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Abstract

Background: Analysis of integrated genome-scale networks is a challenging problem due to heterogeneity of
high-throughput data. There are several topological measures, such as graphlet counts, for characterization of
biological networks.

Results: In this paper, we present methods for counting small sub-graph patterns in integrated genome-scale
networks which are modeled as labeled multidigraphs. We have obtained physical, regulatory, and metabolic
interactions between H. sapiens proteins from the Pathway Commons database. The integrated network is filtered for
tissue/disease specific proteins by using a large-scale human transcriptional profiling study, resulting in several tissue
and disease specific sub-networks. We have applied and extended the idea of graphlet counting in undirected
protein-protein interaction (PPI) networks to directed multi-labeled networks and represented each network as a
vector of graphlet counts. Graphlet counts are assessed for statistical significance by comparison against a set of
randomized networks. We present our results on analysis of differential graphlets between different conditions and on
the utility of graphlet count vectors for clustering multiple condition specific networks.

Conclusions: Our results show that there are numerous statistically significant graphlets in integrated biological
networks and the graphlet signature vector can be used as an effective representation of a multi-labeled network for
clustering and systems level analysis of tissue/disease specific networks.
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Background

With the accumulation of high-throughput omics data

in public databases, integrative studies on heterogenous

and dynamic biological networks have become possible.

Repositories, such as Pathway Commons [1], BioGRID

[2], and the Human Protein Reference Database (HPRD)

[3], collect and curate associations between genes, pro-

teins, and chemical compounds from various high and

low throughput data sources. In addition, there are

efforts, such as BioPAX [4], towards a standardized
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representation and exchange of different types of net-

works between databases and applications. Although the

data for various types of interactions such as regulatory,

metabolic, and physical interactions are available in these

repositories, joint analysis of these data in a single inte-

grated network remains a challenge. The software suite

Paxtools [5] is a rich collection of methods for querying,

visualizing, and converting integrated BioPAX networks;

however, advanced algorithms, such as graphlet counting,

are yet to be added to the expanding repository of this

open source project.

In parallel with the increase in the volume of net-

work data, modeling of the dynamic nature of networks

becomes a necessity. There have been studies to obtain

tissue specific protein-protein interaction networks [6, 7],
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functional interaction networks [8], regulatory networks

[9], and pathways [10]. However, to the best of our

knowledge, there is no study that provides an integrated

dynamic view of physical, regulatory, and metabolic

interactions.

Graphlets are small sub-graphs that provide more

detailed topological statistics for a graph. As an exten-

sion of single node statistics, such as average degree and

degree distribution, graphlets give a broader view around

a node. Introduced by Pržulj in 2007 [11] graphlets have

been shown to be effective in analysis and comparison

of biological networks [12]. Due to the combinatorial

expansion of different types of graphlets, computation-

ally efficient counting of graphlets is a challenging prob-

lem. Various algorithms have been developed in recent

years for counting directed or undirected graphlets of

size 2–5, efficiently [13–15]. However, none of these

methods consider multi-label edges. The combinatorial

expansion of different types of graphlets is more dramatic

when directed and multi-label edges are considered. In

this paper, without tackling computational efficiency, we

propose a straightforward method for counting directed

multi-label graphlets of size 2–3 and assess the utility of

these graphlets in tissue specific networks. To the best of

our knowledge, this is the first study to address directed

multi-label graphlets in integrated networks. By counting

graphlets in several different tissue specific networks, we

have identified many statistically significant graphlets. We

also utilized graphlet signature vectors for clustering and

systems level analysis of tissue/disease specific networks.

The rest of the paper is organized as follows. We first

describe how we constructed tissue specific integrated

networks by combining Pathway Commons networks

with a human transcriptome profiling study. Next, we pro-

pose an edge encoding approach to count graphlets using

simple hashing. The experimental results are followed by

a brief conclusion.

Methods

In this section, we describe the details of construction of

tissue and disease specific networks using the Pathway

Commons Database [1] and a human body transcriptional

profiling study accessible at the NCBI GEO database

[16] with accession number GSE7307. We also intro-

duce directed and multi-labeled graphlets and outline a

method for counting two to three node graphlets using a

hash-based strategy. We conclude this section by describ-

ing the details of statistical significance assessment of

graphlet counts.

Datasets

We have used twomain resources to acquire the data used

in this study: 1) Pathway Commons [1] and 2) NCBI GEO

(Gene Expression Omnibus) [16]. The details of the two

data sources and how they are integrated are explained in

the next two subsections.

Pathway Commons integrated network

Pathway Commons is an integrated resource with a reper-

toire of applications and data for biological pathway anal-

ysis [1]. It is also closely integrated with BioPAX [4], which

is an ontological model for integration and exchange

of heterogenous biological pathway data. Although the

BioPAX format provides the means for integration of

various pathway analysis tools, the SIF (Simple Interac-

tion Format), originally created for use with Cytoscape

[17], was sufficient for the purposes of this study. We

downloaded Pathway Commons Version 8 (in extended

binary SIF format) [18] for human genes identified by

their HGNC [19] names. The dataset is a collection

of several resources such as Reactome [20], HPRD [3],

and BioGRID [2] and also contains metabolic inter-

actions with compounds; however, in this study, we

ignored compound interactions and focused only on the

protein-protein associations. The resulting network con-

tains 883,211 interactions between 19,537 human pro-

teins. The types and numbers of interactions are given in

Table 1. interacts-with and in-complex-with type interac-

tions describe undirected associations; whereas, the other

five types of interactions in the network are directed rela-

tions between proteins. All of the proteins pairs with

phosphorylation and transport control relations are also

indicated as having a state-change relationship; therefore,

we ignored these relatively low abundance interaction

types in this study. As a result, we obtained an integrated

human network of 19,537 proteins with 523,498 undi-

rected edges and 337,117 directed edges. The network

contains physical, regulatory, and metabolic relations.

By consolidating multiple-edges into single multi-labeled

directed edges between protein pairs, the final network

contains 1,521,508 directed edges between 760,754 pro-

tein pairs. In this representation, in addition to undirected

interactions, each directed interaction is also modeled

Table 1 Types and number of interactions in the Pathway
Commons Version 8. The interactions are among proteins only.
Metabolic interactions involving chemical compounds are
ignored in this study

Interaction type Number of gene pairs with this
interaction type

Interacts-with 369,895

In-complex-with 153,603

Controls-phosphorylation-of 15,636

Catalysis-precedes 120,948

Controls-expression-of 110,013

Controls-transport-of 6960

Controls-state-change-of 106,156
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as a bi-directional edge such as controls-expression-of

and expression-controlled-by. In the Methods section, we

describe how multi-labeled directed edges are modeled

using a binary encoding.

Tissue/disease specific networks

We have used a human transcriptional profiling study for

identifying genes that are expressed in specific conditions.

We obtained a network for a specific tissue type by con-

structing the subgraph of the original Pathway Commons

network using the set of active genes in that tissue. Specif-

ically, given the integrated network as a graph G = (V,E)

and the set of active genes for a condition as Vt , the tis-

sue specific graph is given as Gt = (Vt ,Et) where Et =

{(a, b) : ∀a, b ∈ Vt , (a, b) ∈ E}. The method of identifying

the set of active genes in a specific condition is critical

to this construction process. For this purpose, we used

the results of a large scale microarray study accessible

at the NCBI GEO database [16] with accession number

GSE7307. Roth et al. profiled 90 distinct tissue types with

several samples per tissue type (677 samples in total) using

the Affymetrix U133 plus 2.0 array. Some tissues were also

profiled under different states, such as disease and treated

states, resulting in 141 different sample types. We have

used the RMA (robustmulti-array) normalized expression

values to identify active genes. There are various methods

for discretization of expression data [21]. In this study, we

used a simple approach for identification of gene activ-

ity. We determined an approximate overall noise level, r,

across all samples and deemed every gene with expres-

sion level above r as an active gene. In our experiments,

we used r = 10.0, which resulted in different networks

of 11,931 nodes (retrocervical infiltrate normal sample) to

15,853 nodes (MDA-MB231 control sample) for the 141

tissue types we considered.

Counting directed graphlets

In this section, we give the details of our graph repre-

sentation approach for counting directed multi-labeled

graphlets and describe how the statistical significance of

graphlet counts are assessed using a set of randomized

networks.

Edge encoding in labeledmultidigraphs

Given a list of labeled interactions between pairs of pro-

teins, we use an adjacency-list based implementation

of the underlying graph by encoding each multi-labeled

directed edge from a protein pa to a protein pb as an 8-

bit vector. The first two bits of the edge vector from pa to

pb is used for undirected interactions, the following three

bits are used to represent directed interactions from pa to

pb, and the last three bits are used for the directed interac-

tions from pb to pa. Table 2 shows the assignment of labels

to specific bits in the encoding.

Table 2 Encoding of multi-labeled directed edges as 8-bit
vectors

Bit Interaction type Value

1 Interacts-with 0/1

2 In-complex-with 0/1

3 Catalysis-precedes 0/1

4 Controls-expression-of 0/1

5 Controls-state-change-of 0/1

6 Catalysis-succeeds 0/1

7 Expression-controlled-by 0/1

8 State-changed-by 0/1

For example, given a network with the following list of

interactions between proteins pa and pb:

pa pb in-complex-with

pa pb controls-expression-of

pb pa catalysis-precedes

The encoded edge from pa to pb in pa’s adjacency list

will be 01010100; whereas, the symmetric edge in pb’s

adjacency list will be 01100010. In this encoding, both

proteins’ adjacency lists contain all the information about

their interactions with their neighbors.

Counting algorithm

We use a hashing based strategy to count all the graphlets

in a network. Our method is a naïve brute-force method,

which has O(|V| · dk−1) time complexity, where V is the

set of nodes, d is the average degree in the network, and

k is the maximum size of the counted graphlets. The size

of a graphlet is the number of nodes in that graphlet.

In this study, we count up to 3-node graphlets; hence,

the running time complexity is O(|V| · d2). This brute-

force method will be prohibitively expensive for counting

graphlets of larger sizes; however, in this study, we show

that, in an integrated network with various types of edges,

the number of distinct 3-node graphlets are on the order

of thousands and 3-node graphlets are powerful in identi-

fying different tissues and diseases.

A 2-node graphlet is simply represented by the binary

encoded edge vector between two nodes. The edge vector

is used as the key in a standard implementation of hash

tables in the Java standard library by using the default hash

function for strings. Since the edge is represented as a

directed edge from a source node to a target node and the

target node stores a different encoding, i.e., the symmet-

ric encoding, of the same edge, the same 2-node graphlet

is counted twice, but in two separate hash entries. These
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isomorphic graphlets are taken care of when we report the

graphlet counts in the post-processing stage. A single rep-

resentative of all isomorphic graphlet counts are reported

by employing an isomorphism test before a graphlet count

is reported. In the networks we analyzed, there are 56

different types of 2-node graphlets.

We represent a 3-node graphlet between three nodes na,

nb, and nc as a concatenation of three binary encoded edge

vectors from na to nb, from nb to nc, and from nc to na,

resulting in a string of length 24. The first two edges are

enumerated from the set |E| using the adjacency lists and

in case there is no edge between nc and na, the encoded

edge is simply given as 00000000. Similar to counting 2-

node graphlets, the concatenated encoding of length 24

is used as the key in a hash table of graphlets counts.

Note that, in this appriach, a multi-label edge is used to

count the most specific occurrence of a graphlet. Subsets

of the labels of a multi-label edge do not contribute to

the counts of more generic graphlets. We handle isomor-

phic graphlets in the post-processing phase and report

the count for one representative graphlet. We also employ

a count threshold and report only graphlets that occur

at least 10 times in a network. In the networks we ana-

lyzed, there are 7346 different types of 3-node graphlets

that occur at least 10 times in at least one of the 141 tis-

sue specific networks. Counting all the 2–3 node graphlets

in the largest network takes about 15 min on a MacBook

Air with a 1.4 GHz Intel Core i5 processor and 4 GBs

of memory.

Computation of statistical significance

We compute the z-score of a graphlet count by compar-

ison against the count of that graphlet in an ensemble of

randomized networks with the same degree distribution

as the real networks. The degree distribution of a multi-

labeled directed graph is a multi-dimensional distribution

accounting for different types of incoming and outgo-

ing edges of a node. The most frequent multi-label edge

in the 141 tissue specific networks is the edge 10000000

(i.e., {interacts-with} edge) with an average recurrence

of 542,829.58 and the least frequent multi-label edge is

the edge 00101101 (i.e., {catalysis-precedes, controls-state-

change-of, catalysis-succeeds, state-changed-by} edge)

with an average recurrence of 10.83. Out of the 56 differ-

ent multi-label edges, 12 of them recur more than 1000

times on the average and 28 of them recur more than 100

times on the average in the 141 tissue specific networks.

We randomized each of the 141 tissue specific networks

by the edge-shuffling method. Each randomly chosen

edge pair (of the same multi-label) in the graph is shuf-

fled to replace the existing edges with a new pair of edges

with the same multi-label but with different interaction

partners. For example, given two directed edges from pa
to pb and pc to pd with the same multi-labels, the edges

pa → pd and pc → pb are inserted into the random-

ized graph. During this process, we make sure the selected

edge pairs contain four distinct proteins to avoid intro-

duction of self edges in the randomized networks. We

counted each two-node and three-node graphlets in all

of the 141 randomized networks and obtained the mean

count, µg , and the standard deviation, σg , of the count of

a graphlet g. We tested the graphlet frequency distribu-

tions in the randomized networks and verified that they

follow a normal distribution. The z-score of the count

cg of a graphlet g in a tissue-specific network is then

given by:

zg =
cg − µg

σg
(1)

If a graphlet that exists in a real tissue-specific network

does not occur in any of the randomized networks, it is

assigned a z-score of ∞.

Results

Directed multi-labeled graphlets are analyzed in three dif-

ferent aspects. We first investigate statistically the most

significant graphlets across all tissues. Then, we assess

the utility of graphlet signatures in comparison of tis-

sue/disease specific networks. Finally, we analyze differ-

entially occurring graphlets between two conditions.

Statistically significant graphlets

In this section, we report the most significant graphlets

in the analyzed networks. Since the graphlets with zero

count in all of the randomized networks could not be

assigned a numerical z-score value other than infinity, we

ignored these graphlets. There are 2766 such graphlets.

275 of the remaining 4636 graphlets have z-scores

over 100.00.

Figure 1 shows the most significant graphlet with an

average z-score of 6913.36 among the 141 conditions. In

the 141 randomized networks, this graphlet occurs only

10.35 times; whereas, in the real networks, the graphlet

occurs more than fifty thousand times on the average.

The graphlet contains both metabolic and protein com-

plex associations. In addition, a biologically interesting

observation is the abundance of protein pairs that both

precede and succeed each other in catalyzing a cascade of

metabolic reactions.

Due to the high abundance of statistically significant

graphlets, we analyzed graphlets with high z-score vari-

ance as biologically interesting graphlets. Figure 2 shows

the graphlet with largest variation of z-score among the

141 conditions. The graphlet has an average z-score of

4656.97 with a standard deviation of 1570.49. The graphlet

is a sub-complex of three proteins, in which the state

change interactions exhibit a feed-forward loop motif.

This graphlet occurs in the myometrium disease tissue
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Fig. 1 The most significant graphlet with an average z-score of
6913.36. A graphlet of three nodes. Proteins A and B play roles in
different metabolic pathways by preceding each other. Proteins A
and C are in the same molecular complex

(MDT) most frequently with a z-score of 7999.00. The

same graphlet occurs in the retrocervical infiltrate nor-

mal tissue (RINT) with a z-score of 1702.81 showing

more than four fold decrease. This difference could be

explained by the fact that the MDT network has the sec-

ond highest number of active genes (15,785 nodes), while

the RINT network has the least number of active genes

(11,931 nodes). However, theMDT network has less num-

ber of genes than the MDA-MB231 cells control sample

Fig. 2 A graphlet with high z-score variation among the 141
conditions. The graphlet is a sub-complex of three proteins, in which
the state change interactions exhibit a feed-forward loop motif

and there are 688 more occurrences of this graphlet in the

MDT network compared to the MDA-MB231 network.

Another interesting graphlet with a high variance

among the conditions is shown in Fig. 3. The graphlet

is state change clique of three proteins in which all the

members change each other’s states and two of the nodes

are in a complex together. This graphlet occurs in the

endometrium ovary disease tissue (EODT) network 7564

times; while, the skeletal muscle superior quadracep nor-

mal tissue (SMSQNT) tissue contains 1378 instances of

this graphlet. The average occurrence of this graphlet in

the randomized networks is 2.0.

Clustering of tissues/diseases using graphlet signatures

We used the z-scores of graphlets (again by ignoring

the graphlets with zero counts in the randomized net-

works) to represent each tissue specific network as a

one-dimensional vector of graphlet signatures. There are

various methods that can be applied on a set of objects

represented as vectors. Below, we report our results on

hierarchical clustering of tissue specific networks and

principal component analysis (PCA) based reduction of

graphlet signatures. We used the TM4 MeV: MultiExper-

iment Viewer version 4.9 [22] for conducting these analy-

ses. MeV is originally developed for analysis of microarray

data; however, the implementation of standard methods

such as PCA, K-means clustering, and hierarchical clus-

tering can be applied to any dataset with a set of objects

represented as vectors.

When we performed PCA on all of the 141 graphlet sig-

natures, the first three principle components were able to

capture 96.126% of the variance in the dataset. This result

Fig. 3 Another graphlet with high z-score variation among the 141
conditions. The graphlet is clique of three proteins in which all the
members change each other’s states and two of the nodes are in a
complex together
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shows that although there are thousands of different types

of graphlets within networks, the graphlet frequencies are

highly correlated and the networks can be described in a

much lower dimensional space.

In order to show the effectiveness of clustering using

graphlet signatures, we have selected a subset of 21 brain

tissues. Figure 4 shows the result of hierarchical clustering

of these tissues, where brain parts with similar functions

are clustered together. Four of the five thalamus tissues are

in the same subcluster if the tree is cut at a level to produce

four main clusters. When we use the gene expression val-

ues in the microarray dataset GSE7307 to cluster the brain

tissues, thalamus tissues fall in different clusters (data not

shown). In addition, trivial features such as the number

of tissue-specific genes do not produce the same cluster-

ing as with the graphlet signatures (data not shown). In

summary, these results suggest that graphlet signatures

provide a potentially different perspective on comparison

of different tissues.

Differential graphlets between two conditions

Differential counts of graphlets in the networks of disease

and normal states of tissues maybe helpful in under-

standing disease mechanisms. We use graphlet z-score

signatures to identify differentially recurring significant

graphlets across networks. We conducted differential

analyses on the networks of thalamus lateral nuclei,

prostate gland, and skin tissue samples. The set of proteins

in the differentially recurring graphlets were analyzed fur-

ther for functional enrichment using DAVID functional

annotation tool [23].

Figure 5 shows a differentially recurring graphlet in the

normal and the disease thalamus lateral nuclei tissues with

the largest fold change of z-scores. The z-score of the

graphlet in the disease network is –0.08, while the z-score

for this graphlet is 43.40 in the normal state network of

the same tissue. We also observed a four fold difference in

the counts of this graphlet in these two networks.

There are only six different proteins inducing this

graphlet in the disease network and 43 different pro-

teins induce the same graphlet in the normal state

network. Four of these proteins are common in both

networks. After filtering out the common proteins from

the set of 43 proteins in the normal state network, the

remaining proteins are assessed for functional enrich-

ment. Table 3 shows the top three most significantly

enriched functions. The count values in the table show

the number of proteins in the set with that specific

function. The proteins inducing this graphlet in the

normal state network are related with growth factor

activity and positive regulation of cell division, indi-

cating possible loss of these functions in the disease

state.

Figure 6 shows another significant graphlet with a dif-

ferential recurrence in the disease state with respect to the

normal state of the prostate gland tissue. The z-score of

the graphlet in the diseased prostate gland tissue network

is 68.68; whereas, the z-score of the same graphlet is 7.63

in the normal network. The graphlet appears nearly nine

times more in the diseased state than it does in the normal

condition.

Fig. 4 Hierarchical clustering of the brain tissue networks using graphlet signatures. Brain parts with similar functions are clustered together. Edge
lengths in the hierarchical cluster show the Pearson’s correlation coefficients of graphlet signatures of different clusters
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Fig. 5 A differentially recurring graphlet in the normal and disease
states of thalamus lateral nuclei tissue network. Protein A and protein
B are members of the same protein complex and protein B catalyzes a
reaction before protein A. All three proteins are able to change each
other’s states

There are 74 distinct proteins that induce this graphlet

in the disease network and a 28 protein subset of these

proteins induce the same graphlet in the normal net-

work. Table 4 shows the top three functional annota-

tion clusters of the 46 proteins specific to the disease

network. These proteins are highly associated with the

Fig. 6 A differentially recurring graphlet in the diseased and normal
states of the prostate gland network. Protein A and B are the
members of the same protein complex and protein A catalyses a
reaction before protein C. The state-change relations exhibit the
feed-forward loop motif

transmembrane receptor protein tyrosine kinase signaling

pathway, growth factor activity, and positive regulation of

cell division.

As the last example of pair of conditions, we com-

pare diseased and normal skin tissues. The graphlet

shown in Fig. 7 occurs only in the normal state of

Table 3 Functional annotation term clusters related with the proteins of the normal thalamus lateral nuclei tissue network inducing
the graphlet in Fig. 5

Annotation Cluster 1 Enrichment Score: 20.21

Category Term Count P-value

D GOTERM_BP_FAT fibroblast growth factor receptor signaling pathway 13 2.3E-25

EGG_PATHWAY hsa04010:MAPK signaling pathway 13 4.8E-12

Annotation Cluster 2 Enrichment Score: 11.04

Category Term Count P-value

KEGG_PATHWAY hsa05218:Melanoma 10 5.3E-13

SP_PIR_KEYWORDS growth factor 10 1.9E-12

GOTERM_MF_FAT growth factor activity 10 1.2E-10

Annotation Cluster 3 Enrichment Score: 9.97

Category Term Count P-value

PIR_SUPERFAMILY PIRSF001783:fibroblast growth factor 7 6.9E-14

SP_PIR_KEYWORDS mitogen 7 8.7E-11

GOTERM_BP_FAT positive regulation of cell division 7 4.0E-10

GOTERM_BP_FAT regulation of cell division 7 1.3E-9
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Table 4 Functional annotation term clusters related with the proteins of the diseased prostate gland tissue network inducing the
graphlet in Fig. 6

Annotation Cluster 1 Enrichment Score: 17.90

Category Term Count P-value

GOTERM_BP_FAT TM receptor protein tyrosine kinase signaling pathway 18 5.0E-20

GOTERM_BP_FAT enzyme linked receptor protein signaling pathway 18 6.6E-17

Annotation Cluster 2 Enrichment Score: 16.20

Category Term Count P-value

SP_PIR_KEYWORDS growth factor 14 1.6E-18

GOTERM_MF_FAT growth factor activity 14 6.0E-16

Annotation Cluster 3 Enrichment Score: 8.72

Category Term Count P-value

SP_PIR_KEYWORDS mitogen 7 3.1E-10

GOTERM_BP_FAT positive regulation of cell division 7 1.9E-9

GOTERM_BP_FAT regulation of cell division 7 6.03E-9

the skin tissue and it does not occur in the disease

state network at all. All the 69 proteins that induce this

graphlet in the normal network are analyzed for func-

tional enrichment. The top three most enriched term

groups for the proteins that induce this graphlet is shown

in Table 5. Most of the proteins participate in trans-

membrane transport activities and further investigation

regarding the lack of these functions in the diseased

Fig. 7 A differentially recurring graphlet in the normal and diseased
state of the skin tissue network. Protein A and B interact physically and
change states of each other. Protein B catalyzes a metabolic reaction
before proteins A and C. Protein C also changes the state of protein B

skin tissue may help towards understanding the disease

mechanisms.

Discussion

Statistically significantly recurring directed graphlets in a

biological network have potential biological applications

as demonstrated in the Results section. However, biolog-

ical relevance of differential graphlets need to be investi-

gated further in order to use them as practical biomarkers

at the network level.

The method proposed in this paper is a brute-force

counting method which is not the computationally most

efficient solution for this problem. Especially, for graphlets

of larges sizes, which may correspond to certain biolog-

ical network modules, more efficient counting strategies

should be sought. The work presented in this article is a

first step that shows networks of different types can be

analyzed in an integrated fashion and there are signifi-

cantly recurring modules in biological networks that pro-

vide a useful characterization of genom-scale integrated

networks.

Conclusions

In this paper, we have proposed a bitwise encoding of

multi-label directed edges for counting graphlets of size

2–3 with a hash-based approach. We have applied the

proposed methodology on 141 tissue/disease specific net-

works and identified statistically significant graphlets.

We have also shown that graphlets can be used for

effective comparison of tissue specific networks. This

study is a first attempt for counting multi-label directed

graphlets in genome-scale integrated networks. In the
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Table 5 Functional annotation term clusters related with the proteins of the normal skin tissue network inducing the graphlet in Fig. 7

Annotation Cluster 1 Enrichment Score: 76.88

Category Term Count P-value

GOTERM_MF_FAT ion channel activity 57 1.4E-77

GOTERM_MF_FAT substrate specific channel activity 57 8.5E-77

GOTERM_MF_FAT channel activity 57 6.8E-76

GOTERM_MF_FAT passive transmembrane transporter activity 57 7.8E-76

Annotation Cluster 2 Enrichment Score: 75.69

Category Term Count P-value

GOTERM_MF_FAT metal ion transmembrane transporter activity 56 1.8E-79

GOTERM_MF_ALL cation transmembrane transporter activity 56 3.6E-68

Annotation Cluster 3 Enrichment Score: 73.73

Category Term Count P-value

GOTERM_BP_FAT calcium ion transport 52 4.5E-91

GOTERM_BP_FAT di-, tri-valent inorganic cation transport 52 2.3E-85

GOTERM_BP_FAT metal ion transport 52 9.7E-62

GOTERM_BP_FAT cation transport 52 9.6E-58

future, computationally more efficient algorithms can

be designed for counting graphlets of larger sizes. In

addition, placement of graphlets in higher level sys-

tematic groups such as molecular complexes, signaling

pathways, and metabolic networks will help molecular

biologists interpret the results and construct novel biolog-

ical hypotheses.
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