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Abstract

Background: Analysis of integrated genome-scale networks is a challenging problem due to heterogeneity of
high-throughput data. There are several topological measures, such as graphlet counts, for characterization of

biological networks.

Results: In this paper, we present methods for counting small sub-graph patterns in integrated genome-scale
networks which are modeled as labeled multidigraphs. We have obtained physical, regulatory, and metabolic
interactions between H. sapiens proteins from the Pathway Commons database. The integrated network is filtered for
tissue/disease specific proteins by using a large-scale human transcriptional profiling study, resulting in several tissue
and disease specific sub-networks. We have applied and extended the idea of graphlet counting in undirected
protein-protein interaction (PPI) networks to directed multi-labeled networks and represented each network as a
vector of graphlet counts. Graphlet counts are assessed for statistical significance by comparison against a set of
randomized networks. We present our results on analysis of differential graphlets between different conditions and on
the utility of graphlet count vectors for clustering multiple condition specific networks.

Conclusions: Our results show that there are numerous statistically significant graphlets in integrated biological
networks and the graphlet signature vector can be used as an effective representation of a multi-labeled network for
clustering and systems level analysis of tissue/disease specific networks.

Keywords: Integrated networks, Network comparison, Directed graphlets

Background

With the accumulation of high-throughput omics data
in public databases, integrative studies on heterogenous
and dynamic biological networks have become possible.
Repositories, such as Pathway Commons [1], BioGRID
[2], and the Human Protein Reference Database (HPRD)
[3], collect and curate associations between genes, pro-
teins, and chemical compounds from various high and
low throughput data sources. In addition, there are
efforts, such as BioPAX [4], towards a standardized
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representation and exchange of different types of net-
works between databases and applications. Although the
data for various types of interactions such as regulatory,
metabolic, and physical interactions are available in these
repositories, joint analysis of these data in a single inte-
grated network remains a challenge. The software suite
Paxtools [5] is a rich collection of methods for querying,
visualizing, and converting integrated BioPAX networks;
however, advanced algorithms, such as graphlet counting,
are yet to be added to the expanding repository of this
open source project.

In parallel with the increase in the volume of net-
work data, modeling of the dynamic nature of networks
becomes a necessity. There have been studies to obtain
tissue specific protein-protein interaction networks [6, 7],
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functional interaction networks [8], regulatory networks
[9], and pathways [10]. However, to the best of our
knowledge, there is no study that provides an integrated
dynamic view of physical, regulatory, and metabolic
interactions.

Graphlets are small sub-graphs that provide more
detailed topological statistics for a graph. As an exten-
sion of single node statistics, such as average degree and
degree distribution, graphlets give a broader view around
a node. Introduced by Przulj in 2007 [11] graphlets have
been shown to be effective in analysis and comparison
of biological networks [12]. Due to the combinatorial
expansion of different types of graphlets, computation-
ally efficient counting of graphlets is a challenging prob-
lem. Various algorithms have been developed in recent
years for counting directed or undirected graphlets of
size 2-5, efficiently [13-15]. However, none of these
methods consider multi-label edges. The combinatorial
expansion of different types of graphlets is more dramatic
when directed and multi-label edges are considered. In
this paper, without tackling computational efficiency, we
propose a straightforward method for counting directed
multi-label graphlets of size 2—3 and assess the utility of
these graphlets in tissue specific networks. To the best of
our knowledge, this is the first study to address directed
multi-label graphlets in integrated networks. By counting
graphlets in several different tissue specific networks, we
have identified many statistically significant graphlets. We
also utilized graphlet signature vectors for clustering and
systems level analysis of tissue/disease specific networks.

The rest of the paper is organized as follows. We first
describe how we constructed tissue specific integrated
networks by combining Pathway Commons networks
with a human transcriptome profiling study. Next, we pro-
pose an edge encoding approach to count graphlets using
simple hashing. The experimental results are followed by
a brief conclusion.

Methods

In this section, we describe the details of construction of
tissue and disease specific networks using the Pathway
Commons Database [1] and a human body transcriptional
profiling study accessible at the NCBI GEO database
[16] with accession number GSE7307. We also intro-
duce directed and multi-labeled graphlets and outline a
method for counting two to three node graphlets using a
hash-based strategy. We conclude this section by describ-
ing the details of statistical significance assessment of
graphlet counts.

Datasets

We have used two main resources to acquire the data used
in this study: 1) Pathway Commons [1] and 2) NCBI GEO
(Gene Expression Omnibus) [16]. The details of the two
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data sources and how they are integrated are explained in
the next two subsections.

Pathway Commons integrated network

Pathway Commons is an integrated resource with a reper-
toire of applications and data for biological pathway anal-
ysis [1]. It is also closely integrated with BioPAX [4], which
is an ontological model for integration and exchange
of heterogenous biological pathway data. Although the
BioPAX format provides the means for integration of
various pathway analysis tools, the SIF (Simple Interac-
tion Format), originally created for use with Cytoscape
[17], was sufficient for the purposes of this study. We
downloaded Pathway Commons Version 8 (in extended
binary SIF format) [18] for human genes identified by
their HGNC [19] names. The dataset is a collection
of several resources such as Reactome [20], HPRD ([3],
and BioGRID [2] and also contains metabolic inter-
actions with compounds; however, in this study, we
ignored compound interactions and focused only on the
protein-protein associations. The resulting network con-
tains 883,211 interactions between 19,537 human pro-
teins. The types and numbers of interactions are given in
Table 1. interacts-with and in-complex-with type interac-
tions describe undirected associations; whereas, the other
five types of interactions in the network are directed rela-
tions between proteins. All of the proteins pairs with
phosphorylation and transport control relations are also
indicated as having a state-change relationship; therefore,
we ignored these relatively low abundance interaction
types in this study. As a result, we obtained an integrated
human network of 19,537 proteins with 523,498 undi-
rected edges and 337,117 directed edges. The network
contains physical, regulatory, and metabolic relations.
By consolidating multiple-edges into single multi-labeled
directed edges between protein pairs, the final network
contains 1,521,508 directed edges between 760,754 pro-
tein pairs. In this representation, in addition to undirected
interactions, each directed interaction is also modeled

Table 1 Types and number of interactions in the Pathway
Commons Version 8. The interactions are among proteins only.
Metabolic interactions involving chemical compounds are
ignored in this study

Interaction type Number of gene pairs with this

interaction type

Interacts-with 369,895
In-complex-with 153,603
Controls-phosphorylation-of 15,636
Catalysis-precedes 120,948
Controls-expression-of 110,013
Controls-transport-of 6960
Controls-state-change-of 106,156
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as a bi-directional edge such as controls-expression-of
and expression-controlled-by. In the Methods section, we
describe how multi-labeled directed edges are modeled
using a binary encoding.

Tissue/disease specific networks

We have used a human transcriptional profiling study for
identifying genes that are expressed in specific conditions.
We obtained a network for a specific tissue type by con-
structing the subgraph of the original Pathway Commons
network using the set of active genes in that tissue. Specif-
ically, given the integrated network as a graph G = (V, E)
and the set of active genes for a condition as Vy, the tis-
sue specific graph is given as G; = (Vy, E;) where E; =
{(a,D) : Ya,b € V¢, (a,b) € E}. The method of identifying
the set of active genes in a specific condition is critical
to this construction process. For this purpose, we used
the results of a large scale microarray study accessible
at the NCBI GEO database [16] with accession number
GSE7307. Roth et al. profiled 90 distinct tissue types with
several samples per tissue type (677 samples in total) using
the Affymetrix U133 plus 2.0 array. Some tissues were also
profiled under different states, such as disease and treated
states, resulting in 141 different sample types. We have
used the RMA (robust multi-array) normalized expression
values to identify active genes. There are various methods
for discretization of expression data [21]. In this study, we
used a simple approach for identification of gene activ-
ity. We determined an approximate overall noise level, 7,
across all samples and deemed every gene with expres-
sion level above r as an active gene. In our experiments,
we used r = 10.0, which resulted in different networks
of 11,931 nodes (retrocervical infiltrate normal sample) to
15,853 nodes (MDA-MB231 control sample) for the 141
tissue types we considered.

Counting directed graphlets

In this section, we give the details of our graph repre-
sentation approach for counting directed multi-labeled
graphlets and describe how the statistical significance of
graphlet counts are assessed using a set of randomized
networks.

Edge encoding in labeled multidigraphs

Given a list of labeled interactions between pairs of pro-
teins, we use an adjacency-list based implementation
of the underlying graph by encoding each multi-labeled
directed edge from a protein p, to a protein p, as an 8-
bit vector. The first two bits of the edge vector from p, to
Py is used for undirected interactions, the following three
bits are used to represent directed interactions from p, to
Pb> and the last three bits are used for the directed interac-
tions from py, to p,. Table 2 shows the assignment of labels
to specific bits in the encoding.
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Table 2 Encoding of multi-labeled directed edges as 8-bit

vectors

Bit Interaction type Value
1 Interacts-with 0/1

2 In-complex-with 0/1

3 Catalysis-precedes 0/1

4 Controls-expression-of 0/1

5 Controls-state-change-of 0/1

6 Catalysis-succeeds 0/1

7 Expression-controlled-by 0/1

8 State-changed-by 0/1

For example, given a network with the following list of
interactions between proteins p, and pp:

Pa Pp in-complex-with
Pa Pb controls-expression-of
Pb Pa catalysis-precedes

The encoded edge from p, to p, in p,’s adjacency list
will be 01010100; whereas, the symmetric edge in pj’s
adjacency list will be 01100010. In this encoding, both
proteins’ adjacency lists contain all the information about
their interactions with their neighbors.

Counting algorithm

We use a hashing based strategy to count all the graphlets
in a network. Our method is a naive brute-force method,
which has O(|V| - dk~1) time complexity, where V is the
set of nodes, d is the average degree in the network, and
k is the maximum size of the counted graphlets. The size
of a graphlet is the number of nodes in that graphlet.
In this study, we count up to 3-node graphlets; hence,
the running time complexity is O(|V| - 4%). This brute-
force method will be prohibitively expensive for counting
graphlets of larger sizes; however, in this study, we show
that, in an integrated network with various types of edges,
the number of distinct 3-node graphlets are on the order
of thousands and 3-node graphlets are powerful in identi-
fying different tissues and diseases.

A 2-node graphlet is simply represented by the binary
encoded edge vector between two nodes. The edge vector
is used as the key in a standard implementation of hash
tables in the Java standard library by using the default hash
function for strings. Since the edge is represented as a
directed edge from a source node to a target node and the
target node stores a different encoding, i.e., the symmet-
ric encoding, of the same edge, the same 2-node graphlet
is counted twice, but in two separate hash entries. These
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isomorphic graphlets are taken care of when we report the
graphlet counts in the post-processing stage. A single rep-
resentative of all isomorphic graphlet counts are reported
by employing an isomorphism test before a graphlet count
is reported. In the networks we analyzed, there are 56
different types of 2-node graphlets.

We represent a 3-node graphlet between three nodes n,,
np, and n. as a concatenation of three binary encoded edge
vectors from n, to np, from ny, to n., and from n, to n,,
resulting in a string of length 24. The first two edges are
enumerated from the set |E| using the adjacency lists and
in case there is no edge between 7. and n,, the encoded
edge is simply given as 00000000. Similar to counting 2-
node graphlets, the concatenated encoding of length 24
is used as the key in a hash table of graphlets counts.
Note that, in this appriach, a multi-label edge is used to
count the most specific occurrence of a graphlet. Subsets
of the labels of a multi-label edge do not contribute to
the counts of more generic graphlets. We handle isomor-
phic graphlets in the post-processing phase and report
the count for one representative graphlet. We also employ
a count threshold and report only graphlets that occur
at least 10 times in a network. In the networks we ana-
lyzed, there are 7346 different types of 3-node graphlets
that occur at least 10 times in at least one of the 141 tis-
sue specific networks. Counting all the 2—3 node graphlets
in the largest network takes about 15 min on a MacBook
Air with a 1.4 GHz Intel Core i5 processor and 4 GBs
of memory.

Computation of statistical significance
We compute the z-score of a graphlet count by compar-
ison against the count of that graphlet in an ensemble of
randomized networks with the same degree distribution
as the real networks. The degree distribution of a multi-
labeled directed graph is a multi-dimensional distribution
accounting for different types of incoming and outgo-
ing edges of a node. The most frequent multi-label edge
in the 141 tissue specific networks is the edge 10000000
(i.e., {interacts-with} edge) with an average recurrence
of 542,829.58 and the least frequent multi-label edge is
the edge 00101101 (i.e., {catalysis-precedes, controls-state-
change-of, catalysis-succeeds, state-changed-by} edge)
with an average recurrence of 10.83. Out of the 56 differ-
ent multi-label edges, 12 of them recur more than 1000
times on the average and 28 of them recur more than 100
times on the average in the 141 tissue specific networks.
We randomized each of the 141 tissue specific networks
by the edge-shuffling method. Each randomly chosen
edge pair (of the same multi-label) in the graph is shuf-
fled to replace the existing edges with a new pair of edges
with the same multi-label but with different interaction
partners. For example, given two directed edges from p,
to pp and p, to p; with the same multi-labels, the edges

Page 44 of 59

Pa — pq and p, — pp are inserted into the random-
ized graph. During this process, we make sure the selected
edge pairs contain four distinct proteins to avoid intro-
duction of self edges in the randomized networks. We
counted each two-node and three-node graphlets in all
of the 141 randomized networks and obtained the mean
count, g, and the standard deviation, oy, of the count of
a graphlet g. We tested the graphlet frequency distribu-
tions in the randomized networks and verified that they
follow a normal distribution. The z-score of the count
¢g of a graphlet g in a tissue-specific network is then
given by:
zg = G e (1)
Og
If a graphlet that exists in a real tissue-specific network
does not occur in any of the randomized networks, it is
assigned a z-score of oco.

Results

Directed multi-labeled graphlets are analyzed in three dif-
ferent aspects. We first investigate statistically the most
significant graphlets across all tissues. Then, we assess
the utility of graphlet signatures in comparison of tis-
sue/disease specific networks. Finally, we analyze differ-
entially occurring graphlets between two conditions.

Statistically significant graphlets

In this section, we report the most significant graphlets
in the analyzed networks. Since the graphlets with zero
count in all of the randomized networks could not be
assigned a numerical z-score value other than infinity, we
ignored these graphlets. There are 2766 such graphlets.
275 of the remaining 4636 graphlets have z-scores
over 100.00.

Figure 1 shows the most significant graphlet with an
average z-score of 6913.36 among the 141 conditions. In
the 141 randomized networks, this graphlet occurs only
10.35 times; whereas, in the real networks, the graphlet
occurs more than fifty thousand times on the average.
The graphlet contains both metabolic and protein com-
plex associations. In addition, a biologically interesting
observation is the abundance of protein pairs that both
precede and succeed each other in catalyzing a cascade of
metabolic reactions.

Due to the high abundance of statistically significant
graphlets, we analyzed graphlets with high z-score vari-
ance as biologically interesting graphlets. Figure 2 shows
the graphlet with largest variation of z-score among the
141 conditions. The graphlet has an average z-score of
4656.97 with a standard deviation of 1570.49. The graphlet
is a sub-complex of three proteins, in which the state
change interactions exhibit a feed-forward loop motif.
This graphlet occurs in the myometrium disease tissue



The Author(s) BMC Bioinformatics 2017, 18(Suppl 4):135

Fig. 1 The most significant graphlet with an average z-score of
6913.36. A graphlet of three nodes. Proteins A and B play roles in
different metabolic pathways by preceding each other. Proteins A

and C are in the same molecular complex

(MDT) most frequently with a z-score of 7999.00. The
same graphlet occurs in the retrocervical infiltrate nor-
mal tissue (RINT) with a z-score of 1702.81 showing
more than four fold decrease. This difference could be
explained by the fact that the MDT network has the sec-
ond highest number of active genes (15,785 nodes), while
the RINT network has the least number of active genes
(11,931 nodes). However, the MDT network has less num-
ber of genes than the MDA-MB231 cells control sample

in-complex-with

Fig. 2 A graphlet with high z-score variation among the 141
conditions. The graphlet is a sub-complex of three proteins, in which

the state change interactions exhibit a feed-forward loop motif
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and there are 688 more occurrences of this graphlet in the
MDT network compared to the MDA-MB231 network.

Another interesting graphlet with a high variance
among the conditions is shown in Fig. 3. The graphlet
is state change clique of three proteins in which all the
members change each other’s states and two of the nodes
are in a complex together. This graphlet occurs in the
endometrium ovary disease tissue (EODT) network 7564
times; while, the skeletal muscle superior quadracep nor-
mal tissue (SMSQNT) tissue contains 1378 instances of
this graphlet. The average occurrence of this graphlet in
the randomized networks is 2.0.

Clustering of tissues/diseases using graphlet signatures
We used the z-scores of graphlets (again by ignoring
the graphlets with zero counts in the randomized net-
works) to represent each tissue specific network as a
one-dimensional vector of graphlet signatures. There are
various methods that can be applied on a set of objects
represented as vectors. Below, we report our results on
hierarchical clustering of tissue specific networks and
principal component analysis (PCA) based reduction of
graphlet signatures. We used the TM4 MeV: MultiExper-
iment Viewer version 4.9 [22] for conducting these analy-
ses. MeV is originally developed for analysis of microarray
data; however, the implementation of standard methods
such as PCA, K-means clustering, and hierarchical clus-
tering can be applied to any dataset with a set of objects
represented as vectors.

When we performed PCA on all of the 141 graphlet sig-
natures, the first three principle components were able to
capture 96.126% of the variance in the dataset. This result

Fig. 3 Another graphlet with high z-score variation among the 141
conditions. The graphlet is clique of three proteins in which all the
members change each other’s states and two of the nodes are in a
complex together
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shows that although there are thousands of different types
of graphlets within networks, the graphlet frequencies are
highly correlated and the networks can be described in a
much lower dimensional space.

In order to show the effectiveness of clustering using
graphlet signatures, we have selected a subset of 21 brain
tissues. Figure 4 shows the result of hierarchical clustering
of these tissues, where brain parts with similar functions
are clustered together. Four of the five thalamus tissues are
in the same subcluster if the tree is cut at a level to produce
four main clusters. When we use the gene expression val-
ues in the microarray dataset GSE7307 to cluster the brain
tissues, thalamus tissues fall in different clusters (data not
shown). In addition, trivial features such as the number
of tissue-specific genes do not produce the same cluster-
ing as with the graphlet signatures (data not shown). In
summary, these results suggest that graphlet signatures
provide a potentially different perspective on comparison
of different tissues.

Differential graphlets between two conditions

Differential counts of graphlets in the networks of disease
and normal states of tissues maybe helpful in under-
standing disease mechanisms. We use graphlet z-score
signatures to identify differentially recurring significant
graphlets across networks. We conducted differential
analyses on the networks of thalamus lateral nuclei,
prostate gland, and skin tissue samples. The set of proteins
in the differentially recurring graphlets were analyzed fur-
ther for functional enrichment using DAVID functional
annotation tool [23].
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Figure 5 shows a differentially recurring graphlet in the
normal and the disease thalamus lateral nuclei tissues with
the largest fold change of z-scores. The z-score of the
graphlet in the disease network is —0.08, while the z-score
for this graphlet is 43.40 in the normal state network of
the same tissue. We also observed a four fold difference in
the counts of this graphlet in these two networks.

There are only six different proteins inducing this
graphlet in the disease network and 43 different pro-
teins induce the same graphlet in the normal state
network. Four of these proteins are common in both
networks. After filtering out the common proteins from
the set of 43 proteins in the normal state network, the
remaining proteins are assessed for functional enrich-
ment. Table 3 shows the top three most significantly
enriched functions. The count values in the table show
the number of proteins in the set with that specific
function. The proteins inducing this graphlet in the
normal state network are related with growth factor
activity and positive regulation of cell division, indi-
cating possible loss of these functions in the disease
state.

Figure 6 shows another significant graphlet with a dif-
ferential recurrence in the disease state with respect to the
normal state of the prostate gland tissue. The z-score of
the graphlet in the diseased prostate gland tissue network
is 68.68; whereas, the z-score of the same graphlet is 7.63
in the normal network. The graphlet appears nearly nine
times more in the diseased state than it does in the normal
condition.
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in-complex-with

catalysis-precede

Fig. 5 A differentially recurring graphlet in the normal and disease
states of thalamus lateral nuclei tissue network. Protein A and protein
B are members of the same protein complex and protein B catalyzes a
reaction before protein A. All three proteins are able to change each
other’s states

There are 74 distinct proteins that induce this graphlet
in the disease network and a 28 protein subset of these
proteins induce the same graphlet in the normal net-
work. Table 4 shows the top three functional annota-
tion clusters of the 46 proteins specific to the disease
network. These proteins are highly associated with the

in-complex-with
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Fig. 6 A differentially recurring graphlet in the diseased and normal
states of the prostate gland network. Protein A and B are the
members of the same protein complex and protein A catalyses a
reaction before protein C. The state-change relations exhibit the
feed-forward loop motif

transmembrane receptor protein tyrosine kinase signaling
pathway, growth factor activity, and positive regulation of
cell division.

As the last example of pair of conditions, we com-
pare diseased and normal skin tissues. The graphlet
shown in Fig. 7 occurs only in the normal state of

Table 3 Functional annotation term clusters related with the proteins of the normal thalamus lateral nuclei tissue network inducing

the graphletin Fig. 5

Annotation Cluster 1 Enrichment Score: 20.21

Category Term Count P-value
D GOTERM_BP_FAT fibroblast growth factor receptor signaling pathway 13 2.3E-25
EGG_PATHWAY hsa04010:MAPK signaling pathway 13 4.8E-12
Annotation Cluster 2 Enrichment Score: 11.04

Category Term Count P-value
KEGG_PATHWAY hsa05218:Melanoma 10 53E-13
SP_PIR_KEYWORDS growth factor 10 1.9E-12
GOTERM_MF_FAT growth factor activity 10 1.2E-10
Annotation Cluster 3 Enrichment Score: 9.97

Category Term Count P-value
PIR_SUPERFAMILY PIRSF001783 fibroblast growth factor 7 6.9E-14
SP_PIR_KEYWORDS mitogen 7 8.7E-11
GOTERM_BP_FAT positive regulation of cell division 7 40E-10
GOTERM_BP_FAT regulation of cell division 7 1.3E-9
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Table 4 Functional annotation term clusters related with the proteins of the diseased prostate gland tissue network inducing the

graphletin Fig. 6

Annotation Cluster 1 Enrichment Score: 17.90

Category Term Count P-value
GOTERM_BP_FAT TM receptor protein tyrosine kinase signaling pathway 18 5.0E-20
GOTERM_BP_FAT enzyme linked receptor protein signaling pathway 18 6.6E-17
Annotation Cluster 2 Enrichment Score: 16.20

Category Term Count P-value
SP_PIR_KEYWORDS growth factor 14 1.6E-18
GOTERM_MF_FAT growth factor activity 14 6.0E-16
Annotation Cluster 3 Enrichment Score: 8.72

Category Term Count P-value
SP_PIR_KEYWORDS mitogen 7 3.1E-10
GOTERM_BP_FAT positive regulation of cell division 7 1.9E-9
GOTERM_BP_FAT regulation of cell division 7 6.03E-9

the skin tissue and it does not occur in the disease
state network at all. All the 69 proteins that induce this
graphlet in the normal network are analyzed for func-
tional enrichment. The top three most enriched term
groups for the proteins that induce this graphlet is shown
in Table 5. Most of the proteins participate in trans-
membrane transport activities and further investigation
regarding the lack of these functions in the diseased

interacts-with

catalysis-precede

Fig. 7 A differentially recurring graphlet in the normal and diseased
state of the skin tissue network. Protein A and B interact physically and
change states of each other. Protein B catalyzes a metabolic reaction
before proteins A and C. Protein C also changes the state of protein B

skin tissue may help towards understanding the disease
mechanisms.

Discussion

Statistically significantly recurring directed graphlets in a
biological network have potential biological applications
as demonstrated in the Results section. However, biolog-
ical relevance of differential graphlets need to be investi-
gated further in order to use them as practical biomarkers
at the network level.

The method proposed in this paper is a brute-force
counting method which is not the computationally most
efficient solution for this problem. Especially, for graphlets
of larges sizes, which may correspond to certain biolog-
ical network modules, more efficient counting strategies
should be sought. The work presented in this article is a
first step that shows networks of different types can be
analyzed in an integrated fashion and there are signifi-
cantly recurring modules in biological networks that pro-
vide a useful characterization of genom-scale integrated
networks.

Conclusions

In this paper, we have proposed a bitwise encoding of
multi-label directed edges for counting graphlets of size
2-3 with a hash-based approach. We have applied the
proposed methodology on 141 tissue/disease specific net-
works and identified statistically significant graphlets.
We have also shown that graphlets can be used for
effective comparison of tissue specific networks. This
study is a first attempt for counting multi-label directed
graphlets in genome-scale integrated networks. In the
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Table 5 Functional annotation term clusters related with the proteins of the normal skin tissue network inducing the graphlet in Fig. 7

Annotation Cluster 1

Enrichment Score: 76.88

Category Term Count P-value
GOTERM_MF_FAT ion channel activity 57 14E-77
GOTERM_MF_FAT substrate specific channel activity 57 8.5E-77
GOTERM_MF_FAT channel activity 57 6.8E-76
GOTERM_MF_FAT passive transmembrane transporter activity 57 7.8E-76
Annotation Cluster 2 Enrichment Score: 75.69

Category Term Count P-value
GOTERM_MF_FAT metal ion transmembrane transporter activity 56 1.8E-79
GOTERM_MF_ALL cation transmembrane transporter activity 56 3.6E-68
Annotation Cluster 3 Enrichment Score: 73.73

Category Term Count P-value
GOTERM_BP_FAT calcium ion transport 52 4.5E-91
GOTERM_BP_FAT di-, tri-valent inorganic cation transport 52 2.3E-85
GOTERM_BP_FAT metal ion transport 52 9.7E-62
GOTERM_BP_FAT cation transport 52 9.6E-58

future, computationally more efficient algorithms can
be designed for counting graphlets of larger sizes. In
addition, placement of graphlets in higher level sys-
tematic groups such as molecular complexes, signaling
pathways, and metabolic networks will help molecular
biologists interpret the results and construct novel biolog-
ical hypotheses.
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