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A model Hamiltonian for photoinduced homogeneous proton-coupled electron transfer reactions is
presented, and the equations of motion for the reduced density matrix elements in an electron-proton
vibronic basis are derived. This formalism enables a detailed analysis of the proton vibrational
dynamics, as well as the dynamics of the electronic state populations, following photoexcitation.
The application of this theory to model systems provides insight into the fundamental physical
principles underlying these types of processes. The initial nonequilibrium state is prepared by
vertical photoexcitation from the ground electronic state to a coherent vibrational mixture in the
donor electronic state. This nonstationary state relaxes to the equilibrium distributions in the donor
and acceptor electronic states via dynamical processes arising from nonadiabatic transitions between
the donor and acceptor vibronic states concurrent with energy dissipation to the bath. During the
initial stage, when the proton vibrational population in the donor state is distributed among higher
vibrational states and the donor proton wavepacket is oscillating with large amplitude, the electronic
state population dynamics exhibits virtually no hydrogen/deuterium isotope effect. After vibrational
relaxation, when the proton vibrational population in the donor state becomes concentrated in the
lower vibrational states and the donor proton wavepacket becomes more localized near the
minimum of the donor potential, a significant hydrogen/deuterium isotope effect on the electronic
state population dynamics is exhibited. These model system calculations lead to experimentally
testable predictions about the qualitative behavior of these isotope effects. © 2009 American
Institute of Physics. �doi:10.1063/1.3249964�

I. INTRODUCTION

The coupling of electron transfer reactions to proton mo-
tion plays a central role in a variety of biological charge
transport and catalytic processes.1–6 Understanding such
proton-coupled electron transfer �PCET� reactions is impor-
tant for designing alternative renewable energy sources, such
as artificial photosynthetic systems and solar fuel cells.7,8

These types of energy sources require the activation of mol-
ecules by light to induce the forming and breaking of bonds,
often involving electron transfer accompanied by proton
transfer reactions.

Numerous experimental studies focused on photoin-
duced PCET processes, where the PCET reaction is initiated
by a laser pulse.9–20 In these experiments, the laser pulse
photoexcites an electron within a redox complex comprised
of an electron donor-acceptor pair separated by a hydrogen-
bonding interface. The electron transfer is often accompanied
by proton transfer within the hydrogen-bonding interface to
avoid high-energy intermediates. The electron transfer reac-
tion kinetics can be monitored by ultrafast time-resolved
spectroscopy. Evidence of proton tunneling may be observed
in the form of a hydrogen/deuterium isotope effect on the
reaction kinetics.

Theoretical approaches based on the nonadiabatic golden
rule formalism have been developed and applied to a wide

range of thermally activated PCET reactions.1,6,21–27 Photo-
induced PCET reactions, however, are essentially nonequi-
librium processes. Following photoexcitation, the electron,
proton, and coupled nuclear degrees of freedom are in a non-
equilibrium configuration, and thermal equilibrium is
achieved only after various relaxation processes. Modeling
these processes is challenging due to the quantum mechani-
cal nature of the tunneling proton28,29 and the dissipative
effects of the solvent environment. Photoinduced ET reac-
tions in condensed phase environments have been studied
using a variety of approaches, such as the generalized master
equation approach,30,31 quantum Fokker–Planck
approach,32–37 Redfield theory,38–51 path integral influence
functional approach,52–67 semiclassical theories,68–71 multi-
configuration time-dependent Hartree method,72–76 and
mixed/quantum classical approaches.69,77–80 In principle,
many of these approaches could be extended to study photo-
induced PCET reactions.

In the present paper, we investigate photoinduced PCET
processes using the reduced density matrix �RDM�
formalism.44,81,82 Our model consists of donor and acceptor
electronic states that are coupled to a bath representing the
condensed phase environment. A laser pulse excites an elec-
tron from the ground electronic state of the system to the
donor state. The subsequent electron transfer between the
donor and acceptor electronic states is accompanied by a
proton transfer reaction represented by a displacement of thea�Electronic mail: shs@chem.psu.edu.

THE JOURNAL OF CHEMICAL PHYSICS 131, 154502 �2009�

� � 131

http://dx.doi.org/10.1063/1.3249964
http://dx.doi.org/10.1063/1.3249964
http://dx.doi.org/10.1063/1.3249964


proton potential. Modeling the high-frequency vibrational
motion of the proton is challenging because it requires the
inclusion of highly excited proton vibrational states. The
RDM formalism enables us to study the time evolution of the
populations of the donor and acceptor electronic states, as
well as the dynamics of the associated proton vibrational
wavepackets. Our objective is to elucidate the physical basis
for the hydrogen/deuterium �H/D� isotope effect on the re-
laxation processes and to identify the key system properties
that impact this isotope effect.

An outline of the paper is as follows. In Sec. II A, we
present a model Hamiltonian for describing photoinduced
homogeneous PCET reactions, and in Sec. II B we perform a
canonical transformation of this model Hamiltonian to en-
able us to study model systems with strong coupling between
the electronic states and the bath modes. In Sec. II C, we
apply the RDM formalism to this canonically transformed
model Hamiltonian in order to derive the master equations
for the populations of the vibronic states following photoex-
citation. Section II D describes the methodology for analysis
of the proton vibrational wavepacket dynamics within the
RDM formalism. In Sec. III, we utilize this theoretical for-
mulation to investigate four model systems, analyzing the
origin of the H/D isotope effect on the dynamics, as well as
the impact of various system parameters on the PCET pro-
cess. Concluding remarks are presented in Sec. IV.

II. THEORY

A. Model Hamiltonian for the PCET reaction

In this subsection, we define a model Hamiltonian that
describes photoinduced homogeneous PCET processes. The
reactive system includes two diabatic electronic states: the
photoexcited donor state and the acceptor state. The electron
transfer from the donor state to the acceptor state is strongly
coupled to a proton transfer reaction. The proton potential
energy curves are UI�rp� and UII�rp� in the donor and accep-
tor states, respectively, where rp is the proton coordinate. A
laser pulse is assumed to instantaneously excite an electron
from the ground electronic state of the system to the donor
state, followed by dynamical processes involving electron
transfer between the donor and acceptor states and relaxation
to lower-energy proton vibrational states. This model system
is depicted in Fig. 1.

The operators ĉr
† , ĉr , ĉk

† , ĉk are the fermionic creation and
annihilation operators for the donor and acceptor electronic
states �r� and �k�. The energies �r and �k denote the electronic
energies of the photoexcited donor and acceptor states rela-
tive to the ground state. The donor and acceptor states are
coupled by the constant electronic coupling term Vrk, which
is assumed to be independent of the nuclear degrees of free-
dom. The intramolecular degrees of freedom of the molecule
�except for the transferring proton� and the surrounding sol-
vent molecules are modeled as a harmonic bath, where xi and
pi are the position and momentum coordinates of the ith
harmonic oscillator mode with masses and frequencies mi

and �i, respectively. The bath responds to the change in

charge distribution of the system, and the coupling constants
ci describe the coupling between the bath and the occupation
of the donor electronic state.

The Hamiltonian of the entire model system has the fol-
lowing form:

Ĥ = T̂p + ��r + UI�rp��ĉr
†ĉr + ��k + UII�rp��ĉk

†ĉk

+ �Vrkĉr
†ĉk + Vrk

� ĉk
†ĉr�

+�
i
	 pi

2

2mi
+

mi�i
2

2

xi + n̂r

ci

mi�i
2�2� , �1�

where T̂p is the proton kinetic energy and n̂r= ĉr
†ĉr is the

occupation number operator associated with the donor state.
The system-bath coupling parameters are described by the
spectral density function83

J��� =
�

2�
i

ci
2

mi�i
��� − �i� . �2�

The above Hamiltonian can be rewritten in terms of the har-

monic oscillator ladder operators b̂i
† and b̂i:

Ĥ = T̂p + ��r + UI�rp��ĉr
†ĉr + ��k + UII�rp��ĉk

†ĉk

+ �Vrkĉr
†ĉk + Vrk

� ĉk
†ĉr� +�

i

��i
b̂i
†b̂i +

1

2
�

+ n̂r�
i

�ci


2�mi�i

�b̂i
† + b̂i� + n̂r

2�
i

ci
2

2mi�i
2 . �3�

This model does not include direct coupling between the
proton vibrational mode and the bath. The proton vibrational
mode is indirectly coupled to the bath, however, because the

FIG. 1. Depiction of the photoinduced homogeneous PCET model system.
The ground, donor, and acceptor state proton potentials U0, UI, and UII with
minima at rp

0, rp
I , and rp

II are depicted in green, blue, and red, respectively.
The energies �r and �k of the donor and acceptor electronic states are indi-
cated. Prior to photoexcitation, the proton wavepacket is in the ground vi-
brational state of the ground electronic state. Photoexcitation from the
ground electronic state to the donor electronic state is depicted by the green
arrow. The initial wavepacket following photoexcitation is a coherent vibra-
tional mixture in the donor electronic state. The red and blue arrows indicate
the relaxation processes arising from nonadiabatic transitions between the
donor and acceptor vibronic states concurrent with energy dissipation to the
bath. The blue arrow corresponds to proton vibrational relaxation in the
donor state via the indirect mechanism involving nonadiabatic transitions,
and the red arrow corresponds to the PCET reaction. The blue and red
wavepackets depict the final equilibrium populations in the donor and ac-
ceptor states following the dynamical relaxation process.
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proton vibrational mode is coupled to the electronic states,
which in turn are coupled to the bath. Thus, although this
model does not include a direct mechanism for proton vibra-
tional relaxation, it does include an indirect mechanism for
proton vibrational relaxation via nonadiabatic transitions be-
tween the donor and acceptor states. Typically the electron
transfer reaction is more strongly coupled to the bath than
the proton transfer reaction because the electron transfers
over a much longer distance. In this case, the proton vibra-
tional relaxation is expected to occur on a faster timescale for
the indirect mechanism than for the direct mechanism, and
therefore the neglect of the direct coupling between the pro-
ton vibrational mode and the bath does not significantly im-
pact the ultrafast dynamical relaxation of the electronic state
populations.

B. Canonically transformed Hamiltonian

In this subsection, we derive the canonically transformed
Hamiltonian that allows us to study model systems with
strong system-bath coupling. A straightforward application
of the RDM formalism to the Hamiltonian given in Eq. �3�
would restrict the treatment to the weak system-bath cou-
pling case due to the perturbative treatment of the system-
bath interaction term. In order to capture the effects of the
strong interaction between the electronic state and the bath
modes, we apply the small polaron transformation84 to the
Hamiltonian of Eq. �3�:

H̃ = e−n̂rv̂Ĥen̂rv̂, �4�

where

v̂ = −�
i

ci


2�mi�i
3
�b̂i
† − b̂i� . �5�

The transformed Hamiltonian has the following form:

H̃ = T̂p + ��r + UI�rp��ĉr
†ĉr + ��k + UII�rp��ĉk

†ĉk

+ �Vrke
−v̂ĉr

†ĉk + Vrk
� ev̂ĉk

†ĉr� +�
i

��i�b̂i
†b̂i +

1
2� . �6�

This canonical transformation removes the linear coupling
between the electronic states and the bath. Instead, we have a
renormalized electronic coupling term, which is often de-
noted the bath-dressed electronic coupling term.55 Further-
more, this transformation introduces a shift in the donor elec-
tronic level, �r→�r−�s, where the solvent reorganization
energy �s is defined as

�s =
1

�
�
0

	

d�
J���

�
=�

i

ci
2

2mi�i
2 . �7�

The presence of the counter-term n̂r
2�s in the Hamiltonian of

Eq. �3� cancels this level shift. A related canonically
transformed model Hamiltonian has been used to describe
equilibrium electrochemical PCET.85

In order to apply the RDM formalism, the transformed

Hamiltonian H̃= ĤS+ ĤB+ V̂ is now partitioned into a system
Hamiltonian

ĤS = T̂p + ��r + UI�rp��ĉr
†ĉr + ��k + UII�rp��ĉk

†ĉk, �8�

a bath Hamiltonian

ĤB =�
i

��i�b̂i
†b̂i +

1
2� , �9�

and a perturbative term

V̂ = Vrke
−v̂ĉr

†ĉk + Vrk
� ev̂ĉk

†ĉr �10�

corresponding to the bath-dressed electronic coupling.55 At
finite temperature, the effect of this coupling term can be
quantified by an effective tunneling matrix element

eff=Vrk tr��̂Be−v̂�,83 which can be evaluated for a harmonic
bath as 
eff=Vrk exp�−�i�ci

2 /4�mi�i
3�coth����i /2��, where

�=1 /kBT. This effective coupling is smaller than the bare
electronic coupling element Vrk for finite temperatures and
large magnitudes of the system-bath coupling strength. As a
result, the perturbative treatment of the bath-dressed elec-
tronic coupling term is valid if the bare electronic coupling
element Vrk is reasonably small. Note that the perturbative
treatment of the system-bath coupling in Eq. �3� is restricted
to small system-bath coupling, whereas the perturbative
treatment of the bath-dressed coupling in Eq. �6� is restricted
to small electronic coupling but is valid for strong system-
bath coupling. Thus, this canonical transformation enables us
to treat the strong system-bath coupling case with the RDM
formalism described in the next subsection.

C. RDM formalism for photoinduced PCET

In the RDM formalism, the state of the system and bath
at any time t is described by the total density matrix �̂�t�, and
the time evolution of this density matrix is given by the
quantum Liouville equation86

�

�t
�̂�t� = −

i

�
�Ĥ, �̂�t�� . �11�

The reduced density operator 
̂�t� is obtained by taking the
trace over the bath degrees of freedom:82


̂�t� = trB��̂�t�� . �12�

The total density matrix is assumed to factorize into the
RDM and the bath density matrix at all times. Furthermore,
the bath is assumed to remain in thermal equilibrium

�i.e., �̂B=e−�ĤB / tr�e−�ĤB�� throughout the process. Thus,
�̂�t�= 
̂�t� � �̂B.

In this formalism, the interaction term is treated pertur-
batively up to second order, and the equations of motion of
the RDM are obtained in the basis of system eigenstates. The
matrix elements of the RDM in this basis are given by


���t�= ���
̂�t����, where ĤS���=E����. The equations of
motion for these matrix elements are known as the Redfield
equations.38,42,44,81 The RDM equations of motion can be fur-
ther simplified by employing the secular approximation,81,82

which decouples the equations of motion for the diagonal
�i.e., population� and off-diagonal �i.e., coherence� elements
of the RDM. The resulting equations of motion for the diag-
onal RDM elements are known as the Pauli master
equations.82 In standard Redfield theory, the perturbative
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term is usually assumed to be the system-bath coupling, so
this theory has been limited to weak system-bath coupling.
The canonical transformation described in the previous sub-
section allows us to treat the strong system-bath coupling
that is typical for PCET reactions.

In this subsection, we apply the RDM formalism to the
canonically transformed model Hamiltonian given in Eq. �6�.
The photoinduced homogeneous PCET process is described
in terms of nonadiabatic transitions between mixed electron-
proton vibronic states of the photoexcited donor state with
proton potential UI�rp� and the acceptor state with proton
potential UII�rp�. The RDM of the system is represented in
the electron-proton vibronic basis. The proton vibrational
states for the potentials UI�rp� and UII�rp� can be calculated
by solving the following Schrödinger equations:

�T̂p + UI�rp����
I �rp� = E�

I ��
I �rp� ,

�13�
�T̂p + UII�rp����

II�rp� = E�
II��
II�rp� .

The eigenstates of the system Hamiltonian are denoted
�r����

I � and �k����
II� when the photoexcited electron is in the

donor and acceptor states, respectively.
The diagonal matrix elements of the RDM in the

electron-proton vibronic basis are given by


r�,r��t� = ���
I ��r�
̂�t��r����

I � ,
�14�


k�,k��t� = ���
II��k�
̂�t��k����

II� ,

where 
r�,r��t� is the population of the vibronic state �r����
I �,

and 
k�,k��t� is the population of the vibronic state �k����
II�.

The equations of motion for the diagonal RDM elements are
given by


̇r�,r��t� =�
�

Wr�,k��t�
k�,k��t� −�
�

Wk�,r��t�
r�,r��t� ,

�15�

̇k�,k��t� =�

�

Wk�,r��t�
r�,r��t� −�
�

Wr�,k��t�
k�,k��t� ,

where Wr�,k��t� is the probability of transition from the
eigenstate �k����

II� to the eigenstate �r����
I � at time t, and

Wk�,r��t� denotes the reverse transition probability.82 Using
the formalism described in Ref. 82 in conjunction with the
stationary Redfield tensor approximation,44,81 the time-
dependent transition probabilities are of the form:

Wr�,k�=
1

�2
�Vrk�2����

II���
I ��2�

−	

	

d�e−i��r−�k+E�
I −E�

II��/��ev̂���e−v̂�0�� ,

�16�

Wk�,r� =
1

�2
�Vrk�2����

II���
I ��2�

−	

	

d�ei��r−�k+E�
I −E�

II��/��ev̂���e−v̂�0�� .

The populations of the donor and acceptor states at time t are
obtained by summing over the proton vibrational states:

Pr�t� =�
�


r�,r��t�, Pk�t� =�
�


k�,k��t� . �17�

The quantity �ev̂���e−v̂�0��= tr��̂BeiĤB�/�ev̂e−iĤB�/�e−v̂� is de-
noted the bath correlation function, where �̂B is the equilib-
rium bath density operator given by the Boltzmann distribu-

tion for the bath Hamiltonian ĤB in Eq. �9�. Following the
procedure described in Ref. 84, the bath correlation function
can be evaluated exactly using the bosonic creation and an-
nihilation operator algebra:

�ev̂���e−v̂�0�� = exp	−�
i

ci
2

2�mi�i
3
coth����i

2
��1 − cos��i���

+ i sin��i���� . �18�

In the continuum limit for the bath modes, the bath correla-
tion function can be rewritten in terms of the spectral density
as

�ev̂���e−v̂�0�� = exp	− 1

��
Q���� , �19�

where

Q��� = �
0

	

d�
J���
�2

	coth����

2
��1 − cos�����

+ i sin����� . �20�

In this paper, we choose the bath spectral density to have
Ohmic form with an exponential cutoff83

J��� = ���e−�/�c. �21�

This model is specified by the cutoff frequency �c and the
friction constant �. The dimensionless Kondo parameter
�=2� /� characterizes the strength of the system-bath
coupling. For the Ohmic bath, the classical reorganization
energy is �s=���c /�. For this Ohmic spectral density, an
exact analytical expression can be derived for Q��� given in
Eq. �20�:

Q��� = �� ln�1 + i�c��

− �� ln��
� +
i�

��
��
� −

i�

��
�� �2���� ,

�22�

where �=1+ �1 /���c� and ��z� is the Euler Gamma
function87 of a complex variable.

The transition probability elements in the RDM equa-
tions of motion given in Eq. �15� are calculated with Eq. �16�
using Eq. �22� to calculate the bath correlation function. To
solve these equations, we need to specify the initial popula-
tions of all vibronic states, 
r�,r��0� and 
k�,k��0�. At time
zero, the laser pulse instantaneously excites an electron from
the ground electronic state of the system to the donor state.
The proton potential corresponding to the ground electronic
state is denoted by U0�rp�. Since the excitation is assumed to
be instantaneous, the initial proton wavepacket in the donor
state, which has proton potential UI�rp�, corresponds to the
equilibrium configuration of the potential U0�rp�. This pro-
cess is depicted schematically in Fig. 1.
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If thermal excitations are negligible, we can assume that
the proton is in the ground vibrational state ��0

0� for the pro-
ton potential U0�rp� prior to photoexcitation. In this case, the
RDM at zero time is


̂�0� = �r���0
0���0

0��r� . �23�

The corresponding RDM elements at zero time are


r�,r���0� = ���
I ��r�
̂�0��r�����

I � = ���
I ��0

0���0
0����

I � , �24�

and are given by products of the proton vibrational wave
function overlaps. Since the photoexcited electron is in the
donor state at zero time, the initial populations of all vibronic
states corresponding to the acceptor state are zero. Thus, the
population of the donor state is unity at time zero �i.e.,
Pr�0�=1�.

The initial population following photoexcitation, as
given by Eq. �23�, is far from the equilibrium distribution


̂eq=e−�ĤS / tr�e−�ĤS�, where ĤS is defined in Eq. �8�. During
the time evolution of the RDM elements, the transition prob-
abilities Wr�,k� and Wk�,r� drive the system toward this ther-
mal equilibrium distribution, and 
̂�t→	�= 
̂eq. Note that

the system Hamiltonian ĤS does not include the ground elec-
tronic state, so the thermal equilibrium distribution spans
only the donor and acceptor electronic states. Electronic re-
laxation down to the ground electronic state is expected to
occur on a much longer timescale.

D. Proton dynamics during photoinduced PCET

In this subsection, we describe the methodology for
analysis of the proton vibrational dynamics within the RDM
formalism. The probability density of the proton at a position
rp in the electronic state i is given by �rp�
̂ii�t��rp� where

̂ii�t�= �i�
̂�t��i�. In the previous subsection, the RDM equa-
tions of motion were expressed in the electron-proton vi-
bronic basis. We can express the proton probability density

�r��rp , t� at a position rp for the donor electronic state in
terms of the diagonal and off-diagonal RDM elements:


�r��rp,t� = �rp�
̂rr�t��rp�

=�
�

���
I �rp��2
r�,r��t�

+ �
����

��
I �rp����

I �rp�
r�,r���t� . �25�

Similarly, the proton probability density 
�k��rp , t� at a posi-
tion rp for the acceptor electronic state is


�k��rp,t� = �rp�
̂kk�t��rp� =�
�

���
II�rp��2
k�,k��t� . �26�

The proton probability density for the donor state has contri-
butions from the coherences because of the nonzero off-
diagonal RDM elements at zero time. The off-diagonal RDM
elements for the acceptor electronic state are initially zero
and remain zero at all times.

The equations of motion for the off-diagonal RDM ele-
ments of the donor electronic state are given by82


r�,r���t� = 
r�,r���0�exp�− i�r�,r��t − �r�,r��t� , �27�

where the frequencies are �r�,r��=E�
I −E��

I and the dephas-
ing rate coefficients are

�r�,r�� =�
�

��r�,k�,k�,r�
+ + �r��,k�,k�,r��

− � , �28�

with

�r�,k�,k�,r�
+ =

1

�2
�Vrk�2����

II���
I ��2

��
0

	

d�ei��r−�k+E�
I −E�

II��/��ev̂���e−v̂�0�� ,

�29�

�r��,k�,k�,r��
− =

1

�2
�Vrk�2����

II����
I ��2

��
0

	

d�e−i��r−�k+E
��
I
−E�
II��/��ev̂���e−v̂�0���.

To facilitate the calculation of the proton probability
density, we use the high-temperature approximation for the
bath correlation function in Eq. �18�, which can therefore be
expressed in terms of the solvent reorganization energy �s:

�ev̂���e−v̂�0�� = exp	− �s�
2

�2�
−

i��s

�
� . �30�

With this approximation, the Redfield tensor elements in Eq.
�29� and the transition probability elements in Eq. �16� can
be evaluated analytically, thereby simplifying the numerical
propagation of the equations of motion for both the off-
diagonal and the diagonal RDM elements given in Eqs. �27�
and �15�, respectively. For the model systems studied, the
evolution of these equations of motion using the approximate
bath correlation function given in Eq. �30� leads to very simi-
lar electronic state population dynamics as obtained with the
exact bath correlation function given in Eqs. �19� and �22�.

III. MODEL CALCULATIONS

In this section, we use the RDM approach outlined in the
previous section to study the dynamics of photoinduced ho-
mogeneous PCET. The calculations of the PCET dynamics
were performed for four different models with the param-
eters of the proton potentials and energy bias between the
electronic states given in Table I. The proton potentials
U0�rp�, UI�rp�, and UII�rp� corresponding to the ground, do-
nor, and acceptor states, respectively, were chosen to be har-
monic potentials with frequencies �0, �I, and �II, and
minima located at rp

0, rp
I , and rp

II. The displacement between
the minima of the proton potentials UI�rp� and UII�rp� for the
donor and acceptor electronic states was chosen to be 0.5 Å,
corresponding to a typical proton transfer reaction at a
hydrogen-bonded interface.

The parameters of the harmonic bath were chosen to
represent a homogeneous environment with a strong system-
bath coupling given by �=12� and a high bath cutoff fre-
quency of �c=600 cm

−1. These parameters correspond to a
bath with relaxation time �c�1 /�c�55 fs and reorganiza-
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tion energy �s=���c /�=0.892 eV. These parameters en-
sure that the bath relaxes to equilibrium on a faster timescale
than the electronic state population decay of the system due
to PCET. Thus, the underlying assumptions of our theoretical
formalism, such as the Markovian and the stationary Red-
field tensor approximations, are valid for these parameters.
In addition, the secular approximation, which relies on fast
solvent relaxation and strong system-bath coupling, is valid
for these parameters. As discussed above, we found that the
results calculated in the high-temperature limit are nearly
identical to those calculated without this approximation. In
this regime, the bath impacts the population decay primarily
through the reorganization energy, which depends on the
product of the bath cutoff frequency and the system-bath
coupling, and the results are qualitatively similar for smaller
bath cutoff frequencies with the same reorganization energy.
The calculations were performed at 300 K, and the electronic
coupling was chosen to be Vrk=0.03 eV, which is small
compared to the characteristic proton vibrational frequency
of �3000 cm−1=0.37 eV.

The RDM elements were evolved in time by employing
two different numerical approaches. In both approaches, the
master equation given in Eq. �15� was cast in the form

�

�t
P� �t� = LP� �t� , �31�

where the relaxation matrix L is composed of the transition
probabilities Wr�,k� and Wk�,r�, and P� �t� is the column vector
with entries 
r�,r��t� and 
k�,k��t�. In the first approach, the
solution to the above equation was calculated as42

P� �t� = eLtP� �0� = JeDtJ−1P� �0� , �32�

where J is the eigenvector matrix and D is the eigenvalue
matrix of the diagonalizable matrix L. Thus, the population
of each state obtained from this approach is a sum of expo-
nential terms. In the second approach, we employed an effi-
cient numerical method based on the modified Arnoldi itera-
tion scheme.88 The results of the two approaches are
identical for the model systems studied.

The number of proton vibrational states required for con-
vergence is determined by the temperature, the frequencies
of the proton harmonic potentials, and the displacement be-
tween the donor and acceptor proton potentials. For each
model, we included enough vibrational states to ensure that
the donor state population is unity at zero time and that the

trace of the RDM is conserved during the time propagation.
For models A, B, and D, we included 30 vibrational states
for hydrogen and 35 vibrational states for deuterium for each
electronic state. For model C, we included 40 states for hy-
drogen and 45 states for deuterium for each electronic state.

In the following subsections, we present the results of
our calculations and analyses of the PCET dynamics for the
four model systems. In all cases, the initial state is prepared
by vertical photoexcitation from the ground vibrational state
on the ground electronic surface to a coherent vibrational
mixture in the donor electronic state. We analyze the dynam-
ics of relaxation from this initial nonstationary state to the
equilibrium distribution in the donor and acceptor states. Al-
though this model does not include direct coupling between
the proton vibrational mode and the bath, the proton vibra-
tional population can redistribute to lower proton vibrational
states by an indirect mechanism involving nonadiabatic tran-
sitions between the donor and acceptor vibronic states. Our
analysis focuses on the origin of the hydrogen/deuterium
�H/D� isotope effect on the dynamics of the electronic state
populations. We also examine the role of various system pa-
rameters in determining the key dynamical characteristics of
the PCET process. The parameters considered include the
electronic bias between the donor and acceptor states, the
frequencies of the proton potentials, and the displacement of
the initial proton wavepacket from the donor state minimum.

A. Model with electronic energy bias

In this subsection, we consider model A for the exer-
gonic PCET process with the energy bias �r−�k=1.0 eV be-
tween the donor and acceptor electronic states. The frequen-
cies of the ground, donor, and acceptor state proton
potentials are identical, as given in Table I. The minima of
the ground and acceptor electronic states U0 and UII are cho-
sen to be the same and are shifted �0.5 Å from the minimum
of the donor state potential UI, which is at rp=0. Thus, the
initial proton vibrational wavepacket created in the donor
electronic state by vertical photoexcitation from the ground
state is localized around the ground state potential minimum,
which is identical to the acceptor state potential minimum. In
the donor electronic state, this initial proton wavepacket is
represented by a nonstationary coherent mixture with the vi-
brational populations distributed among the higher vibra-
tional states. Figure 2 depicts the proton vibrational popula-
tion distribution of the donor state at t=0 ps, t=5 ps, and
t=200 ps. At zero time, this distribution has a maximum at
�=11 for H and �=15 for D, as shown in Fig. 2�a�.

During the initial stage of the time evolution, the proton
vibrational wavepacket in the donor state exhibits coherent
oscillations with a time period of �11 fs for H and �15 fs
for D. The coherent oscillatory motion of the H and D wave-
packets in the donor state during the initial stage of the dy-
namics is depicted in Fig. 3. At zero time, the proton wave-
packet is localized around rp=−0.5 Å, the minimum of the
acceptor potential UII. At short times, the proton wavepacket
oscillates about rp=0, the minimum of the donor potential
UI, with an amplitude of 0.5 Å, as determined by the initial
wavepacket. During this initial stage, the proton populations

TABLE I. Parameters for the four models of photoinduced PCET.

Model A Model B Model C Model D

�r−�k �eV� 1 0 0 0
rp
0 �Å� �0.5 �0.5 �0.5 �0.15

rp
I �Å� 0 0 0 0

rp
II �Å� �0.5 �0.5 �0.5 �0.5

�0 �cm−1� a 3000 3000 2500 3000
�I �cm−1� a 3000 3000 3000 3000
�II �cm−1� a 3000 3000 2500 3000

aThe frequencies are given here for hydrogen with mass 1 amu. Note that the
frequencies will change for deuterium, which has a mass of 2 amu, because
the force constants of the harmonic potentials remain fixed.
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in the donor state are distributed among highly excited pro-
ton vibrational states, as shown in Fig. 2�a�. Note that the
coherent oscillations are absent in the acceptor state because
only the diagonal RDM elements contribute to the acceptor
proton probability density, as indicated by Eq. �26�.

Figure 4 depicts the time evolution of the proton vibra-
tional wavepacket for the donor and acceptor states for both
hydrogen and deuterium on a longer timescale. In this figure,
the wavepacket is plotted at time steps corresponding to ev-
ery ten periods of the coherent oscillations shown in Fig. 3,
so only the proton wavepacket at the left turning point is
illustrated. Figure 4 indicates that the amplitude of the co-
herent oscillations is initially 0.5 Å but decreases over time
as the coherent oscillations are damped due to vibrational
relaxation. As discussed above, the vibrational relaxation
process in this model occurs through the indirect mechanism
of energy dissipation from the proton vibrational mode into
the bath via nonadiabatic PCET transitions. This relaxation
process leads to redistribution of the vibrational populations
to the lower proton vibrational states, as well as the damping
of the coherent oscillations.

By �5 ps, the population maximum has shifted down to
the first and second excited vibrational states, as shown in
Fig. 2�b�. In addition, the amplitude of the coherent oscilla-
tions has been damped considerably, so the wavepacket is
oscillating over a smaller region closer to the minimum of
the donor potential UI, as shown in Fig. 4�a�. After a dephas-
ing time of �10 ps for H and �15 ps for D, the coherent
oscillations in the donor state are completely damped, and

the donor wavepacket is localized around the UI minimum.
Figure 4 illustrates that the proton wavepackets in the donor
and acceptor states are localized around the minima of their
potentials UI and UII, respectively, at �10 ps for H and
�15 ps for D. By 200 ps, the vibrational population in the
donor state relaxes to the ground vibrational state for H and
to the ground and first excited states for D, as illustrated in
Fig. 2�c�. In the long time limit, the population of the donor
state is virtually zero, and the entire population is in the
acceptor state with the acceptor proton wavepacket localized
around the minimum of the acceptor potential UII.

This analysis of the PCET dynamics provides a qualita-
tive explanation for the H/D isotope effect on the dynamics
of the populations of the donor and acceptor electronic
states. Figure 5�a� depicts the population dynamics of the
donor electronic state for H and D. The population dynamics
exhibits virtually no H/D isotope effect during the initial
time period of �5 ps. During this initial stage, the proton
vibrational population in the donor state is distributed in
higher vibrational states, and the left turning point of the

FIG. 3. Coherent oscillations of the �a� H and �b� D vibrational wavepacket
in the donor electronic state for model A.

FIG. 4. Time evolution of the vibrational wavepacket for �a� H in the donor
state, �b� H in the acceptor state, �c� D in the donor state, and �d� D in the
acceptor state for model A. The wavepacket was plotted with a time step of
10�2� /�I, so only the oscillating wavepacket at the left turning point is
depicted.

FIG. 5. Population decay of the donor electronic state for H �red solid line�
and D �blue dashed line� for �a� model A, �b� model B, �c� model C, and �d�
model D.

FIG. 2. Population distribution for the H �red� and D �blue� vibrational
states in the donor electronic state at �a� t=0 ps, �b� t=5 ps, and
�c� t=200 ps for model A.
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oscillating donor proton wavepacket is near the minimum of
the acceptor potential UII. By �5 ps, the proton vibrational
population in the donor state is concentrated in lower vibra-
tional states due to the indirect vibrational relaxation process,
and the donor proton wavepacket is more localized near the
minimum of the donor potential UI. As a result, a significant
H/D isotope effect on the population decay of the donor ac-
ceptor state is evident beyond �5 ps.

Figure 5�a� illustrates that the population of the donor
electronic state decreases with time. Since the electronic en-
ergy bias significantly favors the acceptor electronic state at
equilibrium, the population of the donor state reaches a very
small value and the entire population accumulates in the ac-
ceptor state on the nanosecond timescale. Note that these
equilibrium populations are the same for H and D because
the frequencies of the harmonic potentials UI and UII are
identical.

B. Symmetric model

In this subsection, we consider model B, which is iden-
tical to model A described in the previous subsection except
that the donor and acceptor electronic levels are degenerate
�i.e., �r−�k=0�, corresponding to a symmetric PCET system.
The initial dynamics of the nonstationary proton vibrational
wavepacket in the donor electronic state exhibits qualita-
tively similar behavior to that exhibited in model A. As in
model A, initially the proton vibrational population in the
donor state is distributed among highly excited proton vibra-
tional states. Moreover, the proton vibrational wavepacket in
the donor state exhibits the coherent oscillatory motion with
a time period of �11 fs for H and �15 fs for D and an
initial amplitude of 0.5 Å, with dephasing time of �10 ps
for H and �15 ps for D. By �5 ps, the proton vibrational
population has relaxed to lower vibrational states, and the
proton wavepacket in the donor state is more localized near
the donor potential minimum UI. In contrast with model A,
however, the electronic state populations of the donor and
acceptor states in model B reach thermal equilibrium �i.e.,
Pr=Pk=0.5� on the much shorter time scale of �6 ps, al-
though the vibrational relaxation processes continue and the
individual populations of the vibrational states and coher-
ences still change beyond this time.

The time evolution of the electronic state populations
does not exhibit a significant H/D isotope effect for the entire
time of relaxation to equilibrium for this model, as illustrated
in Fig. 5�b�. As in model A, the H/D isotope effect is not
observed during the first �5 ps of the time evolution be-
cause the proton vibrational population in the donor state is
distributed among the higher vibrational states, and the left
turning point of the oscillating donor proton wavepacket is
near the acceptor potential minimum. The H/D isotope effect
is expected to be observed only after the proton vibrational
population relaxes to the lower vibrational states and the
wavepacket in the donor state is localized near the donor
potential minimum. By that time, however, the electronic
state populations are already near their equilibrium values of
0.5, which are the same for H and D. As a result, no H/D
isotope effect on the electronic state population dynamics is

observed. Furthermore, in contrast with model A, the equi-
librium populations of the donor and acceptor states are
equal. At equilibrium, the donor proton wavepacket is local-
ized around the UI minimum, and the acceptor proton wave-
packet is localized around the UII minimum.

C. Model with different proton frequencies
in the donor and acceptor states

In this subsection, we consider model C, which is iden-
tical to model B except that the proton vibrational frequen-
cies in the ground and acceptor electronic states are chosen
to be 2500 cm−1, while the frequency in the donor state re-
mains 3000 cm−1. This model is not symmetric, so the equi-
librium population of the donor electronic state is different
for H and D. Specifically, in the case of zero electronic en-
ergy bias, the equilibrium population of the donor electronic
state is Pr

eq=ZI / �ZI+ZII�, where ZI and ZII are the vibrational
partition functions for harmonic oscillators with frequencies
�I and �II, respectively. For model C, the equilibrium popu-
lations of the donor electronic state are Pr

eq=0.23 and Pr
eq

=0.29 for H and D, respectively. In the other models studied,
ZI=ZII because �I=�II, and the equilibrium populations are
the same for H and D.

Figure 5�c� depicts the time evolution of the donor elec-
tronic state population decay for H and D. The population
decay exhibits a distinct isotope effect after �5 ps of evo-
lution. As in models A and B, at �5 ps the proton vibra-
tional population in the donor state becomes concentrated in
lower vibrational states and the donor proton vibrational
wavepacket begins to localize near the donor UI minimum.
The total population relaxation time for model C is on the
nanosecond timescale. Note that thermal equilibrium of the
electronic state populations for model B is attained on a
similar timescale as vibrational relaxation to the lower pro-
ton vibrational states, whereas thermal equilibrium of the
electronic state populations for models A and C is attained on
the longer nanosecond timescale. As a result, an isotope ef-
fect on the population decay is observed for models A and C
but not for model B. A qualitative difference between model
C and the other models is that the equilibrium populations
are isotope dependent for model C due to the different fre-
quencies of the donor and acceptor proton potentials.

D. Model with the initial proton wavepacket localized
near the donor potential minimum

In this subsection, we consider model D, which is the
same as model B except the minimum of the ground state
harmonic potential U0 is at �0.15 Å, while the minimum of
the donor state potential UI remains at zero and the minimum
of the acceptor state potential UII remains at �0.5 Å. Thus,
the nonstationary proton vibrational wavepacket in the donor
state is localized closer to the minimum of the donor state
potential UI at zero time. As a result, the initial proton vibra-
tional population distribution in the donor state, as depicted
in Fig. 6, is predominantly concentrated in the ground and
lowest two excited vibrational states for both H and D. As in
the other models, the proton vibrational wavepacket in the
donor electronic state exhibits coherent oscillations with a
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period of �11 fs for H and �15 fs for D. For model D,
however, the initial amplitude of the coherent oscillations of
the proton wavepacket is only 0.15 Å, so the oscillations are
restricted to a region near the donor potential minimum even
in the early stages of the dynamics. This behavior is illus-
trated in Fig. 7, which depicts the time evolution of the pro-
ton vibrational wavepackets in the donor and acceptor elec-
tronic states, where only the oscillating wavepacket at the
left turning point is illustrated for clarity.

In contrast with the other models, the coherent compo-
nents of the initial wavepacket for model D arise predomi-
nantly from the lower proton vibrational states. Due to small
proton vibrational wave function overlaps between the lower
vibrational states, the dephasing rate coefficients given in Eq.
�28� are very small, so the vibrational coherences have a long
lifetime. Thus, the coherent oscillations of the proton wave
function are damped on a timescale of hundreds of picosec-
onds. In this case, the indirect vibrational relaxation mecha-
nism involving nonadiabatic transitions is insufficient to
damp out the vibrational coherent oscillations. These oscilla-
tions might damp out faster if the model included an addi-
tional dissipation mechanism, such as direct coupling of the
proton vibrational mode to the bath. Since the amplitude of
the coherent oscillations is relatively small, however, this
effect is not expected to significantly impact the overall
population dynamics.

Figure 5�d� depicts the population decay of the donor
electronic state for H and D. In contrast with the other mod-
els, the H/D isotope effect is strongly pronounced from the
start of the dynamical process. This early manifestation of
the H/D isotope effect in model D is due to the initial distri-
bution of the proton vibrational population among the lower
vibrational states for the donor state and the localization of
the initial donor vibrational wavepacket near the minimum
of the donor state potential UI. As illustrated in Fig. 7, the
small amplitude of the coherent oscillations ensures that the
donor proton vibrational wavepacket remains close to the
minimum of the donor state potential at all times.

IV. CONCLUDING REMARKS

In this paper, we presented a model Hamiltonian for de-
scribing photoinduced homogeneous PCET reactions and de-
veloped a theoretical framework for studying the dynamics
of the relaxation processes following photoexcitation. The
model Hamiltonian includes shifted harmonic proton poten-
tials for the donor and acceptor electronic states, as well as
linear coupling between the electronic states and the har-
monic bath. A canonical transformation of the model Hamil-
tonian enables the investigation of models with strong
system-bath coupling. We derived the equations of motion
for the diagonal and off-diagonal RDM elements in the
electron-proton vibronic basis using a series of well-defined
approximations. Numerical propagation of these equations of
motion allows a detailed analysis of the proton vibrational
dynamics, as well as the dynamics of the electronic state
populations.

Our application of this theoretical formalism to four
model systems provides insight into the fundamental physi-
cal principles underlying these types of processes. In these
models, the initial nonequilibrium state was prepared by ver-
tical photoexcitation from the ground vibrational state on the
ground electronic surface to a coherent vibrational mixture in
the donor electronic state. Following photoexcitation, this
nonstationary state relaxes to the equilibrium distributions in
the donor and acceptor states via dynamical processes arising
from nonadiabatic transitions between the donor and accep-
tor vibronic states concurrent with energy dissipation to the
bath modes. During the initial stage of the dynamics, the
proton vibrational wavepacket in the donor state exhibits co-
herent oscillations with an amplitude dictated by the location
of the initial proton wavepacket relative to the minimum of
the donor state proton potential. When the initial proton
wavepacket is shifted significantly from the minimum of the
donor state proton potential, the proton vibrational popula-
tion in the donor state is distributed among the higher vibra-
tional states during this initial stage. Vibrational relaxation
processes lead to redistribution of the vibrational populations
to the lower proton vibrational states, as well as the damping
of the coherent oscillations. After a certain dephasing time,
the coherent oscillations in the donor state are completely
damped, and the donor and acceptor proton wavepackets are
localized around their respective proton potential minima.
Eventually the overall populations of the electronic states
reach thermal equilibrium.

FIG. 6. Population distribution for the H �red� and D �blue� vibrational
states in the donor electronic state at t=0 ps for model D.

FIG. 7. Time evolution of the vibrational wavepacket for �a� H in the donor
state, �b� H in the acceptor state, �c� D in the donor state, and �d� D in the
acceptor state for model D. The wavepacket was plotted with a time step of
10�2� /�I, so only the oscillating wavepacket at the left turning point is
depicted. The wavepackets in �b� and �d� are scaled by a factor of 5 relative
to those in �a� and �c�.
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Analysis of the proton wavepacket dynamics provides a
qualitative explanation for the H/D isotope effect on the dy-
namics of the donor and acceptor populations. During the
initial stage, when the proton vibrational population in the
donor state is distributed in higher vibrational states and the
proton wavepacket is oscillating with large amplitude, the
electronic state population dynamics exhibit virtually no H/D
isotope effect. The physical basis for this absence of H/D
isotope effect is that the donor proton wavepacket has rela-
tively high probability in the region of the acceptor proton
potential minimum for both hydrogen and deuterium. After
the proton vibrational population in the donor state becomes
concentrated in the lower vibrational states and the donor
proton wavepacket becomes more localized near the mini-
mum of the donor potential, a significant H/D isotope effect
on the electronic state population dynamics is exhibited. In
this stage, the donor proton wavepacket has very low prob-
ability in the region of the acceptor proton potential mini-
mum, and the difference between the probabilities of hydro-
gen and deuterium tunneling is significant.

This study leads to experimentally testable predictions
concerning the H/D isotope effect on the dynamics of the
electronic state populations. This theoretical model predicts
that the H/D isotope effect on the population decay will not
be observed when the timescale for attaining thermal equi-
librium of the electronic state populations is similar to the
timescale of proton vibrational relaxation. Conversely, when
thermal equilibrium of the electronic state populations is at-
tained on the longer nanosecond timescale, the H/D isotope
effect is predicted to become evident on the picosecond time-
scale, after vibrational relaxation to the lower proton vibra-
tional states. The relative timescales of these relaxation pro-
cesses can be controlled by altering the energy bias between
the donor and acceptor electronic states and the frequencies
of the donor and acceptor proton potentials. Moreover, the
final equilibrium populations of the electronic states will ex-
hibit an H/D isotope effect when the frequencies of the pro-
ton potentials are different for the donor and acceptor states.
In addition, the onset of the H/D isotope effect can be con-
trolled by altering the initial photoexcited wavepacket. Spe-
cifically, the H/D isotope effect will be observed earlier in
the dynamical relaxation process when the initial proton
wavepacket is centered closer to the minimum of the donor
state proton potential.

We also extended this theoretical formalism to ultrafast
photoinduced PCET at a molecule-semiconductor
interface.89 The H/D isotope effects on the electronic state
populations for these types of interfacial PCET systems have
been studied experimentally with ultrafast time-resolved
spectroscopy.90 Feedback between experiment and theory
will assist in the further development of these types of theo-
retical models.
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