

Clearly the accuracy of the dispersion relation from the discrete eigenvalue problem in Equation (5) is
determined by the discretization of the field variables in the cross-section. As shown in Figure 2 (b), the
solid domain, and the fluid inside, if any, are discretized in 2D with high-order FEM. Also, a rectangular
fluid region surrounding the fluid is discretized with finite elements. The discretization of the fluid-
structure interface condition in Equation (2¢) is performed in a consistent way, as described in Section
5.5.1 of [62]. Fluid outside the tube is discretized using perfectly matched discrete layers (PMDL) [63,
64], which is a discrete variant of the highly successful perfectly matched layers (PML) [65]. The details
of the PMDL discretization can also be found in Section 5.5.2 of [62].

3.4 Filtering of dispersion curves

The discrete eigenvalue problem in Equation (5) is solved by sweeping through frequency, resulting in

(o, k) pairs, where i=1,..,n represents the index of propagation modes. These dispersion curves

‘mode

are often presented as phase velocities c;h =w/R(k), plotted as a function of frequency. Attenuation

curves are plotted as the imaginary part of the wavenumbers, i.e. o' = 3(k!). It must however be noted

that not all the eigenvalue pairs are necessarily observed in experimental data. Picking out the feasible
solutions depends on the physics of the problem. For the soft materials considered in this paper, as
discussed above, energy inside the solid domain does not leak into the fluid domain. Therefore to obtain
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these non-leaky waves, one should only choose the purely real wavenumbers k_ and ignore the complex

k_ solutions. Besides, the phase velocity of the non-leaky wave modes cannot exceed the pressure wave

velocity in the fluid, therefore the criterion @/ k. <min(c,,c;™) has to be considered as well, where ¢,

is the maximum desired phase velocity.

3.5 Group velocity computation

By writing (5) in the form K¢, =0, or ¢\ K=0 where K(w,k.)=k’A+C and ¢, ¢, are the right

and left eigenvectors, group velocity can be obtained as,

" (0K /ok
Cg :—&R ¢]IL‘( / z)¢R . (6)
¢\ (OK/0w)d
Note that A and C can both be functions of frequency, e.g. in the contexts of viscoelasticity and
frequency-dependent absorbing layers. It is worth mentioning that eigenvalue derivatives can be also

obtained without computing the eigenvectors using the perturbation approach presented in Equation (10)
of [66].

4. Fourier-Spectral SAFE method for axisymmetic waveguides

Given that arteries can plausibly be represented as axially symmetric (cylindrical) waveguides, we
propose to exploit the geometry to further reduce the computational cost of SAFE method described in the
previous section. Note that the proposed approach is motivated not by characterizing arteries with
significant localized plaque, but early increase in arterial stiffness that is hypothesized to precede
significant plaque formation [67, 68].

We employ Fourier series expansion in the azimuthal direction, and spectral finite elements in the radial
direction. The advantage of the Fourier series is that the two-dimensional eigenvalue problem is
decoupled into a set of one-dimensional eigenvalue problems in the radial direction. Use of spectral FEM
in the radial direction further increases the efficiency of the problem, owing to the exponential
convergence of spectral FEM. The remainder of the section contains the details of the formulation of the
Fourier-Spectral SAFE method.

4.1 Dispersion relation for cylindrical waveguides

We use cylindrical coordinates for describing the waveguide geometry with axisymmetric cross
sections as shown in Figure 3 (a). The elastodynamic equation of the solid tube for the harmonic waves

(of the form U=u(r,0)e ") is given in Equations (2a) and (1a), where here u={u, u, u_}". The

stress ~ vector o¢=De={o, 0, 0. 0, 0_.0,} is related to the strain  vector

Z

e=Lu=1{¢, &, &. ¥, V. Vo) through D, . The matrix operators L_ and L, are as follows,
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where nonzero entries of 6x3 matrices L, L, L%, are,

L (1,1)=L}(5,3)=L}(6,2) =1, and L}(2,2)=L}(4,3)=L}(6,1) =1,
L’(3,3)=L'4,2) =L (5, =1, and L}(2,1)=-L’(6,2)=1.

®)

Figure 3 (a) Geometry of the immersed fluid-filled tube in 3D, and (b) 1D discretization of solid and
inner fluid with high-order finite elements and linear PMDL elements for the exterior infinite fluid.

The acoustic equation in the fluid domain with constant p, is given in (4) where
V() =r"'0(r=x0()/or)/ or+r?0*(-)/ 06> . The radiation condition for the fluid domain at infinity is

given by (2c) and the interaction of fluid and structure at the interface are governed by the continuity of
traction and balance of mass, given in (2d).

4.2 Fourier series expansion in azimuthal direction

The continuous eigenvalue problem in (2) using the operators defined in the previous section needs to
be discretized in the » and € directions. However, given the regularity of the cross-section, we employ
more efficient Fourier-spectral discretization in place of discretizing the cross-section with finite
elements. Specifically, after using Fourier transform in the longitudinal direction, we use Fourier series

expansion in the azimuthal direction, namely U(r,0,z,t) =u(r,nk.,o)e ™" and P(r,0,z,t)=
p(r,n,k.,@)e™ """ where n=0,1,2,3,... is the circumferential Fourier number. This results in the

decoupled system of 1D differential eigenvalue problems in the radial direction,

-1 1
—i(rDWau / 0r +inD,,u +ik.rD,_u+D, u)+—(D!, ~inD], - ik.D]. )a_u

r or r or

. T .o u 2 . r.\u
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+(kzzDzzu - pSa)213><3 )u = 0’
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where D, =(L“;)T D, . L‘Z for p,qe{r,0,z,0} and L° matrices are defined in (8). By discretizing the
solution in the radial direction, i.e. U(7,0,z,t) = N (Mu(n,k,,w)e™ " and

P(r,0,z,t) =N ,.(r) p(n, k., w)e”"""" where N, N, are the solid and fluid domain shape functions
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along the radius, the final discrete eigenvalue problem can be obtained as the one presented in (5) where
K, K;,M®°, KJ,K/,M" and C, are presented in Appendix B. Note that these matrices are
functions of circumferential Fourier number associated with different propagating modes. Note that any
anisotropy can be simply included by using the desired 3D anisotropic coefficient matrix D, , however
it is not the focus of the current study.

4.2 Radial discretization: spectral FEM and PMDL

The formulation in (9) is valid irrespective of the numerical discretization employed in the radial
direction. As shown in Figure 3 (b), the inner fluid and the tube are discretized with spectral finite
elements for computational efficiency (due to exponential convergence).

For modeling the infinite fluid around the tube, Perfectly Matched Discrete Layers (PMDL) are used.
Note that PMDL lengths must be chosen based on the underlying physics. When the shear wave velocity
in the solid (e.g. tissue) is less than the acoustic wave velocity in the fluid, solid-born wavemodes are
non-leaky or trapped (purely evanescent perpendicular to interface, see e.g. [69]). In order to model these
modes properly, PMDL elements with purely real length should be used, which are best to choose as,

Lo’ ] 2c @,
,=L. with [, =——L ™ =1 _.n,. (10)
(np +1- ) ,/(cf/cm)z—l

where L, is the minimum length, « is the geometric (increase) ratio, @, is the maximum frequency of
interest for obtaining the dispersion curves, and ¢y, is the Scholte (interface) wave velocity, which can

be computed from the closed-from expressions (see e.g. [70]). Note that often a handful of PMDL layers
are sufficient to discretize the entire unbounded domain. Further details on the provided criterion in (10)
can be found in Section 5.4.2 of [62].

Note that as in vitro experiments are done with phantoms or arteries immersed in fluid, PMDLs are
used for modeling the infinite fluid around the tube. Also, because the proposed tube model can be
multilayered [62], the surrounding fluid can be replaced by an additional solid (tissue) layer for in vivo
experiments. However, considering an infinite tissue around the artery requires designing the PMDL
layers to appropriately model the wave-propagation physics at the solid-solid interface, which is beyond
the scope of this paper. Also note that the Fourier-Spectral SAFE formulation can employ other
constitutive laws, e.g. including hyper elasticity and anisotropy (see reviews of existing models in [71-
75)).

Remark on computational cost: For the example presented in the next (verification) section, the Fourier-
Spectral SAFE model needs 1.98 seconds on a 2.83 GHz desktop computer, for 65 frequencies. The 3D
FE model was run in parallel, and took 361 seconds on forty eight 3.1 GHz processors. Assuming 80%
parallel efficiency, the Fourier-Spectral SAFE method is 7,700 times more efficient than 3D FE model,
while fully capturing the complicated 3D wave propagation and dispersion. Note further that the cost of
Fourier-Spectral SAFE model can be further reduced by limiting the number of frequencies, further code
optimization as well as utilizing modern computing platforms, e.g. graphical processing units (GPUs).
Such techniques coupled with the already modest computational cost could eventually lead to real-time
prediction of arterial stiffness using SWE data.



5. Verification

We verify the proposed models by comparing with fully three-dimensional finite element (FE) models
previously employed for arteries [55]. To this end, we consider a rubber tube filled with and immersed in
water. Inner radius of tube and the wall thickness are 7, =3mm and 4 =1mm, respectively. Material

properties of rubber are G =157kPa, v=0.495 and p,=1037 kg/m’. Bulk modulus of water is
assumed to be x, =2.2x10° kPa with the density of 0,=1000 kg/m’ .

In the Fourier-Spectral SAFE model, the tube wall is discretized with one quartic (5-noded) finite
element, and the inner fluid region is discretized using two quartic elements. To model the non-leaky
waves we use 6 PMDL elements (with =4 and ¢, =10.36 m/s using (10)). Figure 4 shows the

calculated phase and group velocity curves for the circumferential Fourier number n=1. The Figure also
compares the curves with the first flexural mode of an immersed plate with the same thickness and
material properties. It can be seen that the difference is significant, implying that use of plate models for
inversion would lead to significant errors in modulus estimates.
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Figure 4 (a) Phase velocity, and (b) group velocity curves obtained by the Fourier-Spectral SAFE model
in Figure 3 (b) for the cylindrical waveguide compared with the immersed plate waveguide.

For the SAFE model, the two-dimensional discretization is performed using a mesh similar to that
shown in Figure 2 (b) but for a perfect circular cross-section. The solid circular cross-section is
discretized using 2 and 32 quadratic elements in the radial and azimuthal directions, respectively. We also
used 6 PMDL elements in each stretch direction to model the exterior fluid.

In contrast to SAFE models which are eigenvalue problems in the frequency domain, the 3D FE model,
which is borrowed from [55], involves simulation of the actual experiment in the time-domain. As shown
in Figure 1(a), in the 3D FE model, the tube is (virtually) excited with a pulse that mimics the radiation
force on the surface and the radial component of the displacement is recorded along a line of 220 points
with spacing Az = 0.18018 mm over a time window of ¢ = 0-8 ms with A¢f = 0.04 ms. The obtained
displacement contour in space-time domain is shown in Figure 5. The dispersion curves are then obtained
by performing Fourier transform followed by peak-picking as shown in Figure 1.
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Figure 5 Time-space displacement contour using the 3D model in Figure 3 (a).

The verification is performed in two separate steps: (a) consistency between SAFE (Section 3.3) and
Fourier-Spectral SAFE (Section 4) models for cylindrical waveguides, and (b) consistency between
Fourier-Spectral SAFE and 3D FEM.

Consistency between results from SAFE and Fourier-Spectral SAFE: Figure 6 contains a comparison of
dispersion curves computed using the two approaches. Note that the SAFE model simultaneously
retrieves all the wavemodes corresponding to all the circumferential Fourier numbers, to the extent they
are resolved by the discretization. For the sake of clarity, in Figure 6, we only show the first mode
associated with each circumferential order n=0,---,6. The figure clearly shows a good match between
Fourier-Spectral SAFE and SAFE models, indicating the effectiveness of the proposed Fourier-Spectral
SAFE model in predicting the complicated wave dispersion properties.

15
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Figure 6 Phase velocity curves obtained by the Fourier-Spectral SAFE model (Figure 3 (b)), and the
SAFE model (Figure 2 with cylindrical cross-section).
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Figure 7 Phase velocity curves obtained by the Fourier-Spectral SAFE model (Figure 3 (b)) and the 3D
FE model (Figure 3 (a)). The slight discrepancy is attributed to the errors in the 3D analysis due to, e.g.
discretization and boundary conditions.

Consistency between Fourier-Spectral SAFE and 3D FEM: Figure 7 shows the comparison between the
dispersion curves extracted from the time-domain simulation with the 3D FE model and the proposed
Fourier-Spectral SAFE model. Again, a good match is observed indicating the accuracy of the
significantly simpler and more efficient Fourier-Spectral SAFE model. In fact, the Fourier-Spectral SAFE
method appears to suffer less from discretization errors, while we suspect that the 3D FE model’s non-
smooth dispersion curves are a result of errors from discretization, imperfect absorbing boundary
conditions, and the fact that not all modes may be sufficiently excited by the radiation force at all the
frequencies.

6. Validation

To validate the Fourier-Spectral SAFE model, we consider phantom SWE experiments on fluid-filled,
immersed rubber tubes and show that the dispersion curves predicted from the proposed model match
closely with the experimental dispersion curves.

Three sets of tubes were made with outer diameters of 8 mm and wall thicknesses of 1 mm to mimic an
adult carotid artery. A different rubber mixture was used for each set of tubes, VytaFlex 10 (V10),
VytaFlex20 (V20), and ReoFlex 30 (R30) (Smooth-On, Inc., Macungie, PA). SWE measurements were
made with a Verasonics system (V1, Verasonics, Inc., Kirkland, WA) and a linear array transducer (L7-4,
Philips Healthcare, Andover, MA) in a degassed water tank with water inside and surrounding the tubes.
Acoustic radiation force was used to generate the waves with a 200 ps push at 4.09 MHz and plane wave
imaging at a frame rate of 14.925 kHz was used for measuring the propagating waves.

Three samples from each mixture were poured for testing with the Hyper-Frequency Viscoelastic
Spectroscopy (HFVS) instrument [76]. Figure 8 shows the mean storage (G') and loss modulus (G")
values of the entire measurements. The densities of the urethane rubbers V10, V20, and R30 are reported

as 1000, 1000, and 1010 kg/m® respectively.
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Figure 8 (a) Storage and (b) loss modulus for VytaFlex 10 (V10), VytaFlex20 (V20), and ReoFlex 30
(R30) materials.

The vertical component of the velocity with respect to the ultrasound transducer was recorded along a
linear array of 128 elements with a reconstructed spatial sampling of Ax = 0.154 mm over a time window
of ¢=0-13 ms with Ar =0.067 ms. We repeated the experiment five times and extracted the experimental
dispersion curves by the procedure discussed in Figure 1.
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Figure 9 Viscoelastic 1D model (for n=1,2,3) compared with experimental results for (a) VytaFlex 10
(V10), VytaFlex20 (V20), and (c) ReoFlex 30 (R30) rubber tubes.
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Figure 9 compares the result of the experiments with the theoretical predication using the measured
viscoelastic material properties (G =G'+iG"). Theoretical dispersion curves for flexural modes with
circumferential wavenumber n=1,2,3 were calculated from the material properties measured with

HFVS. The theoretical curves generated using HFVS data show a good agreement with the measured
wave propagation results. We emphasize that taking into account the viscoelasticity (frequency dependent
and complex shear modulus) of the rubber tubes is crucial to matching the theoretical and experiential
curves. Besides, pronounced viscoelastic response of animal and human arteries has been observed in
many studies (see e.g. [77-83]).

6.1 Important implication: multimodal dispersion curves

An outcome of the current study is that the experimental dispersion curve is a superposition of multiple
theoretical dispersion curves, as opposed to a single theoretical dispersion curve. While it is tempting to
think that the main dispersion curve is the dispersion curve associated with the first fundamental mode
(n=1), this is not always the case. Depending on the frequency, higher modes (n >1) may have larger

contribution. Thus higher modes can no longer be neglected; the dispersion curve obtained from the
experiment would traverse around the fundamental and higher order modes. This is referred to effective
dispersion curve (also see [66]) and has important implication with respect to inversion; incorrectly
matching to single theoretical dispersion curve could lead to erroneous estimates of the arterial wall
properties.

While in this specific example, we noticed that the experimental curve overlapped with three different
theoretical dispersion curves, it is possible that the number of involved theoretical curves may not be
three, and would depend on the frequency range of observation and potentially the characteristics of the
ARF excitation. Careful parametric study would be needed to determine and include all significant
theoretical dispersion curves, before robust inversion can be performed.

7. Sensitivity studies

Effect of material properties: Since the eventual goal of SWE is the inversion for the properties of the
arterial wall, we perform sensitivity analyses with respect to influential parameters, i.e. shear modulus,
wall thickness and internal radius. We consider the tube with properties mentioned in Section 5. For the
first mode with circumferential Fourier number n=1, sensitivity of the dispersion curve to these
parameters are studied in Figure 10. Note that while changing each parameter, the other two are kept
constant at the default values used in Section 5, namely G =157kPa, h=1mm and 7, =3mm. It is

evident from this study that the shear modulus and wall thickness play a more significant role than the
internal radius of the tube. The sensitivity to modulus and thickness, while not surprising, confirms that
SWE could lead to estimation of these two parameters, which appear to be more important biomarkers
[22, 50, 55].

Effect of arterial cross section: The artery may sometimes not be cylindrical due to non-uniform
thickening or accumulation of plaque. To examine the effect of non-uniform wall thickness, Figure 11
compares the dispersion curves for the tubes with cylindrical and non-cylindrical cross-sections (both
filled with and immersed in fluid). Note that the fundamental flexural mode of the cylindrical tube with
circumferential number n =1, converts to two branches for the non-cylindrical tube, which is attributed to
the break in axisymmetry. These modes are known as fast and slow fundamental flexural modes and the
branching is due to asymmetry of the cross-section (see e.g. [84]). It can also be observed that the higher
modes are much more sensitive than the fundamental mode.
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8. Discussion and Conclusion

Towards the final goal of estimating local arterial stiffness from observed guided wave dispersion, we
developed efficient models for computing dispersion curves embedded and immersed tubes. In contrast
with regular finite element discretization in all three spatial directions, we utilize the semi-analytical finite
element (SAFE) method to reduce the problem into two-dimensional eigenvalue problem. In addition, we
utilize the cylindrical nature of arteries to further reduce the computational cost by judiciously combining
Fourier series in azimuthal direction and high order finite elements in the radial direction. In addition, we
have utilized a recently developed method of perfectly matched discrete layers to capture the effect of
surrounding fluid. The resulting method, named Fourier-Spectral SAFE method, captures fully three-
dimensional wave propagation characteristics with less than 2 seconds on a regular desktop computer (as
opposed to 3D FE model, which takes 6 minutes on a 48-processor parallel computer). Such a drastic
reduction in computational cost is encouraging because, with further code optimization, it could lead to
real-time prediction of arterial stiffness, which would be significant in clinical settings.

The Fourier-Spectral SAFE method for cylindrical waveguides, as well as a 2D SAFE method
applicable for non-cylindrical waveguides, are implemented in open-source software WaveDisp [60].
These methods are verified by comparing with much more expensive, fully 3D FE models, clearly
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indicating the effectiveness of the proposed methods. Finally, we validated the proposed methods with
SWE experiments on tissue-mimicking phantoms, where a close match is observed between experimental
and computed dispersion curves.

An important observation from the validation study is that the experimentally observed dispersion curve
does not just match with a single analytical dispersion curve. Instead, it is an overlap of three different
analytical dispersion curves, especially in the lower frequency range. The studies thus far invert for
arterial stiffness by matching with single theoretical dispersion curve (see e.g. [22, 49, 50, 52]). In light of
our observation, it appears crucial to match with multiple dispersion curves instead, especially because in
vivo data may be more reliable at lower frequencies.

While the presented results show promise for the proposed methods, much work remains to be done
building on this foundation. The next steps include (a) ex vivo validation for real arteries, which may
require some uncertainty quantification, (b) development of inversion algorithm to estimate arterial
stiffness, followed by (c) corroboration with other methods to measure arterial stiffness, and (d) clinical
trials.

Acknowledgements

The work is partially funded by National Science Foundation Grants DMS-1016514, CMMI-1635291,
and research support from the Mayo Clinic Research Committee.

References

[1] K.-S. Cheng, C. Baker, G. Hamilton, A. Hoeks, A. Seifalian, Arterial elastic properties and
cardiovascular risk/event, European journal of vascular and endovascular surgery 24(5) (2002) 383-397.
[2] E. Dolan, L. Thijs, Y. Li, N. Atkins, P. McCormack, S. McClory, E. O’Brien, J.A. Staessen, A.V.
Stanton, Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin
Outcome Study, Hypertension 47(3) (2006) 365-370.

[3] B.A. Kingwell, C.D. Gatzka, Arterial stiffness and prediction of cardiovascular risk, Journal of
hypertension 20(12) (2002) 2337-2340.

[4] S. Laurent, P. Boutouyrie, R. Asmar, 1. Gautier, B. Laloux, L. Guize, P. Ducimetiere, A. Benetos,
Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive
patients, Hypertension 37(5) (2001) 1236-1241.

[5] K. Sutton-Tyrrell, S.S. Najjar, R.M. Boudreau, L. Venkitachalam, V. Kupelian, E.M. Simonsick, R.
Havlik, E.G. Lakatta, H. Spurgeon, S. Kritchevsky, Elevated aortic pulse wave velocity, a marker of
arterial stiffness, predicts cardiovascular events in well-functioning older adults, Circulation 111(25)
(2005) 3384-3390.

[6] D.M. Dumont, J.R. Doherty, G.E. Trahey, Noninvasive assessment of wall-shear rate and vascular
elasticity using combined ARFI/SWEI/spectral Doppler imaging system, Ultrasonic imaging 33(3) (2011)
165-188.

[7] U. Quinn, L.A. Tomlinson, J.R. Cockcroft, Arterial stiffness, JRSM cardiovascular disease 1(6)
(2012) 18.

[8] C. Vlachopoulos, K. Aznaouridis, C. Stefanadis, Prediction of cardiovascular events and all-cause
mortality with arterial stiffness: a systematic review and meta-analysis, Journal of the American College
of Cardiology 55(13) (2010) 1318-1327.

16



[9] T. Hirai, S. Sasayama, T. Kawasaki, S. Yagi, Stiffness of systemic arteries in patients with myocardial
infarction. A noninvasive method to predict severity of coronary atherosclerosis, Circulation 80(1) (1989)
78-86.

[10] A.P. Guerin, J. Blacher, B. Pannier, S.J. Marchais, M.E. Safar, G.M. London, Impact of aortic
stiffness attenuation on survival of patients in end-stage renal failure, Circulation 103(7) (2001) 987-992.
[11] J.R. Cockcroft, I.B. Wilkinson, M. Evans, P. McEwan, J.R. Peters, S. Davies, M.F. Scanlon, C.J.
Currie, Pulse pressure predicts cardiovascular risk in patients with type 2 diabetes mellitus, American
journal of hypertension 18(11) (2005) 1463-1467.

[12] C. Bussy, P. Boutouyrie, P. Lacolley, P. Challande, S. Laurent, Intrinsic stiffness of the carotid
arterial wall material in essential hypertensives, Hypertension 35(5) (2000) 1049-1054.

[13] P. Lacolley, S. Laurent, Aortic Stiffness Is an Independent Predictor of Primary Coronary Events in
Hypertensive Patients a longitudinal study, Hypertension 39(1) (2002) 10-15.

[14] A. Paini, P. Boutouyrie, D. Calvet, A.-I. Tropeano, B. Laloux, S. Laurent, Carotid and aortic stiffness
determinants of discrepancies, Hypertension 47(3) (2006) 371-376.

[15] S.P. Glasser, D.K. Arnett, G.E. McVeigh, S.M. Finkelstein, A.J. Bank, D.J. Morgan, J.N. Cohn,
Vascular compliance and cardiovascular disease: a risk factor or a marker?, American Journal of
Hypertension 10(10) (1997) 1175-1189.

[16] J.J. Oliver, D.J. Webb, Noninvasive assessment of arterial stiffness and risk of atherosclerotic events,
Arteriosclerosis, Thrombosis, and Vascular Biology 23(4) (2003) 554-566.

[17] P. Boutouyrie, S. Laurent, A. Benetos, X.J. Girerd, A.P. Hoeks, M.E. Safar, Opposing effects of
ageing on distal and proximal large arteries in hypertensives, Journal of Hypertension 10 (1992) S87-S92.
[18] L.M. Van Bortel, S. Laurent, P. Boutouyrie, P. Chowienczyk, J. Cruickshank, T. De Backer, J.
Filipovsky, S. Huybrechts, F.U. Mattace-Raso, A.D. Protogerou, Expert consensus document on the
measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity, Journal of
hypertension 30(3) (2012) 445-448.

[19] C. Caro, G.K. HARRISON, Observations on pulse wave velocity and pulsatile blood pressure in the
human pulmonary circulation, Clinical science 23 (1962) 317.

[20] R. Asmar, A. Benetos, J. Topouchian, P. Laurent, B. Pannier, A.-M. Brisac, R. Target, B.I. Levy,
Assessment of arterial distensibility by automatic pulse wave velocity measurement validation and
clinical application studies, Hypertension 26(3) (1995) 485-490.

[21] A. Mookerjee, A.M. Al-Jumaily, A. Lowe, Arterial pulse wave velocity measurement: different
techniques, similar results—implications for medical devices, Biomechanics and modeling in
mechanobiology 9(6) (2010) 773-781.

[22] M. Bernal, 1. Nenadic, M.W. Urban, J.F. Greenleaf, Material property estimation for tubes and
arteries using ultrasound radiation force and analysis of propagating modes, The Journal of the Acoustical
Society of America 129(3) (2011) 1344-1354.

[23] M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, M.
Tanter, Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,
Ultrasound in medicine & biology 36(10) (2010) 1662-1676.

[24] D. Korteweg, Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Rohren, Annalen
der Physik 241(12) (1878) 525-542.

[25] F. van den Berkmortel, M. Van Der Steen, H. Hoogenboom, H. Wollersheim, H. Van Langen, T.
Thien, Progressive arterial wall stiffening in patients with increasing diastolic blood pressure, Journal of
human hypertension 15(10) (2001).

[26] F. Viola, M.D. Kramer, M.B. Lawrence, J.P. Oberhauser, W.F. Walker, Sonorheometry: a
noncontact method for the dynamic assessment of thrombosis, Annals of biomedical engineering 32(5)
(2004) 696-705.

[27] K. Nightingale, M.S. Soo, R. Nightingale, G. Trahey, Acoustic radiation force impulse imaging: in
vivo demonstration of clinical feasibility, Ultrasound in medicine & biology 28(2) (2002) 227-235.

17



[28] A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes, S.Y. Emelianov, Shear wave elasticity
imaging: a new ultrasonic technology of medical diagnostics, Ultrasound in medicine & biology 24(9)
(1998) 1419-1435.

[29] J. Bercoff, M. Tanter, M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity
mapping, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 51(4) (2004) 396-409.
[30] T. Deffieux, G. Montaldo, M. Tanter, M. Fink, Shear wave spectroscopy for in vivo quantification of
human soft tissues visco-elasticity, IEEE transactions on medical imaging 28(3) (2009) 313-322.

[31] S.A. McAleavey, M. Menon, J. Orszulak, Shear-modulus estimation by application of spatially-
modulated impulsive acoustic radiation force, Ultrasonic imaging 29(2) (2007) 87-104.

[32] M. Fatemi, J.F. Greenleaf, Ultrasound-stimulated vibro-acoustic spectrography, Science 280(5360)
(1998) 82-85.

[33] E.E. Konofagou, K. Hynynen, Localized harmonic motion imaging: theory, simulations and
experiments, Ultrasound in medicine & biology 29(10) (2003) 1405-1413.

[34] Z. Hah, C. Hazard, Y.T. Cho, D. Rubens, K. Parker, Crawling waves from radiation force excitation,
Ultrasonic imaging 32(3) (2010) 177-189.

[35] S. Chen, M. Fatemi, J.F. Greenleaf, Quantifying elasticity and viscosity from measurement of shear
wave speed dispersion, The Journal of the Acoustical Society of America 115(6) (2004) 2781-2785.

[36] S. Chen, M.W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, J.F. Greenleaf, Shearwave
dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity, IEEE transactions
on ultrasonics, ferroelectrics, and frequency control 56(1) (2009) 55-62.

[37] J.R. Doherty, G.E. Trahey, K.R. Nightingale, M.L. Palmeri, Acoustic radiation force elasticity
imaging in diagnostic ultrasound, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
60(4) (2013) 685-701.

[38] C. Amador, M.W. Urban, S. Chen, J.F. Greenleaf, Shearwave dispersion ultrasound vibrometry
(SDUYV) on swine kidney, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 58(12)
(2011) 2608-2619.

[39] F.G. Mitri, M.W. Urban, M. Fatemi, J.F. Greenleaf, Shear wave dispersion ultrasonic vibrometry for
measuring prostate shear stiffness and viscosity: an in vitro pilot study, IEEE transactions on biomedical
engineering 58(2) (2011) 235-242.

[40] I.Z. Nenadic, B. Qiang, M.W. Urban, L.H. de Araujo Vasconcelo, A. Nabavizadeh, A. Alizad, J.F.
Greenleaf, M. Fatemi, Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder
wall, Physics in medicine and biology 58(8) (2013) 2675.

[41] X. Zhang, R.R. Kinnick, M. Fatemi, J.F. Greenleaf, Noninvasive method for estimation of complex
elastic modulus of arterial vessels, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
52(4) (2005) 642-652.

[42] J.-L. Gennisson, T. Deffieux, E. Macé, G. Montaldo, M. Fink, M. Tanter, Viscoelastic and
anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging,
Ultrasound in medicine & biology 36(5) (2010) 789-801.

[43] D. Shcherbakova, C. Papadacci, A. Swillens, A. Caenen, S. De Bock, V. Saey, K. Chiers, M. Tanter,
S. Greenwald, M. Pernot, Supersonic shear wave imaging to assess arterial nonlinear behavior and
anisotropy: proof of principle via ex vivo testing of the horse aorta, Advances in Mechanical Engineering
6 (2014) 272586.

[44] T. Kundu, Ultrasonic nondestructive evaluation: engineering and biological material
characterization, CRC press, Boca Raton, FL, 2003.

[45] J.L. Rose, Ultrasonic guided waves in solid media, Cambridge University Press, New York, NY,
2014.

[46] J.-k. Jang, K. Kondo, T. Namita, M. Yamakawa, T. Shiina, Comparison of techniques for estimating
shear-wave velocity in arterial wall using shear-wave elastography-FEM and phantom study, Ultrasonics
Symposium (IUS), 2015 IEEE International, IEEE, 2015, pp. 1-4.

18



[47] E. Widman, E. Maksuti, C. Amador, M.W. Urban, K. Caidahl, M. Larsson, Shear Wave
Elastography Quantifies Stiffness in Ex Vivo Porcine Artery with Stiffened Arterial Region, Ultrasound
in Medicine & Biology 42(10) (2016) 2423-2435.

[48] T.-m. Nguyen, M. Couade, J. Bercoff, M. Tanter, Assessment of viscous and elastic properties of
sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro
experimental validation, [EEE transactions on ultrasonics, ferroelectrics, and frequency control 58(11)
(2011) 2305-2315.

[49] E. Widman, E. Maksuti, D. Larsson, M.W. Urban, A. Bjillmark, M. Larsson, Shear wave
elastography plaque characterization with mechanical testing validation: a phantom study, Physics in
medicine and biology 60(8) (2015) 3151.

[50] E. Maksuti, E. Widman, D. Larsson, M.W. Urban, M. Larsson, A. Bjillmark, Arterial Stiffness
Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical Testing, Ultrasound in
medicine & biology 42(1) (2016) 308-321.

[51] G.-Y. Li, Q. He, G. Xu, L. Jia, J. Luo, Y. Cao, An ultrasound elastography method to determine the
local stiffness of arteries with guided circumferential waves, Journal of Biomechanics 51 (2017) 97-104.
[52] G.-Y. Li, Q. He, L. Jia, P. He, J. Luo, Y. Cao, An Inverse Method to Determine Arterial Stiffness
with Guided Axial Waves, Ultrasound in Medicine & Biology 43(2) (2016) 505-516

[53] V. Flamini, A.P. Creane, C.M. Kerskens, C. Lally, Imaging and finite element analysis: a
methodology for non-invasive characterization of aortic tissue, Medical engineering & physics 37(1)
(2015) 48-54.

[54] S.-M. Lin, W.-R. Wang, S.-Y. Lee, C.-W. Chen, Y.-C. Hsiao, M.-J. Teng, Wave modes of a pre-
stressed thick tube conveying blood on the viscoelastic foundation, Applied Mathematical Modelling
39(2) (2015) 466-482.

[55] P. Dutta, M.W. Urban, O.P. Le Maitre, J.F. Greenleaf, W. Aquino, Simultaneous identification of
elastic properties, thickness, and diameter of arteries excited with ultrasound radiation force, Physics in
Medicine and Biology 60(13) (2015) 5279-5296.

[56] V.C. Protopappas, I.C. Kourtis, L.C. Kourtis, K.N. Malizos, C.V. Massalas, D.I. Fotiadis, Three-
dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long
bones, Journal of the Acoustical Society of America 121(6) (2007) 3907-3921.

[57] D. Ta, W.Q. Wang, Y.Y. Wang, L.H. Le, Y.Q. Zhou, Measurement of the dispersion and attenuation
of cylindrical ultrasonic guided waves in long bone, Ultrasound in Medicine and Biology 35(4) (2009)
641-652.

[58] K.L. Xu, D.A. Ta, W.Q. Wang, Multiridge-Based Analysis for Separating Individual Modes From
Multimodal Guided Wave Signals in Long Bones, Ieee Transactions on Ultrasonics Ferroelectrics and
Frequency Control 57(11) (2010) 2480-2490.

[59] J.G. Chen, Z.Q. Su, On ultrasound waves guided by bones with coupled soft tissues: A mechanism
study and in vitro calibration, Ultrasonics 54(5) (2014) 1186-1196.

[60] A. Vaziri Astaneh, M.N. Guddati, WaveDisp software. <http://WaveDisp.com>).

[61] J.L. Tassoulas, E. Kausel, Elements for the numerical-analysis of wave motion in layered strata,
International Journal for Numerical Methods in Engineering 19(7) (1983) 1005-1032.

[62] A. Vaziriastaneh, On the forward and inverse computational wave propagation problems, PhD
Thesis, North Carolina State University, USA, 2016.

[63] M.N. Guddati, K.W. Lim, Continued fraction absorbing boundary conditions for convex polygonal
domains, International Journal for Numerical Methods in Engineering 66(6) (2006) 949-977.

[64] M.N. Guddati, K.W. Lim, M.A. Zahid, Perfectly matched discrete layers for unbounded domain
modeling, in: F. Magoulés (Ed.), Computational methods for acoustics problems, Saxe-Coburg
Publications, UK, 2008, pp. 69-98.

[65] W.C. Chew, W.H. Weedon, A 3d perfectly matched medium from modified maxwells equations with
stretched coordinates, Microwave and Optical Technology Letters 7(13) (1994) 599-604.

[66] A. Vaziri Astaneh, M.N. Guddati, Improved Inversion Algorithms for Near Surface Characterization,
Geophysical Journal International 206(2) (2016) 1410-1423.

19


http://wavedisp.com/

[67] C. Bonithon-Kopp, P.-J. Touboul, C. Berr, C. Leroux, F. Mainard, D. Courbon, P. Ducimetiére,
Relation of intima-media thickness to atherosclerotic plaques in carotid arteries, Arteriosclerosis,
thrombosis, and vascular biology 16(2) (1996) 310-316.

[68] M. Zureik, P. Ducimetiere, P.-J. Touboul, D. Courbon, C. Bonithon-Kopp, C. Berr, C. Magne,
Common carotid intima-media thickness predicts occurrence of carotid atherosclerotic plaques,
Arteriosclerosis, thrombosis, and vascular biology 20(6) (2000) 1622-1629.

[69] C. Glorieux, K. Van de Rostyne, K. Nelson, W.M. Gao, W. Lauriks, J. Thoen, On the character of
acoustic waves at the interface between hard and soft solids and liquids, Journal of the Acoustical Society
of America 110(3) (2001) 1299-1306.

[70] P.C. Vinh, Scholte-wave velocity formulae, Wave Motion 50(2) (2013) 180-190.

[71] G.A. Holzapfel, R.W. Ogden, Constitutive modelling of arteries, Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 466(2118) (2010) 1551-1597.

[72] P. Kalita, R. Schaefer, Mechanical models of artery walls, Archives of Computational Methods in
Engineering 15(1) (2008) 1-36.

[73]J. Humphrey, G.A. Holzapfel, Mechanics, mechanobiology, and modeling of human abdominal aorta
and aneurysms, Journal of biomechanics 45(5) (2012) 805-814.

[74] J. Humphrey, J. Wilson, Arteries: Mechanics, Mechanobiology, and the Need for a New Class of
Models, Multiscale Modeling in Biomechanics and Mechanobiology, Springer2015, pp. 207-222.

[75] T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed
collagen fibre orientations, Journal of the royal society interface 3(6) (2006) 15-35.

[76] A.H. Henni, C. Schmitt, M.-E. Tremblay, M. Hamdine, M.-C. Heuzey, P. Carreau, G. Cloutier,
Hyper-frequency viscoelastic spectroscopy of biomaterials, Journal of the mechanical behavior of
biomedical materials 4(7) (2011) 1115-1122.

[77] H. Abé, K. Hayashi, M. Sato, Data book on mechanical properties of living cells, tissues, and organs,
Springer, Japan, 1996.

[78] D. Valdez-Jasso, D. Bia, Y. Zdcalo, R.L. Armentano, M.A. Haider, M.S. Olufsen, Linear and
nonlinear viscoelastic modeling of aorta and carotid pressure—area dynamics under in vivo and ex vivo
conditions, Annals of biomedical engineering 39(5) (2011) 1438-1456.

[79] Y.-C. Fung, Biomechanics: mechanical properties of living tissues, Springer Science & Business
Media, New York, NY, 1993.

[80] X.-F. Wanga, J.-M. Fullana, P.-Y. Lagrée, R. Armentano, Effect of viscoelasticity of arterial wall on
pulse wave: a comparative study on ovine, Computer methods in biomechanics and biomedical
engineering 16(supl) (2013) 25-26.

[81] R.L. Armentano, D.B. Santana, E.I.C. Fischer, S. Graf, H.P. Campos, Y.Z. German, M. del Carmen
Saldias, 1. Alvarez, An in vitro study of cryopreserved and fresh human arteries: a comparison with
ePTFE prostheses and human arteries studied non-invasively in vivo, Cryobiology 52(1) (2006) 17-26.
[82] J. Pefia, M. Martinez, E. Pefia, A formulation to model the nonlinear viscoelastic properties of the
vascular tissue, Acta Mechanica 217(1-2) (2011) 63-74.

[83] A. Lundkvist, E. Lilleodden, W. Siekhaus, J. Kinney, L. Pruitt, M. Balooch, Viscoelastic properties
of healthy human artery measured in saline solution by AFM-based indentation technique, MRS
Proceedings, Cambridge Univ Press, 1996, p. 353.

[84] M. Mazzotti, 1. Bartoli, A. Marzani, Ultrasonic leaky guided waves in fluid-coupled generic
waveguides: hybrid finite-boundary element dispersion analysis and experimental validation, Journal of
Applied Physics 115(14) (2014) 1-10.

Appendix A: Semi-discretization in 2D Cartesian coordinates (SAFE method)
Expanding the governing equation in (1a) by using (3) gives,
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~3(D_0u/&x)/ ox— (D, 0u/ dy)/ dx — (D _du/ éz)/ ox
—~3(D’5u / ox) / dy — (D, 0u / &y) / dy — (D, .0u / dz) / dy (A1)
~3(D.0u/ &x)/ 8z —d(D", du/ dy) / 0z — (D _.0u / 8z) | 0z — pyco’l, ;u =0

where D, =(LS‘p)TD6X6 L‘Z for p,ge{x,y,z} and L’ matrices are defined in (3). We use Fourier

transform in the z direction and discretize the solid and fluid domains in the x—) plane, i.e.

ik,z ik,z

u(x, y,z,w)=Ng(x,y)u(k, ,w)e and p(x,y,z,0) =N, (x,y)pk.,w)e where k&, is the axial

wavenumber. Shape function matrix is defined as the Kronecker product N, =N, ®I,, where

3x3
N, =[N,...,Nis] is the shape function vector for a 2D mg-noded element in the solid domain and

N, =[N}.,..,N7r] is the shape function vector for a 2D m, -noded element in the fluid region. The
resulting quadratic eigenvalue problem can be written as,

KK +ik K + K — o*M° -C,, } {&S } _ {0} A2)
~’Cl, EK? + K™ —o™" | |, 0
where K*2 =K%, K" =K} —(K})"+K! -(K})", K* =K} +K} +K} +(K})", K> =K”, and

K™ =K with,

S T s T S r
K = IQBSXD B,dQ, K = J.QBSXnyBSde, K’ = IQBSXDHNSdQ,

XX

Sy yz

s _ T T s T s r
K; =[ B{D,B{dQ, K} =[B{D NdQ, K=| ND.NQ, s
M*=[ NipNdQ, K[ =| Bjp/B.dQ, KI=[ Njp'N,dQ,

M’ = [ Np/'¢/NdQ, Cg =] Nin N,

where By, =By, ®L,,, By, =B ®L,;, By, =[dN. /dx,...,dN}" / dx], By, =[dNg / dy,...,dNg* / dy] and
B, =[dN,. /dx,...,dN}" | dx; dN,. / dy,...dN;" / dy]. Also n, ={n n, 0} is the unit normal for the

fluid at each interface. By rearranging the degrees of freedom ( x then y and z), the quadratic eigenvalue

problem in (A2) can be converted to the generalized eigenvalue problem in (5) with,

KSZ 0 _KSI KSO KSO 0
Ki=| 0 f(jﬁj —f(j‘; , K§ =K% K 0 | (A4)
0 0 KS? KS] K5 RS0

and &g = {ik ¢, ikj)gy d-}". Note that the size of the generalized eigenvalue problem in (5) is the

same as the original quadratic eigenvalue problem in (A2).

Appendix B: Semi-discretization in radial direction (for Fourier-Spectral SAFE method)
Expanding the governing equation in (1a) by using (8) gives,
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—r'o(D,, rou/or)/ or —r'o(D,,0u/ 06)/ or —r'o(D _rou/éz)/ or —r~'o(D, u) / or
—r'o(D!,0u/or)/ 00 —r"'0(D,,r'ou/06)/ 00 —r"'o(D,.0u/dz)/ 00 —r"'d(D, r "a)/ 06
—~0(D_ou/or)/0z—0o(D) r'ou/00)/0z—0(D_ou/oz)/ 0z—o(D_,r ')/ oz

+r (D! You/or+r ' (D} r " Hou/ 06 +r"' (D!,

Go zo

(B1)
You/oz+r"' (D, r - p,’l, u=0

where D g = (L‘; )TDM LSq for p,qe{r,0,z,0} and L’ matrices are defined in (8). We use Fourier series

in @, Fourier transform in the z direction, and discretize the solid and fluid domains along the r
direction, i.e. u(r,0,z,0) =N (r)u(nk.,w)e"" and p(r,0,z,0)=N,(r)p(n.k.,o)e

inO+ik_z

where £,
is the axial wavenumber and » is the circumferential Fourier number. The shape function matrix is
defined as the Kronecker product N =N, ®1,, where N =[Ny,..., Nis] is the shape function vector
for a ID mg-noded element in the solid domain (1, <r<r,) and N, =[N,,...,N*] is the shape function
vector for a 1D m,-noded element in the fluid region (r, <r). The resulting quadratic eigenvalue
problem is similar to (A2) where
K" =K} + K7, +(K,)" +K;, +in(K;, —(K;,)" +(K;,)" —K3,) +n’Kg,, K7 =KL, K7=KI,
K™ =K’ +n’K}, and K" =K® —(K®)" —-K°® +(K®)" —in(K, +(K5.)") with,

i

KS = j BD,Byrdr, K, =[ "By 'D,Nydr, K. =I:B§D,,ZNSrdr,

K}, = ["Byr'D, Nyrdr, K3, =["Nir?D,Nordr, K}, =[" Nir™'D, Nyrdr,

1

1 1

K}, = ["N{ D, Ngrdr, K& =["NiD_Ngrdr, K =["Ni'D,Nrdr,
, , (B2)
K}, = ["N{rD, Nyrdr, M°=["NipNyrdr, K| =["B]p/B,rdr,

K, = I: NIp'r°Nordr, K. = Jr} N.Lp'Nyrdr, M’ = J-: N/ p;'ci’N rdr,

n

C, = J:z Ngn N, rdr,

where, B,=B,®1L,,, Bg=[dN,/dr,..,dN /dr] and B, =[dN, /dr,..,dN" /dr]. Also
n, = {1 0 0} is the unit normal for the solid-fluid interface using the appropriate sign at each interface.

By rearranging the degrees of freedom (» then 6 and z), the quadratic eigenvalue problem in (A2) can
be converted to the generalized eigenvalue problem in (5) with,

K> 0 -KI K'Y K, 0
Ki=| 0 K, -K; | Ki=|K; Kj 0| (B3)
0 0 K K K, K

and ¢, ={ik.05, ik.d, &%} . Note that the fluid contribution matrices in (B2) are only defined for the

exterior fluid half-space (7, <r). The associated matrices and interaction terms have to be considered for

the fluid inside the tube (r <7), if exists.
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