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Abstract

Background: Prostate cancer is one of the most prevalent cancers in males in the United States and amongst the
leading causes of cancer related deaths. A particularly virulent form of this disease is castration-resistant prostate
cancer (CRPC), where patients no longer respond to medical or surgical castration. CRPC is a complex, multifaceted
and heterogeneous malady with limited standard treatment options.

Results: The growth and progression of prostate cancer is a complicated process that involves multiple pathways.
The signaling network comprising the integral constituents of the signature pathways involved in the development
and progression of prostate cancer is modeled as a combinatorial circuit. The failures in the gene regulatory network
that lead to cancer are abstracted as faults in the equivalent circuit and the Boolean circuit model is then used to
design therapies tailored to counteract the effect of each molecular abnormality and to propose potentially
efficacious combinatorial therapy regimens. Furthermore, stochastic computational modeling is utilized to identify
potentially vulnerable components in the network that may serve as viable candidates for drug development.

Conclusion: The results presented herein can aid in the design of scientifically well-grounded targeted therapies that
can be employed for the treatment of prostate cancer patients.

Keywords: Prostate cancer, Gene regulatory networks, Boolean modeling, Combination therapy, Stochastic logic,

Vulnerability assessment

Background

Prostate cancer is the most common noncutaneous male
malignancy and one of the leading causes of cancer mor-
tality in the western world [1]. The growth and pro-
gression of prostate cancer is stimulated by androgens
[2]. Androgens are male sex steroid hormones that are
responsible for the development of male characteristics.
Testosterone is the most important androgen in men. The
effects of androgens are mediated through the androgen
receptor (AR) [3]. The androgen receptor is a nuclear
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receptor, which is activated in response to the binding
of androgens. Upon activation, it mediates transcription
of target genes that modulate growth and differentia-
tion of prostate epithelial cells. In malignant prostate
cells, androgen signaling is deregulated and the homeo-
static balance between the rate of cell proliferation and
programmed cell death is lost. As prostate cancer relies
on androgens for growth, the main line of treatment
focuses on abrogating the action of androgens. Andro-
gen deprivation therapy (ADT) in the form of surgical
or medical castration is the cornerstone of treatment for
prostate cancer [4]. Initially, androgen ablation induces
significant regression of the tumor. However, the response
to ADT is temporary and prostate cancer invariably
stops responding to this treatment regimen, leading to a
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clinical condition that is known as hormone-refractory
prostate cancer, androgen-independent prostate cancer or
castration-resistant prostate cancer (CRPC). CRPC is a
more aggressive and typically lethal phenotype where the
tumor continues to grow in spite of the very low levels
(<50 ng/ml) of circulating serum testosterone. Standard
treatment options are limited and palliative docetaxel-
based chemotherapy is generally used for patients who
have become refractory to hormone treatment. How-
ever, median survival time for patients following first-line
chemotherapeutic treatment is just eighteen to twenty-
four months [5]. There is therefore a clear rationale for
advances in alternative therapeutics in order to evolve and
expand the landscape of treatment options for malignant
forms of prostate cancer that recur after abatement.

Over recent years, there has been a significant effort
towards furthering our understanding of the molecular
mechanisms underpinning tumor development, growth
and progression. It is now appreciated that in spite of
castrate levels of androgens, the cancer cells are able to
maintain persistent androgen receptor signaling through
a variety of contributory mechanisms including AR gene
amplification that results in overexpression of AR, gain-
of-function mutations in AR which enable promiscuous
activation of the receptor through other steroids or even
in the absence of ligand binding, changes in AR co-
activators and the expression of AR splice variants [6].
This compensatory response allows cancer cells to sur-
vive in a low testosterone environment and the reactivated
AR signaling axis continues to play a role after neo-
plastic transformation. Additionally, certain androgen-
independent cellular signaling pathways that promote
proliferation and inhibit apoptosis, have been critically
implicated as drivers of continued progression of prostate
cancer. Hence, accumulating evidence indicates that the
growth and progression of prostate cancer is a compli-
cated process that involves interaction between multiple
pathways. Advances in our knowledge of the biology of
prostate cancer has led to the development of a number
of novel therapies designed to target signaling pathways
involved in disease progression. With the exception of cer-
tain androgen synthesis and AR signaling antagonists that
have received regulatory approval, these advanced agents
are under various stages of clinical trials [7].

Castration-resistant prostate cancer is a complex mal-
ady. Given the inherent complexity of the CRPC signal-
ing cascade, there is no one dominant molecular driver
across all tumors and hence no single drug can act as
a “magic bullet” by being uniformly effective for treat-
ing the malignancy [8, 9]. At best, limited benefit will be
derived from targeting a single molecule. Rational com-
binations of signal-modulating therapeutic agents have
higher likelihood of yielding better outcomes. While there
are several drugs being tested on cell lines, most of these
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studies focus on a single pharmaceutical agent and very
few of those experiments involve trying out drug com-
binations. Furthermore, prostate cancer is a markedly
heterogeneous disease, with different tumors varying in
their composition and makeup. In other words, different
tumors will harbor different malfunctions in the signaling
pathways. Thus, tailored targeted therapies based on indi-
vidual tumor characteristics are required to maximize the
potential benefits from treatment.

Mathematical and computational modeling plays a piv-
otal role in systems biology in elucidating biological
insights from large-scale biomolecular signaling networks
that are not amenable to straightforward intuitive inter-
pretation. A diverse array of formalisms have been pro-
posed in this domain as suitable representations for
complex multicomponent networks such as cellular
signaling pathways [10]. Amongst these frameworks,
Boolean network models [11, 12] have emerged as
an extremely useful parameter-free approach to cap-
ture the qualitative behavior of extensive genetic net-
works wherein knowledge of kinetic parameters is scarce.
Boolean logic models have been successfully applied to
study biological signaling networks and cellular processes
[13, 14], for instance the cell cycle [15], apoptosis [16],
the T cell survival network [17], hypoxia stress response
pathways [18] and the gene regulatory network regulat-
ing cortical area development [19]. In this paper, we use
Boolean logic modeling of the key signaling pathways
implicated in the development and progression of prostate
cancer to simultaneously test various combinations of
agents for their efficacy in attenuating cancer growth and
design targeted therapies for the management of the dis-
ease. In addition, we attempt to delineate components
in the signaling network that can be pharmacologically
manipulated to therapeutic advantage.

Methods

Prostate cancer signal transduction network

Cellular processes such as growth and division are regu-
lated by an interconnected network of molecules referred
to as signaling pathways. Key cellular signal transduc-
tion pathways known to play a major role in cell survival,
growth, differentiation and the development of castration-
resistance in prostate cancer are the Androgen Recep-
tor (AR), PI3K/AKT/mTOR and Mitogen-Activated
Protein Kinase (MAPK) pathways. The aberrant behavior
of prostate cancer cells is characterized by dysfunction in
these selective oncogenic signaling pathways promoting
malignant characteristics. These pathways play a role in a
diverse range of essential physiological cellular processes
such as differentiation, survival, proliferation, protein
synthesis and metabolism. Malfunctions in these path-
ways are common in prostate cancer malignancies. For
example, approximately 70% of advanced prostate cancers
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have genomic alterations in the PI3K/AKT/mTOR path-
way [20]. These three pathways are the most frequently
over-activated pathways increasing survival of cancer cells
and promoting cancer progression [21]. A schematic
representation of these pathways is shown in Fig. 1
[22-24]. The pharmacologic agents depicted in red boxes
in the figure are highly specific pathway inhibitors. These
reagents modulate growth-factor receptors and the down-
stream pathways abnormally activated in CRPC by target-
ing with great specificity certain signaling nodes in the
network.

Boolean modeling of prostate cancer signaling

In the context of methodologies that are applied to model
cellular signal transduction networks, Boolean networks
are probably the simplest where the state of each node
in the network is either active (on) or inactive (off). In a
Boolean network, the nodes are the genes and the edges
represent the interaction amongst the genes. Since the
molecules in a gene-regulatory-network (GRN) exhibit
switch-like behavior, genes may be regarded as binary
devices where a gene can be considered to be active if it
is being transcribed and inactive if it is not. Moreover,
the relationships amongst the genes may be represented
by means of logical functions. Thus, a GRN is amenable
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to such a representation. The Boolean formalism is anal-
ogous to a digital circuit where logic gates can be used to
represent the regulatory relationships amongst the nodes
and the activation level of the nodes is indicated by binary
logic. The biological interactions amongst the various
nodes (genes) represented in the gene regulatory net-
work of Fig. 1 can therefore be translated to an equivalent
Boolean circuit [25]. Let’s say either gene X or Y can acti-
vate a third gene Z, then we can model this component
of the signaling network with an OR gate with two inputs,
namely X and Y and with output Z. Thus, the signaling
network of Fig. 1 can be mapped to the combinational cir-
cuit shown in Fig. 2. This digital logic circuit represents
our multi-input multi-output (MIMO) systems model of
the prostate cancer signaling transduction network.
Cancer is a disease of abnormal cell signaling caused by
a breakdown in the normal signaling pathways leading to
the loss of cell cycle control and uncontrolled cell prolifer-
ation. These abnormalities in the signaling network can be
represented as stuck-at faults [26]. A stuck-at fault is said
to occur when a line in the network is permanently set to
a fixed value of one (stuck-at-one fault) or zero (stuck-at-
zero fault) with the result that the state of the line is stuck
at the faulty value and no longer depends on the state
of the signaling network upstream that drives that line
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Fig. 1 Prostate cancer signal transduction network. A schematic diagram of key signaling pathways deregulated in prostate cancer. Black and red
lines represent activating and inhibiting interactions respectively whereas the red boxes depict prostate cancer drugs at their corresponding points
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Fig. 2 Boolean model. Combinational circuit model of prostate cancer signaling pathways. Each node is assigned a numeric label in parentheses.
These labels also serve to enumerate the fault locations with stuck-at-one and stuck-at-zero faults in black and red numerals respectively. The

i.e. the faulty line has a constant (1/0) value independent
of other signal values in the circuit. A stuck-at-fault can
occur either at the input or output of a gate. An example
of a stuck-at-fault is given in Fig. 3. Suppose the input vec-
tor is <abcd>= 1100. In this case, the output is 0. However,
if there is a stuck-at-one fault at the output of the NAND
gate with the same input vector as before, the output of the
faulty circuit is one instead of zero. This notion of stuck-
at-faults has immediate biological relevance: on account
of mutations or other structural abnormalities, a gene
might become dysfunctional and hence stuck at a partic-
ular state irrespective of the signals that it is receiving
from surrounding genes [27]. These biological defects can

be abstracted as stuck-at faults. For instance, as discussed
earlier, a diverse array of mechanisms engender persistent
AR signaling in CRPC even with castrate serum levels of
androgen. This constitutive (permanent) activation of the
androgen receptor where the receptor remains active i.e.
continues to signal downstream even in the absence of
androgens can be represented as a stuck-at-1 fault. By the
same token, the inactivation in cancer of a tumor suppres-
sor, which acts as a molecular brake on cell growth in a
normal cell, can be represented as a stuck-at-0 fault. From
our Boolean circuit model, we can explicitly enumerate
the different locations where a fault can occur. These fault
locations are numbered in Fig. 2 with the stuck-at-0 and

0/1

Fig. 3 Circuit with stuck-at fault. An example of a stuck-at fault. In the absence of the stuck-at fault, the output is zero. If there is a stuck-at-one fault
at the location marked with a cross, the output of the faulty circuit becomes one
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stuck-at-1 faults in red and black numerals respectively.
There is a total number of 24 possible fault locations.

The objective is to counteract the effect of these faults
by targeted drug intervention, so we incorporate the drugs
in our model. The drug intervention points are illustrated
in Fig. 2 which are the locations of the molecules that
these prostate cancer drugs are known to target. Since
the drugs inhibit the activity of their target i.e. the main
mechanism of action of the anti-cancer drugs is to cut off
downstream signaling, their action is incorporated in our
model as an inverted input to an AND gate with the result
that whenever the drug is applied, the gene that it targets is
turned off.

Simulation for fault mitigation with drug intervention

We can now use our Boolean model to test different com-
bination therapies in terms of their efficacy in mitigating
the effects of the faults. For each fault, we would like to
intervene with the best possible drug combination i.e. we
want to determine which set of drugs would be most effec-
tive in attempting to nullify the effect of that fault, thereby
providing us with a targeted therapy based on the tumor
signature. Define, the input vector as follows:

INPUT = [EGF, HBEGF, IGF,NRGL, PTEN, NKX3. 1, Androgens]

The first four components of this vector are growth fac-
tors, which are external signals that stimulate a cell to
grow and replicate. The next two input components,
namely PTEN and NKX3.1 are tumor suppressors which
act as molecular brakes on cell division. The last input
vector component consists of the external hormones that
stimulate the AR pathway in a normal prostate cell. The
input vector is set to be [0000110]. This corresponds to all
the external signals that stimulate cell growth being absent
and the molecular brakes being active i.e. this input vector
corresponds to a non-proliferative input which produces a
non-proliferative output in the fault-free case. The output
vector is defined to be:

OUTPUT = [SP1, SRF-ELK1, PSA, TMPRSS2, BCL2, CDK2-CyclinE]

The output vector consists of key markers of cell growth
and proliferation in prostate cancer. In the fault-free sce-
nario, a non-proliferative input to the regulatory network
should produce a non-proliferative output characterized
by the all-zero vector. However, faults in the network will
produce a non-zero (proliferative) output even when the
input is non-proliferative. The objective is to drive the
faulty network’s output as close as possible to that of the
fault-free circuit i.e. towards the all-zero vector through
targeted drug intervention. Define, the drug vector as:

DRUG VECTOR = [Lapatinib, Cixutumumab, AZD6244, BKM120, AZD5363,

Temsirolimus, Enzalutamide |
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Each component of the drug vector is one if the corre-
sponding drug is applied and is zero otherwise i.e. the
it bit of the drug vector is one if the drug is selected
and zero if it is not. Thus, for example, the drug vec-
tor [0010010] represents the combination of AZD6244
and Temsirolimus. Since, the total number of drugs is
seven, the number of possible drug combinations is 128.
The objective is to determine the best possible therapy
for each fault. Each fault represents a different molecular
abnormality and hence a tumor with a different profile.

For each of the faults, the problem is to find the drug
selection that can rectify the fault i.e. change the faulty
output to the correct output. If that is not possible, the
best drug vector will drive the output as close as pos-
sible to the fault-free output. A simple metric that can
be used as a distance measure to determine how far the
output vector is from the fault-free vector is Hamming
distance. Faults that produce an output vector with a
greater Hamming distance from the correct output have
more of the proliferative genes active and presumably a
greater proliferative effect. Since the correct output is the
all-zero vector, the Hamming distance of the output vector
from the correct output is simply the Hamming weight of
the output vector (for binary vectors Hamming weight is
equivalent to the Lj-norm). For each fault, we determine
the output under every possible drug vector. The best
therapy for that fault is the drug vector that produces the
output with the smallest Hamming weight. In addition,
since the drugs have deleterious side-effects, we would
like to choose a drug combination with the fewest number
of drugs. Thus, the best targeted therapy for each of the
cancer-inducing faults is the one that under the presence
of the fault, produces the best output with the smallest
Hamming weight with the minimal number of drugs.

To determine the best combination therapy across all
faults, for each drug combination we determine the sum
of the Hamming weights of the output vector across all
possible combinations of faults and choose the drug com-
bination that yields the smallest total. In order to keep the
computation tractable, we restrict the number of possible
faults in any fault combination to be no more than three
i.e. up to three genes can be faulty simultaneously. We
constrain the cardinality of the drug vector to be less than
or equal to three, in essence limiting the number of drugs
in the combination to three since on account of the harm-
ful side-effects of the drugs, administering four or more
cancer drugs simultaneously might not be prudent.

Let us formalize the qualitative description above of the
selection of best therapy for each fault and that of the
overall optimal drug vector. For the Boolean network (BN)
of Fig. 2, let N, M and P be the total number of primary
inputs, primary outputs and fault locations respectively,
then N=7, M=6 and P=24. Let x € X andz € Z be
the input and output vectors respectively where X and Z
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represent the space of all binary vectors of dimensions N
and M respectively. Let x* =[0,0,0,0, 1, 1, 0] be the input
vector corresponding to the non-proliferative input.

Let D represent the total number of drug combinations
(vectors) with no more than three drugs in any combina-

3
tion, then D = kzo (Z) Denote each drug vector in the
drug space as dijwithi = 0,...,D — 1 (dg is the all-zero
drug vector meaning no drug is applied). Let D be this
space of drug vectors.
Let C be the total number of fault combinations with

no more than three faults in any combination, then C =
3
> (i) Assign each fault combination in the fault space a

=0
label fjwithj = 0,...,C — 1 (f represents the fault-free
case). Let F be this set of faults.
Let ¥ denote the mapping from a given input vector,
drug combination and fault combination to an output vec-

torrxe X,deD,feF 14 z € Z i.e. ¥ represents the
output of the BN for a given input x when a drug combi-
nation d is applied under fault scenario f. Let 1; be the it
component of this M-dimensional vector ¢.

The best drug vector dj, i € {0,1,...,D — 1} for each
single fault f;, j € {1,2,...,P} is the vector of smallest
Hamming weight that minimizes || ¥ (x*, d;, ﬁ) H I

The optimal drug combination across all faults is:

C-1

& =argmin Y ¥ (', di.f) |, (1)

i =1

df is determined by exhaustive enumeration by explic-
itly searching for the drug combination that for a non-
proliferative input, minimizes the sum of Hamming
weights (L -norms) of the output vector across all possible
combinations of faults.

Node vulnerability assessment

In electronic circuits, reliability refers to the probability of
a circuit functioning as intended i.e. producing the cor-
rect output. Reliability assessment is used to determine
the vulnerability of a circuit to faults. A number of differ-
ent techniques have been proposed for reliability analysis
in digital circuits [28]. Recently, in [29] a scalable, effi-
cient and accurate simulation-based framework based on
stochastic computations was introduced for logic circuit
reliability evaluation. In biological systems, dysfunctions
in nodes in the signaling network cause deviation from
normative behavior. Reliability assessment methodologies
can be leveraged on Boolean network models of pathways
to determine the vulnerability of the network to the dys-
function of each node [30, 31]. In this section we conduct a
stochastic logic based vulnerability analysis of the prostate
cancer signal transduction network in order to discover
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the most vulnerable nodes thereby allowing us to priori-
tize such segments in the network whose perturbation has
the greatest potential to yield the most clinical benefit.

In stochastic logic, signal probabilities are encoded in
random binary bit streams (the signal probability of a node
corresponds to the likelihood of that node having logic
value one). For example, the binary sequence 0110010100
of length ten encodes the probability 0.4 since the propor-
tion of ones in this sequence is 1%. In practice, the length
of the stochastic sequences typically used is much larger.
Since the biological literature is devoid of precise lig-
and binding probabilities, each primary input is assumed
equally likely to be 0 or 1 i.e. all primary input signal
probabilities are taken to be 0.5.

Stochastic logic often makes use of Bernoulli sequences
for the random binary streams where each bit in the
stream is generated independently from a Bernoulli ran-
dom variable with a probability of one equal to p. The use
of probabilistic sequences inevitably introduces stochas-
tic fluctuations which implies that the result produced
is non-deterministic. These fluctuations can be signifi-
cantly reduced by representing the initial input proba-
bilities by non-Bernoulli sequences [32] defined as ran-
dom permutations of sequences containing a fixed num-
ber of ones and zeros. For a given probability p and
sequence length L, a non-Bernoulli sequence contains a
fixed number pL of ones, with the positions of the ones
determined by a random permutation. Thus, for exam-
ple, to represent the probability 0.5 by a non-Bernoulli
stream of length 10, we could randomly permute the
sequence 1111100000 which has five ones (instead of
generating each bit from a Bernoulli random variable
with p = 0.5 as would have been done to represent
the same probability by a Bernoulli sequence). We use
non-Bernoulli sequences of random permutations of fixed
number of ones and zeros in order to encode the initial
input probabilities.

A logic circuit operating on stochastic bit streams
(see Fig. 4 for an example), accepts as input random
sequences representing the probability of each input being
one and produces ones and zeros like any digital circuit
[33] i.e. a stochastic logic circuit uses Boolean gates to
operate on sequences of random bits. Each bit-stream
represents a stochastic number interpreted as the proba-
bility of seeing a one in an arbitrary position. Thus, the
computations performed by such a circuit are probabilis-
tic in nature. The output bit stream produced can be
decoded as the probability of the output being one by
counting the number of ones in the stream and dividing by
its length.

The vulnerability of a node is defined as the proba-
bility that the system produces incorrect output if that
particular node is dysfunctional (faulty) i.e. it is the proba-
bility that the output of the network is different when that
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Fig. 4 A stochastic logic circuit. An example of a stochastic logic circuit
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node is dysfunctional and is the complement of reliability.
The procedure to determine the node vulnerabilities is
illustrated in Fig. 5 is as follows. We generate non-
Bernoulli sequences of length L=1,000,000 in which
exactly half of the bits are set to one at each of the seven
initial inputs. The input stochastic sequences are propa-
gated through both the original error-free circuit and the
circuit in which the node of interest is dysfunctional. As
discussed in the previous section, the dysfunction of a
node is represented by a corresponding stuck-at fault of
the requisite type at the particular location. This produces
two sets of stochastic bit streams, one at each of the pri-
mary outputs of the fault-free circuit and the other at the
primary outputs of the unreliable circuit. The proportion
of ones in the output bit stream encodes the output signal
probabilities i.e. the probability of the output being one.
Since the reliability of the circuit under the fault is the
probability that the circuit output is same as that of the
fault-free circuit, the sequence encoding the output reli-
ability can be obtained from the output sequence of the
faulty circuit by comparing it to the output sequence of the
fault-free circuit and setting each bit to one whenever the
corresponding bits in the sequences are the same and zero

if they are different. The proportion of ones in this result-
ing sequence will then correspond to the reliability of
that output. Thus, we can obtain the stochastic sequence
representing the reliability of each output by taking the
XOR of each output bit stream of the faulty circuit with
the complement of the corresponding output bitstreams
of the fault-free circuit. For a circuit with multiple pri-
mary outputs as is the case here, the stochastic sequence
encoding the joint output reliability can be obtained by
taking the stochastic AND of the outputs of the XOR
gates as the stochastic AND operation on the output of
XOR gates produces a one only if all the corresponding
bits at each XOR gate are one i.e. if all the correspond-
ing bits in the respective outputs of the fault-free and
faulty circuit are same. We then take the complement of
the bit stream at the output of this AND gate to obtain
the stream that encodes vulnerability. This bit stream can
then be decoded to determine the node vulnerability with
the proportion of ones in this stream equivalent to the
vulnerability of the node.

The procedure for computing the vulnerability of a node
described above and depicted in Fig. 5 is summarized as
follows:

X1 yi*
Faulty
Circuit
X7 \
X1
——
X7
>
X1 Y1
Fault-free
Circuit
X7 Ye

to y¢ whereas those for the fault-free circuit are labeled as y; to ys

Fig. 5 Computation of node vulnerability. Depicts the architecture used to compute the vulnerability of a node. x; to x7 are the input stochastic bit
streams for each of the seven primary inputs in the Boolean network model. The output bit streams for each of the six output components when
these input sequences are propagated through the circuit with a dysfunctional node (whose vulnerability we want to compute) are denoted by y7

b* Vulnerability
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1. Generate non-Bernoulli streams encoding input
probabilities at each of the primary inputs.

2. Propagate the input binary streams through the
fault-free circuit and obtain a random bit sequence
for each output.

3. Propagate the same input binary streams through the
circuit with a stuck-at fault at the location of the node
whose vulnerability we want to determine and again
obtain a random bit sequence for each output.

4. XOR each primary output sequence from the faulty
circuit obtained in step 3 with the complement of the
corresponding primary output sequence from the
fault-free circuit.

5. AND all the sequences obtained from each XOR gate.
Take the complement of the stream so obtained. The
vulnerability of the node is the fraction of ones in the
resulting bit stream.

Thus, in a nutshell, the node vulnerabilities are obtained
by propagating the initial input stochastic bit streams
encoding the input probabilities through both the faulty
and fault-free circuit, comparing the respective outputs
obtained from each and decoding probabilities from the
resulting streams.

Let xjy,X2,...,XN represent input non-Bernoulli
sequences of length L with each sequence represented
as a vector of length L whose i component is equal
to the it" bit in the sequence. Define the L x N matrix
X = (xlT sz .. xIT[). Thus, each row of this matrix con-
tains the corresponding bits of each of the primary input
streams. The vulnerability v; of node j € {1,2,...,P} is
given by:

L LM
, (2
® ¥ (x = [Xet» - - - X ,do,fo)>

where’ is the bit-complement operator and & is the binary
XOR operator.

Results and discussion

Simulation results for drug intervention

We use the Boolean network model to determine an appo-
site therapy for each fault. As described in the methods
section, the best targeted therapy for each of the cancer-
inducing faults is the one that under the presence of the
fault, produces the output with the smallest Hamming
weight with the minimal number of drugs. The best ther-
apy for each of the faults is shown in table 1 with the drug
vector defined as before. Note that for certain faults, no
drug vector can improve the output. Such faults are said
to be untestable since no test (drug vector in this case) can
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Table 1 Best therapy for each fault

Fault location Drug vector
1 1000000
2 1000000
3 0100000
4 1000000
5 0011000
6 0011000
7 0000100
8 0001000
9 0001000
10 0000100
1 0000100
12 0000100
13 0000100
14 0000001
15 0000001
16 0010000
17 0010000
18 0000000
19 0000010
20 0000010
21 0000010
22 0000000
23 0000000
24 0000000

rectify the fault. This is because there are no drugs on the
fan-out of these genes. However, all these faults with the
exception of fault 18 are minimally proliferative as they
produce a faulty output with the least possible Hamming
weight of one.

Thus, there are many locations in the gene regulatory
network of prostate cancer where malfunctions can occur
resulting in a cancer that is different, requiring a specific
targeted therapy. The table facilitates arriving at such a
therapy as it maps each malfunction to an appropriate set
of drugs. The look-up table can be used to devise ther-
apies that have a higher likelihood of success since they
are tailored specifically to the molecular abnormalities in
critical pathways and thereby facilitates an individualized
approach to therapy design.

In order to find the best combination therapy across
all possible faults, as discussed in the methods section,
for each drug combination we determine the sum of the
Hamming weights of the output vector across all pos-
sible combinations of faults and choose the drug com-
bination that yields the smallest total. This gives us the
drug cocktail of AZD6244, AZD5363 and Enzalutamide
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as a combination therapy for advanced prostate cancer.
In a recent study, the drug combination of AZD5363 and
Enzalutamide has demonstrated an impressive response
in prostate cancer models [34]. Moreover, AZD6244 in
partnership with an AKT pathway inhibitor (analogous
to AZD5363), has been proposed as a strategy for the
treatment of CRPC [35]. Thus, we propose that the
aforementioned drug triad which represents a horizon-
tal blockade approach, wherein combination therapy is
used for the concerted pharmacologic inhibition of mul-
tiple compensatory pathways, as a therapeutic modality
that may attenuate prostate cancer survival and growth.

Node vulnerabilities

Using the framework delineated in the methods section,
we quantify the vulnerability of different nodes. The vul-
nerability values obtained are given in Table 2. Vulnera-
bility assessment can be used to identify candidates for
targeted drug development. Nodes whose vulnerabilities
are higher should be presumably better targets for drugs
since potentially therapeutic benefit is more likely for
nodes which are more vulnerable. We observe that the

Table 2 Node vulnerabilities

Node Vulnerability (%)
1 6.25
2 6.25
3 6.25
4 6.25
5 6.25
6 6.25
7 24.98
8 6.25
9 6.25
10 24.98
1 24.98
12 24.98
13 24.98
14 1247
15 1247
16 6.25
17 6.25
18 6.25
19 1.57
20 157
21 157
22 157
23 157
24 24.98
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AR-mediated signaling axis remains a valid target. Fur-
thermore, we see that dysfunction in the AKT nexus and
the loss of tumor-suppressors have higher vulnerability
values so drugs that attempt to alleviate these aberra-
tions should be efficacious in attenuating tumor growth.
The design of anti-cancer therapeutics directed at the loss
of tumor suppressors has been difficult [36]. Addition-
ally, AKT-selective drug development is challenging due
to its homology with other kinases [37]. These complica-
tions notwithstanding, accelerated development of novel
agents that target these aberrations is warranted. In con-
trast, the vulnerabilities for certain nodes such as those in
the mTOR axis are low indicating that they might not be
attractive targets for drug development. Indeed, marginal
clinical activity has been observed for mTOR inhibition
with agents such as everolimus and temsirolimus failing
to impact tumor proliferation in men with prostate cancer
[4, 38]. Finally, in terms of the key pathways implicated in
the disease we see that castration-resistant prostate can-
cer shows most vulnerability on aggregate to dysfunction
in the AKT pathway. In a study it was demonstrated that
the AKT pathway dominates AR signaling in CRPC [39].

Conclusion

Castration-resistant prostate cancer is a hormone refrac-
tory phenotype of significant morbidity and mortality in
the prostate cancer disease continuum where patients
no longer respond to androgen ablation therapy. The
biomolecular network representing the signaling path-
ways involved in the pathogenesis of this lethal malig-
nancy is translated to a digital circuit. The locations of
possible malfunctions in the digital circuit are identified
and computer simulation of the equivalent model is used
to predict effective therapies that mitigate the effect of
different faults. A prospectively attractive combinatorial
therapeutic strategy for the constellation of abnormalities
is to leverage an AR axis targeted agent in conjunction
with reciprocal inhibitors of other dysregulated pathways
that are fundamental in coordinately driving oncogene-
sis. Proof of principle of clinical use for the proposed
regimen remains to be demonstrated. A reliability (vulner-
ability) analysis methodology of digital circuits premised
on stochastic logic modeling is utilized to quantify the vul-
nerability of the network to the dysfunction in discrete
components in the signaling cascade thereby identifying
key variables as targets for intervention that conceivably
might be exploited by a new generation of novel thera-
peutics. These findings can contribute to the development
of new rational approaches for the possible treatment of
androgen-refractory prostate cancer. There is however a
paucity of companion predictive biomarkers that can be
used for the stratification of patients based on molecular
aberrations in order to prescribe the apposite treatment.
Furthermore, the histological and clinical heterogeneity
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of CRPC and the inherent redundancy along with the
presence of feedback loops in pathways whose molecu-
lar underpinnings in the context of the disease induction
and development are not yet fully understood, tender
any potential translation into objective clinical efficacy
of therapeutic implications derived from computations
fraught with challenges.
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