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Abstract

Background: Prostate cancer is one of the most prevalent cancers in males in the United States and amongst the

leading causes of cancer related deaths. A particularly virulent form of this disease is castration-resistant prostate

cancer (CRPC), where patients no longer respond to medical or surgical castration. CRPC is a complex, multifaceted

and heterogeneous malady with limited standard treatment options.

Results: The growth and progression of prostate cancer is a complicated process that involves multiple pathways.

The signaling network comprising the integral constituents of the signature pathways involved in the development

and progression of prostate cancer is modeled as a combinatorial circuit. The failures in the gene regulatory network

that lead to cancer are abstracted as faults in the equivalent circuit and the Boolean circuit model is then used to

design therapies tailored to counteract the effect of each molecular abnormality and to propose potentially

efficacious combinatorial therapy regimens. Furthermore, stochastic computational modeling is utilized to identify

potentially vulnerable components in the network that may serve as viable candidates for drug development.

Conclusion: The results presented herein can aid in the design of scientifically well-grounded targeted therapies that

can be employed for the treatment of prostate cancer patients.

Keywords: Prostate cancer, Gene regulatory networks, Boolean modeling, Combination therapy, Stochastic logic,

Vulnerability assessment

Background

Prostate cancer is the most common noncutaneous male

malignancy and one of the leading causes of cancer mor-

tality in the western world [1]. The growth and pro-

gression of prostate cancer is stimulated by androgens

[2]. Androgens are male sex steroid hormones that are

responsible for the development of male characteristics.

Testosterone is the most important androgen in men. The

effects of androgens are mediated through the androgen

receptor (AR) [3]. The androgen receptor is a nuclear

*Correspondence: datta@ece.tamu.edu
1Department of Electrical and Computer Engineering, Texas A&M University,

College Station, TX, USA
2Center for Bioinformatics and Genomics Systems Engineering, Texas A&M

University, College Station, TX, USA

receptor, which is activated in response to the binding

of androgens. Upon activation, it mediates transcription

of target genes that modulate growth and differentia-

tion of prostate epithelial cells. In malignant prostate

cells, androgen signaling is deregulated and the homeo-

static balance between the rate of cell proliferation and

programmed cell death is lost. As prostate cancer relies

on androgens for growth, the main line of treatment

focuses on abrogating the action of androgens. Andro-

gen deprivation therapy (ADT) in the form of surgical

or medical castration is the cornerstone of treatment for

prostate cancer [4]. Initially, androgen ablation induces

significant regression of the tumor. However, the response

to ADT is temporary and prostate cancer invariably

stops responding to this treatment regimen, leading to a
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clinical condition that is known as hormone-refractory

prostate cancer, androgen-independent prostate cancer or

castration-resistant prostate cancer (CRPC). CRPC is a

more aggressive and typically lethal phenotype where the

tumor continues to grow in spite of the very low levels

(<50 ng/ml) of circulating serum testosterone. Standard

treatment options are limited and palliative docetaxel-

based chemotherapy is generally used for patients who

have become refractory to hormone treatment. How-

ever, median survival time for patients following first-line

chemotherapeutic treatment is just eighteen to twenty-

four months [5]. There is therefore a clear rationale for

advances in alternative therapeutics in order to evolve and

expand the landscape of treatment options for malignant

forms of prostate cancer that recur after abatement.

Over recent years, there has been a significant effort

towards furthering our understanding of the molecular

mechanisms underpinning tumor development, growth

and progression. It is now appreciated that in spite of

castrate levels of androgens, the cancer cells are able to

maintain persistent androgen receptor signaling through

a variety of contributory mechanisms including AR gene

amplification that results in overexpression of AR, gain-

of-function mutations in AR which enable promiscuous

activation of the receptor through other steroids or even

in the absence of ligand binding, changes in AR co-

activators and the expression of AR splice variants [6].

This compensatory response allows cancer cells to sur-

vive in a low testosterone environment and the reactivated

AR signaling axis continues to play a role after neo-

plastic transformation. Additionally, certain androgen-

independent cellular signaling pathways that promote

proliferation and inhibit apoptosis, have been critically

implicated as drivers of continued progression of prostate

cancer. Hence, accumulating evidence indicates that the

growth and progression of prostate cancer is a compli-

cated process that involves interaction between multiple

pathways. Advances in our knowledge of the biology of

prostate cancer has led to the development of a number

of novel therapies designed to target signaling pathways

involved in disease progression.With the exception of cer-

tain androgen synthesis and AR signaling antagonists that

have received regulatory approval, these advanced agents

are under various stages of clinical trials [7].

Castration-resistant prostate cancer is a complex mal-

ady. Given the inherent complexity of the CRPC signal-

ing cascade, there is no one dominant molecular driver

across all tumors and hence no single drug can act as

a “magic bullet” by being uniformly effective for treat-

ing the malignancy [8, 9]. At best, limited benefit will be

derived from targeting a single molecule. Rational com-

binations of signal-modulating therapeutic agents have

higher likelihood of yielding better outcomes. While there

are several drugs being tested on cell lines, most of these

studies focus on a single pharmaceutical agent and very

few of those experiments involve trying out drug com-

binations. Furthermore, prostate cancer is a markedly

heterogeneous disease, with different tumors varying in

their composition and makeup. In other words, different

tumors will harbor different malfunctions in the signaling

pathways. Thus, tailored targeted therapies based on indi-

vidual tumor characteristics are required to maximize the

potential benefits from treatment.

Mathematical and computational modeling plays a piv-

otal role in systems biology in elucidating biological

insights from large-scale biomolecular signaling networks

that are not amenable to straightforward intuitive inter-

pretation. A diverse array of formalisms have been pro-

posed in this domain as suitable representations for

complex multicomponent networks such as cellular

signaling pathways [10]. Amongst these frameworks,

Boolean network models [11, 12] have emerged as

an extremely useful parameter-free approach to cap-

ture the qualitative behavior of extensive genetic net-

works wherein knowledge of kinetic parameters is scarce.

Boolean logic models have been successfully applied to

study biological signaling networks and cellular processes

[13, 14], for instance the cell cycle [15], apoptosis [16],

the T cell survival network [17], hypoxia stress response

pathways [18] and the gene regulatory network regulat-

ing cortical area development [19]. In this paper, we use

Boolean logic modeling of the key signaling pathways

implicated in the development and progression of prostate

cancer to simultaneously test various combinations of

agents for their efficacy in attenuating cancer growth and

design targeted therapies for the management of the dis-

ease. In addition, we attempt to delineate components

in the signaling network that can be pharmacologically

manipulated to therapeutic advantage.

Methods

Prostate cancer signal transduction network

Cellular processes such as growth and division are regu-

lated by an interconnected network of molecules referred

to as signaling pathways. Key cellular signal transduc-

tion pathways known to play a major role in cell survival,

growth, differentiation and the development of castration-

resistance in prostate cancer are the Androgen Recep-

tor (AR), PI3K/AKT/mTOR and Mitogen-Activated

Protein Kinase (MAPK) pathways. The aberrant behavior

of prostate cancer cells is characterized by dysfunction in

these selective oncogenic signaling pathways promoting

malignant characteristics. These pathways play a role in a

diverse range of essential physiological cellular processes

such as differentiation, survival, proliferation, protein

synthesis and metabolism. Malfunctions in these path-

ways are common in prostate cancer malignancies. For

example, approximately 70% of advanced prostate cancers
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have genomic alterations in the PI3K/AKT/mTOR path-

way [20]. These three pathways are the most frequently

over-activated pathways increasing survival of cancer cells

and promoting cancer progression [21]. A schematic

representation of these pathways is shown in Fig. 1

[22–24]. The pharmacologic agents depicted in red boxes

in the figure are highly specific pathway inhibitors. These

reagents modulate growth-factor receptors and the down-

stream pathways abnormally activated in CRPC by target-

ing with great specificity certain signaling nodes in the

network.

Boolean modeling of prostate cancer signaling

In the context of methodologies that are applied to model

cellular signal transduction networks, Boolean networks

are probably the simplest where the state of each node

in the network is either active (on) or inactive (off ). In a

Boolean network, the nodes are the genes and the edges

represent the interaction amongst the genes. Since the

molecules in a gene-regulatory-network (GRN) exhibit

switch-like behavior, genes may be regarded as binary

devices where a gene can be considered to be active if it

is being transcribed and inactive if it is not. Moreover,

the relationships amongst the genes may be represented

by means of logical functions. Thus, a GRN is amenable

to such a representation. The Boolean formalism is anal-

ogous to a digital circuit where logic gates can be used to

represent the regulatory relationships amongst the nodes

and the activation level of the nodes is indicated by binary

logic. The biological interactions amongst the various

nodes (genes) represented in the gene regulatory net-

work of Fig. 1 can therefore be translated to an equivalent

Boolean circuit [25]. Let’s say either gene X or Y can acti-

vate a third gene Z, then we can model this component

of the signaling network with an OR gate with two inputs,

namely X and Y and with output Z. Thus, the signaling

network of Fig. 1 can be mapped to the combinational cir-

cuit shown in Fig. 2. This digital logic circuit represents

our multi-input multi-output (MIMO) systems model of

the prostate cancer signaling transduction network.

Cancer is a disease of abnormal cell signaling caused by

a breakdown in the normal signaling pathways leading to

the loss of cell cycle control and uncontrolled cell prolifer-

ation. These abnormalities in the signaling network can be

represented as stuck-at faults [26]. A stuck-at fault is said

to occur when a line in the network is permanently set to

a fixed value of one (stuck-at-one fault) or zero (stuck-at-

zero fault) with the result that the state of the line is stuck

at the faulty value and no longer depends on the state

of the signaling network upstream that drives that line

Fig. 1 Prostate cancer signal transduction network. A schematic diagram of key signaling pathways deregulated in prostate cancer. Black and red

lines represent activating and inhibiting interactions respectively whereas the red boxes depict prostate cancer drugs at their corresponding points

of intervention in the network
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Fig. 2 Boolean model. Combinational circuit model of prostate cancer signaling pathways. Each node is assigned a numeric label in parentheses.

These labels also serve to enumerate the fault locations with stuck-at-one and stuck-at-zero faults in black and red numerals respectively. The

dotted arrows indicate the intervention points for the respective drugs

i.e. the faulty line has a constant (1/0) value independent

of other signal values in the circuit. A stuck-at-fault can

occur either at the input or output of a gate. An example

of a stuck-at-fault is given in Fig. 3. Suppose the input vec-

tor is <abcd>= 1100. In this case, the output is 0. However,

if there is a stuck-at-one fault at the output of the NAND

gate with the same input vector as before, the output of the

faulty circuit is one instead of zero. This notion of stuck-

at-faults has immediate biological relevance: on account

of mutations or other structural abnormalities, a gene

might become dysfunctional and hence stuck at a partic-

ular state irrespective of the signals that it is receiving

from surrounding genes [27]. These biological defects can

be abstracted as stuck-at faults. For instance, as discussed

earlier, a diverse array of mechanisms engender persistent

AR signaling in CRPC even with castrate serum levels of

androgen. This constitutive (permanent) activation of the

androgen receptor where the receptor remains active i.e.

continues to signal downstream even in the absence of

androgens can be represented as a stuck-at-1 fault. By the

same token, the inactivation in cancer of a tumor suppres-

sor, which acts as a molecular brake on cell growth in a

normal cell, can be represented as a stuck-at-0 fault. From

our Boolean circuit model, we can explicitly enumerate

the different locations where a fault can occur. These fault

locations are numbered in Fig. 2 with the stuck-at-0 and

1

X

a = 1

b = 1

c = 0

d = 0

0/1

Fig. 3 Circuit with stuck-at fault. An example of a stuck-at fault. In the absence of the stuck-at fault, the output is zero. If there is a stuck-at-one fault

at the location marked with a cross, the output of the faulty circuit becomes one
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stuck-at-1 faults in red and black numerals respectively.

There is a total number of 24 possible fault locations.

The objective is to counteract the effect of these faults

by targeted drug intervention, so we incorporate the drugs

in our model. The drug intervention points are illustrated

in Fig. 2 which are the locations of the molecules that

these prostate cancer drugs are known to target. Since

the drugs inhibit the activity of their target i.e. the main

mechanism of action of the anti-cancer drugs is to cut off

downstream signaling, their action is incorporated in our

model as an inverted input to an AND gate with the result

that whenever the drug is applied, the gene that it targets is

turned off.

Simulation for fault mitigation with drug intervention

We can now use our Boolean model to test different com-

bination therapies in terms of their efficacy in mitigating

the effects of the faults. For each fault, we would like to

intervene with the best possible drug combination i.e. we

want to determine which set of drugs would bemost effec-

tive in attempting to nullify the effect of that fault, thereby

providing us with a targeted therapy based on the tumor

signature. Define, the input vector as follows:

INPUT =
[

EGF,HBEGF, IGF,NRG1, PTEN,NKX3. 1, Androgens
]

The first four components of this vector are growth fac-

tors, which are external signals that stimulate a cell to

grow and replicate. The next two input components,

namely PTEN and NKX3.1 are tumor suppressors which

act as molecular brakes on cell division. The last input

vector component consists of the external hormones that

stimulate the AR pathway in a normal prostate cell. The

input vector is set to be [0000110]. This corresponds to all

the external signals that stimulate cell growth being absent

and the molecular brakes being active i.e. this input vector

corresponds to a non-proliferative input which produces a

non-proliferative output in the fault-free case. The output

vector is defined to be:

OUTPUT =
[

SP1, SRF-ELK1, PSA, TMPRSS2, BCL2, CDK2-CyclinE
]

The output vector consists of key markers of cell growth

and proliferation in prostate cancer. In the fault-free sce-

nario, a non-proliferative input to the regulatory network

should produce a non-proliferative output characterized

by the all-zero vector. However, faults in the network will

produce a non-zero (proliferative) output even when the

input is non-proliferative. The objective is to drive the

faulty network’s output as close as possible to that of the

fault-free circuit i.e. towards the all-zero vector through

targeted drug intervention. Define, the drug vector as:

DRUG VECTOR =
[

Lapatinib, Cixutumumab, AZD6244, BKM120, AZD5363,

Temsirolimus, Enzalutamide
]

Each component of the drug vector is one if the corre-

sponding drug is applied and is zero otherwise i.e. the

ith bit of the drug vector is one if the drug is selected

and zero if it is not. Thus, for example, the drug vec-

tor [0010010] represents the combination of AZD6244

and Temsirolimus. Since, the total number of drugs is

seven, the number of possible drug combinations is 128.

The objective is to determine the best possible therapy

for each fault. Each fault represents a different molecular

abnormality and hence a tumor with a different profile.

For each of the faults, the problem is to find the drug

selection that can rectify the fault i.e. change the faulty

output to the correct output. If that is not possible, the

best drug vector will drive the output as close as pos-

sible to the fault-free output. A simple metric that can

be used as a distance measure to determine how far the

output vector is from the fault-free vector is Hamming

distance. Faults that produce an output vector with a

greater Hamming distance from the correct output have

more of the proliferative genes active and presumably a

greater proliferative effect. Since the correct output is the

all-zero vector, the Hamming distance of the output vector

from the correct output is simply the Hamming weight of

the output vector (for binary vectors Hamming weight is

equivalent to the L1-norm). For each fault, we determine

the output under every possible drug vector. The best

therapy for that fault is the drug vector that produces the

output with the smallest Hamming weight. In addition,

since the drugs have deleterious side-effects, we would

like to choose a drug combination with the fewest number

of drugs. Thus, the best targeted therapy for each of the

cancer-inducing faults is the one that under the presence

of the fault, produces the best output with the smallest

Hamming weight with the minimal number of drugs.

To determine the best combination therapy across all

faults, for each drug combination we determine the sum

of the Hamming weights of the output vector across all

possible combinations of faults and choose the drug com-

bination that yields the smallest total. In order to keep the

computation tractable, we restrict the number of possible

faults in any fault combination to be no more than three

i.e. up to three genes can be faulty simultaneously. We

constrain the cardinality of the drug vector to be less than

or equal to three, in essence limiting the number of drugs

in the combination to three since on account of the harm-

ful side-effects of the drugs, administering four or more

cancer drugs simultaneously might not be prudent.

Let us formalize the qualitative description above of the

selection of best therapy for each fault and that of the

overall optimal drug vector. For the Boolean network (BN)

of Fig. 2, let N ,M and P be the total number of primary

inputs, primary outputs and fault locations respectively,

then N=7, M=6 and P=24. Let x ∈ X and z ∈ Z be

the input and output vectors respectively where X and Z



The Author(s) BMC Bioinformatics 2017, 18(Suppl 4):134 Page 10 of 59

represent the space of all binary vectors of dimensions N

and M respectively. Let x∗ =[0, 0, 0, 0, 1, 1, 0] be the input

vector corresponding to the non-proliferative input.

Let D represent the total number of drug combinations

(vectors) with no more than three drugs in any combina-

tion, then D =
3
∑

k=0

(7
k

)

. Denote each drug vector in the

drug space as diwith i = 0, . . . ,D − 1 (d0 is the all-zero

drug vector meaning no drug is applied). Let D be this

space of drug vectors.

Let C be the total number of fault combinations with

no more than three faults in any combination, then C =
3
∑

k=0

(P
k

)

. Assign each fault combination in the fault space a

label fj with j = 0, . . . ,C − 1 (f0 represents the fault-free

case). Let F be this set of faults.

Let ψ denote the mapping from a given input vector,

drug combination and fault combination to an output vec-

tor: x ∈ X ,d ∈ D, f ∈ F
ψ
−→ z ∈ Z i.e. ψ represents the

output of the BN for a given input x when a drug combi-

nation d is applied under fault scenario f . Let ψi be the i
th

component of this M-dimensional vector ψ .

The best drug vector di, i ∈ {0, 1, . . . ,D − 1} for each

single fault fj, j ∈ {1, 2, . . . ,P} is the vector of smallest

Hamming weight that minimizes
∥

∥ψ
(

x
∗,di, fj

)
∥

∥

1
.

The optimal drug combination across all faults is:

d
∗
i

= argmin
di

C−1
∑

j=1

∥

∥ψ
(

x
∗,di, fj

)∥

∥

1 (1)

d
∗
i
is determined by exhaustive enumeration by explic-

itly searching for the drug combination that for a non-

proliferative input, minimizes the sum of Hamming

weights (L1-norms) of the output vector across all possible

combinations of faults.

Node vulnerability assessment

In electronic circuits, reliability refers to the probability of

a circuit functioning as intended i.e. producing the cor-

rect output. Reliability assessment is used to determine

the vulnerability of a circuit to faults. A number of differ-

ent techniques have been proposed for reliability analysis

in digital circuits [28]. Recently, in [29] a scalable, effi-

cient and accurate simulation-based framework based on

stochastic computations was introduced for logic circuit

reliability evaluation. In biological systems, dysfunctions

in nodes in the signaling network cause deviation from

normative behavior. Reliability assessment methodologies

can be leveraged on Boolean network models of pathways

to determine the vulnerability of the network to the dys-

function of each node [30, 31]. In this section we conduct a

stochastic logic based vulnerability analysis of the prostate

cancer signal transduction network in order to discover

the most vulnerable nodes thereby allowing us to priori-

tize such segments in the network whose perturbation has

the greatest potential to yield the most clinical benefit.

In stochastic logic, signal probabilities are encoded in

randombinary bit streams (the signal probability of a node

corresponds to the likelihood of that node having logic

value one). For example, the binary sequence 0110010100

of length ten encodes the probability 0.4 since the propor-

tion of ones in this sequence is 4
10 . In practice, the length

of the stochastic sequences typically used is much larger.

Since the biological literature is devoid of precise lig-

and binding probabilities, each primary input is assumed

equally likely to be 0 or 1 i.e. all primary input signal

probabilities are taken to be 0.5.

Stochastic logic often makes use of Bernoulli sequences

for the random binary streams where each bit in the

stream is generated independently from a Bernoulli ran-

dom variable with a probability of one equal to p. The use

of probabilistic sequences inevitably introduces stochas-

tic fluctuations which implies that the result produced

is non-deterministic. These fluctuations can be signifi-

cantly reduced by representing the initial input proba-

bilities by non-Bernoulli sequences [32] defined as ran-

dom permutations of sequences containing a fixed num-

ber of ones and zeros. For a given probability p and

sequence length L, a non-Bernoulli sequence contains a

fixed number pL of ones, with the positions of the ones

determined by a random permutation. Thus, for exam-

ple, to represent the probability 0.5 by a non-Bernoulli

stream of length 10, we could randomly permute the

sequence 1111100000 which has five ones (instead of

generating each bit from a Bernoulli random variable

with p = 0.5 as would have been done to represent

the same probability by a Bernoulli sequence). We use

non-Bernoulli sequences of random permutations of fixed

number of ones and zeros in order to encode the initial

input probabilities.

A logic circuit operating on stochastic bit streams

(see Fig. 4 for an example), accepts as input random

sequences representing the probability of each input being

one and produces ones and zeros like any digital circuit

[33] i.e. a stochastic logic circuit uses Boolean gates to

operate on sequences of random bits. Each bit-stream

represents a stochastic number interpreted as the proba-

bility of seeing a one in an arbitrary position. Thus, the

computations performed by such a circuit are probabilis-

tic in nature. The output bit stream produced can be

decoded as the probability of the output being one by

counting the number of ones in the stream and dividing by

its length.

The vulnerability of a node is defined as the proba-

bility that the system produces incorrect output if that

particular node is dysfunctional (faulty) i.e. it is the proba-

bility that the output of the network is different when that
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0001111010

p1 = 0.5

1110000101

0111111101

p2 = 0.8

0110000101

0010100111
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0110100111

pout = 0.6

Fig. 4 A stochastic logic circuit. An example of a stochastic logic circuit

node is dysfunctional and is the complement of reliability.

The procedure to determine the node vulnerabilities is

illustrated in Fig. 5 is as follows. We generate non-

Bernoulli sequences of length L=1,000,000 in which

exactly half of the bits are set to one at each of the seven

initial inputs. The input stochastic sequences are propa-

gated through both the original error-free circuit and the

circuit in which the node of interest is dysfunctional. As

discussed in the previous section, the dysfunction of a

node is represented by a corresponding stuck-at fault of

the requisite type at the particular location. This produces

two sets of stochastic bit streams, one at each of the pri-

mary outputs of the fault-free circuit and the other at the

primary outputs of the unreliable circuit. The proportion

of ones in the output bit stream encodes the output signal

probabilities i.e. the probability of the output being one.

Since the reliability of the circuit under the fault is the

probability that the circuit output is same as that of the

fault-free circuit, the sequence encoding the output reli-

ability can be obtained from the output sequence of the

faulty circuit by comparing it to the output sequence of the

fault-free circuit and setting each bit to one whenever the

corresponding bits in the sequences are the same and zero

if they are different. The proportion of ones in this result-

ing sequence will then correspond to the reliability of

that output. Thus, we can obtain the stochastic sequence

representing the reliability of each output by taking the

XOR of each output bit stream of the faulty circuit with

the complement of the corresponding output bitstreams

of the fault-free circuit. For a circuit with multiple pri-

mary outputs as is the case here, the stochastic sequence

encoding the joint output reliability can be obtained by

taking the stochastic AND of the outputs of the XOR

gates as the stochastic AND operation on the output of

XOR gates produces a one only if all the corresponding

bits at each XOR gate are one i.e. if all the correspond-

ing bits in the respective outputs of the fault-free and

faulty circuit are same. We then take the complement of

the bit stream at the output of this AND gate to obtain

the stream that encodes vulnerability. This bit stream can

then be decoded to determine the node vulnerability with

the proportion of ones in this stream equivalent to the

vulnerability of the node.

The procedure for computing the vulnerability of a node

described above and depicted in Fig. 5 is summarized as

follows:

Fig. 5 Computation of node vulnerability. Depicts the architecture used to compute the vulnerability of a node. x1 to x7 are the input stochastic bit

streams for each of the seven primary inputs in the Boolean network model. The output bit streams for each of the six output components when

these input sequences are propagated through the circuit with a dysfunctional node (whose vulnerability we want to compute) are denoted by y∗1
to y∗6 whereas those for the fault-free circuit are labeled as y1 to y6
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1. Generate non-Bernoulli streams encoding input

probabilities at each of the primary inputs.

2. Propagate the input binary streams through the

fault-free circuit and obtain a random bit sequence

for each output.

3. Propagate the same input binary streams through the

circuit with a stuck-at fault at the location of the node

whose vulnerability we want to determine and again

obtain a random bit sequence for each output.

4. XOR each primary output sequence from the faulty

circuit obtained in step 3 with the complement of the

corresponding primary output sequence from the

fault-free circuit.

5. AND all the sequences obtained from each XOR gate.

Take the complement of the stream so obtained. The

vulnerability of the node is the fraction of ones in the

resulting bit stream.

Thus, in a nutshell, the node vulnerabilities are obtained

by propagating the initial input stochastic bit streams

encoding the input probabilities through both the faulty

and fault-free circuit, comparing the respective outputs

obtained from each and decoding probabilities from the

resulting streams.

Let x1, x2, . . . , xN represent input non-Bernoulli

sequences of length L with each sequence represented

as a vector of length L whose ith component is equal

to the ith bit in the sequence. Define the L × N matrix

X = (x�
1 x

�
2 . . . x

�
N ). Thus, each row of this matrix con-

tains the corresponding bits of each of the primary input

streams. The vulnerability vj of node j ∈ {1, 2, . . . ,P} is

given by:

vj =
1

L

L
∑

k=1

(

M
∏

i=1

ψi

(

x = [Xk1, . . . ,XkN ] ,d0, fj
)

⊕ ψ ′
i

(

x = [Xk1, . . . ,XkN ] ,d0, f0
)

)′
(2)

where ′ is the bit-complement operator and⊕ is the binary

XOR operator.

Results and discussion

Simulation results for drug intervention

We use the Boolean networkmodel to determine an appo-

site therapy for each fault. As described in the methods

section, the best targeted therapy for each of the cancer-

inducing faults is the one that under the presence of the

fault, produces the output with the smallest Hamming

weight with the minimal number of drugs. The best ther-

apy for each of the faults is shown in table 1 with the drug

vector defined as before. Note that for certain faults, no

drug vector can improve the output. Such faults are said

to be untestable since no test (drug vector in this case) can

Table 1 Best therapy for each fault

Fault location Drug vector

1 1000000

2 1000000

3 0100000

4 1000000

5 0011000

6 0011000

7 0000100

8 0001000

9 0001000

10 0000100

11 0000100

12 0000100

13 0000100

14 0000001

15 0000001

16 0010000

17 0010000

18 0000000

19 0000010

20 0000010

21 0000010

22 0000000

23 0000000

24 0000000

rectify the fault. This is because there are no drugs on the

fan-out of these genes. However, all these faults with the

exception of fault 18 are minimally proliferative as they

produce a faulty output with the least possible Hamming

weight of one.

Thus, there are many locations in the gene regulatory

network of prostate cancer where malfunctions can occur

resulting in a cancer that is different, requiring a specific

targeted therapy. The table facilitates arriving at such a

therapy as it maps each malfunction to an appropriate set

of drugs. The look-up table can be used to devise ther-

apies that have a higher likelihood of success since they

are tailored specifically to the molecular abnormalities in

critical pathways and thereby facilitates an individualized

approach to therapy design.

In order to find the best combination therapy across

all possible faults, as discussed in the methods section,

for each drug combination we determine the sum of the

Hamming weights of the output vector across all pos-

sible combinations of faults and choose the drug com-

bination that yields the smallest total. This gives us the

drug cocktail of AZD6244, AZD5363 and Enzalutamide
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as a combination therapy for advanced prostate cancer.

In a recent study, the drug combination of AZD5363 and

Enzalutamide has demonstrated an impressive response

in prostate cancer models [34]. Moreover, AZD6244 in

partnership with an AKT pathway inhibitor (analogous

to AZD5363), has been proposed as a strategy for the

treatment of CRPC [35]. Thus, we propose that the

aforementioned drug triad which represents a horizon-

tal blockade approach, wherein combination therapy is

used for the concerted pharmacologic inhibition of mul-

tiple compensatory pathways, as a therapeutic modality

that may attenuate prostate cancer survival and growth.

Node vulnerabilities

Using the framework delineated in the methods section,

we quantify the vulnerability of different nodes. The vul-

nerability values obtained are given in Table 2. Vulnera-

bility assessment can be used to identify candidates for

targeted drug development. Nodes whose vulnerabilities

are higher should be presumably better targets for drugs

since potentially therapeutic benefit is more likely for

nodes which are more vulnerable. We observe that the

Table 2 Node vulnerabilities

Node Vulnerability (%)

1 6.25

2 6.25

3 6.25

4 6.25

5 6.25

6 6.25

7 24.98

8 6.25

9 6.25

10 24.98

11 24.98

12 24.98

13 24.98

14 12.47

15 12.47

16 6.25

17 6.25

18 6.25

19 1.57

20 1.57

21 1.57

22 1.57

23 1.57

24 24.98

AR-mediated signaling axis remains a valid target. Fur-

thermore, we see that dysfunction in the AKT nexus and

the loss of tumor-suppressors have higher vulnerability

values so drugs that attempt to alleviate these aberra-

tions should be efficacious in attenuating tumor growth.

The design of anti-cancer therapeutics directed at the loss

of tumor suppressors has been difficult [36]. Addition-

ally, AKT-selective drug development is challenging due

to its homology with other kinases [37]. These complica-

tions notwithstanding, accelerated development of novel

agents that target these aberrations is warranted. In con-

trast, the vulnerabilities for certain nodes such as those in

the mTOR axis are low indicating that they might not be

attractive targets for drug development. Indeed, marginal

clinical activity has been observed for mTOR inhibition

with agents such as everolimus and temsirolimus failing

to impact tumor proliferation in men with prostate cancer

[4, 38]. Finally, in terms of the key pathways implicated in

the disease we see that castration-resistant prostate can-

cer shows most vulnerability on aggregate to dysfunction

in the AKT pathway. In a study it was demonstrated that

the AKT pathway dominates AR signaling in CRPC [39].

Conclusion

Castration-resistant prostate cancer is a hormone refrac-

tory phenotype of significant morbidity and mortality in

the prostate cancer disease continuum where patients

no longer respond to androgen ablation therapy. The

biomolecular network representing the signaling path-

ways involved in the pathogenesis of this lethal malig-

nancy is translated to a digital circuit. The locations of

possible malfunctions in the digital circuit are identified

and computer simulation of the equivalent model is used

to predict effective therapies that mitigate the effect of

different faults. A prospectively attractive combinatorial

therapeutic strategy for the constellation of abnormalities

is to leverage an AR axis targeted agent in conjunction

with reciprocal inhibitors of other dysregulated pathways

that are fundamental in coordinately driving oncogene-

sis. Proof of principle of clinical use for the proposed

regimen remains to be demonstrated. A reliability (vulner-

ability) analysis methodology of digital circuits premised

on stochastic logicmodeling is utilized to quantify the vul-

nerability of the network to the dysfunction in discrete

components in the signaling cascade thereby identifying

key variables as targets for intervention that conceivably

might be exploited by a new generation of novel thera-

peutics. These findings can contribute to the development

of new rational approaches for the possible treatment of

androgen-refractory prostate cancer. There is however a

paucity of companion predictive biomarkers that can be

used for the stratification of patients based on molecular

aberrations in order to prescribe the apposite treatment.

Furthermore, the histological and clinical heterogeneity
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of CRPC and the inherent redundancy along with the

presence of feedback loops in pathways whose molecu-

lar underpinnings in the context of the disease induction

and development are not yet fully understood, tender

any potential translation into objective clinical efficacy

of therapeutic implications derived from computations

fraught with challenges.
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