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Abstract 

 

The world is rapidly urbanizing, and for the first time in history over 50% of the world’s 

population reside in urban areas. This rapid urbanization brings about tremendous challenges at 

the intersection of governance, infrastructure and the environment. Advanced sensing and data 

analytics techniques have been developed in the context of so called “smart cities” with the goal 

of providing insights on how urban systems could be designed and managed more effectively. 

However, the proliferation of data from heterogeneous sources makes interoperability and mining 

of such urban data streams difficult. Facilitating the extraction of insights that support data-

informed policymaking and program recommendations will require frameworks to integrate such 

heterogeneous data streams. In this paper, we introduce a novel data integration framework that 

utilizes a RDF (resource description framework) model to integrate disparate urban data streams 

based on geo-relationships that are iteratively learned from semantic information and the 

structure of relational databases. The development of our framework was driven by interviews 

and observations of city officials responsible for managing and integrating urban data and a 

review of the various types of disparate datasets generated from sources like departmental 

databases, sensors, and crowdsourcing. Finally, we apply our proposed framework to an urban 

data scenario in order to demonstrate the applicability and usefulness of the framework. 

 

1. INTRODUCTION 

 

The world is rapidly urbanizing. Over 50% of world population now reside in cities and the 

number is expected to increase to 67% by 2050 (United Nations, 2014). Continuous growth of 

urban population increases the demands and consumption of limited resources, resulting in 

numerous challenges for city officials in respect to urban systems management and decision-

making. Rapid development of new sensing technologies has led to an explosion of data streams 

in numerous urban domains (e.g. land, building, energy, and human). However, harnessing such 

data and translating it into insights for more effective and sustainable urban system management 

remain a major challenge. Doing so requires collecting, processing, integrating, sharing, and 

analyzing data that spans various urban domains and organizational departments within a 

municipal government. For the most part, city officials utilize data in an isolated manner as no 

framework exists for them to easily integrate and analyze data from heterogeneous sources. Most 

city officials rely on a manual process for data integration that is both time- and labor- consuming 

and lacks scalability as more and more data becomes available. Moreover, many urban datasets 

lack common features or keys to be directly linked with other datasets. This data integration 
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problem has prevented city officials from leveraging such data to enhance decision-making and 

improve urban systems management. 

 

In this paper, we introduce a novel data integration framework that utilizes a RDF (Resource 

Description Framework) model to integrate disparate urban data streams based on geo- 

relationships that are iteratively learned from semantic information and the structure of relational 

databases. The goal of this framework is to provide a first-step towards enabling more data-driven 

analysis and management of urban systems. This paper is structured as follows: Section 2 

describes the current city practices in respect to data management and integration based on 

interviews and the observations of our embedded research team at the City of Palo Alto, USA; 

Section 3 summarizes the common datasets from urban systems, and investigates the existing 

methods for urban data integration; Section 4 proposes a novel framework for defining metadata 

schema based on geo-relationship learning and demonstrates its merits on a simple example; 

Section 5 provides conclusions and avenues for future work.  

 

2. CURRENT DATA INTEGRATION & MANAGEMENT PRATICES IN CITIES 

 

Municipal governments are increasingly making their data publicly available in order to 

encourage citizen engagement and academic research on urban systems management. In order to 

understand the current practices of how data integration is conducted in cities, we interviewed 

several city officials responsible for managing urban data and utilized the observations of our 

embedded and integrated research team at the City of Palo Alto, USA. 

 

We found that the current policies of data integration are generally proclaimed as a set of 

guidelines, executive orders and legislations, which establish basic governing expectations and 

rules and ensure an overall buy-in from various sources. The lifecycle of data integration begins 

at identification of data and ends with final publishing of the linked datasets. A robust data 

integration process is critical in ensuring the datasets adheres to the policy throughout its 

lifecycle. The identification step begins with either an external request for adding new data or the 

team responsible for managing the urban data program identifies the programmatic needs for such 

addition. Evaluation of such the identification involves rudimentary checks such as availability of 

data and whether it is outside the purview of U.S. data protection. The next step is to ensure the 

quality of data depending on the specific requirements of different departments. Departments 

have ad-hoc technologies that are built to suit their own needs that are not necessarily designed 

with a holistic citywide purview. As a result, this leads to heterogeneous data with different levels 

of granularity that exist in departmental silos. The qualified datasets are then evaluated for legal, 

privacy or security issues. This evaluation is vital to protect the legal and fiduciary 

responsibilities of city officials. Findings of this evaluation step are useful to improve and update 

current data policies. For example, integrating latitude/longitude of a location with its address 

was not allowed for public security reasons. However, with advances in data analytics, this poses 

a new challenge as latitude/longitude information can be extrapolated to an actual address. The 

final step in this lifecycle is to publish data in an internal system or open data portal.  

 

Generally, for city departments responsible for managing different urban systems, sharing and 

linking data is still in its infancy. The current practices require the same formats of data across 

heterogeneous sources and face integration barriers if there are no shared features defined by 
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prerequisite standardization. As a result, there is no scalable and practical method that can be used 

by city officials to represent and analyze interconnected and interdependent urban data streams.  

 

3. URBAN DATA & INTEGRATION METHODS 

 

We conducted a literature review and onsite observations at the City of Palo Alto to identify and 

categorize possible datasets from heterogeneous urban sources. Examples of common urban 

systems and relevant data types, sources and characteristics are presented in Table 1. It can be 

seen that an unprecedented amount of static and dynamic data are already being generated from 

departmental databases, sensors, and crowdsourcing. These emerging data are generally dispersed 

and unstructured (Yuan et al., 2012; Zielstra et al., 2013; Khan et al., 2013; Balaji et al., 2016), 

demonstrating the need for an interpretable and scalable urban data integration framework.  

 

Table 1. Data Examples Available for Urban System Management. 

Urban System Data Type (e.g.) Data Source (e.g.) Characteristics 

Building  

Architecture, 

System, 

Occupancy 

Databases (e.g. BIM), Sensors (e.g., 

PIR), Crowdsourcing (e.g. Smartphone) 

Static + 

Dynamic 

Land  Geometry, Use 

Databases (e.g., GIS), Sensors (e.g. 

RFID), Crowdsourcing (e.g. Social 

Media) 

Static + 

Dynamic 

Road 
Geometry, 

Network 
Databases (e.g. CAD) Static 

Transportation 
Vehicle, Traffic, 

Parking 

Databases (e.g. RDB), Sensors (e.g. 

Camera), Crowdsourcing (e.g. GPS) 

Static + 

Dynamic 

Vegetation 
Property, 

Geospatial data  
Databases (e.g. open data portal) Static 

Utility 
Water, Electricity, 

Gas 

Databases (e.g. SaaS), Sensors (e.g. 

Smart Meter), Crowdsourcing (e.g. IoT) 

Static + 

Dynamic 

Environment 
Weather, 

Atmosphere 

Database (e.g. record), Sensors (e.g. 

particles detector), Crowdsourcing (e.g. 

portable devices) 

Static + 

Dynamic 

 

In general, we found that data from urban systems have different representations and semantics 

and thus pose challenges for data integration. Organizations like OGC (Open Geospatial 

Consortium) have published standards for data interoperability such as CityGML (OGC, 2012), 

which are only available for integrating homogeneous data with the similar formats. Additionally, 

methods such as the information network have been utilized to facilitate the abstraction and 

connections of data in a specific domain (e.g., one type of urban system) but are limited in their 

ability to integrate data across different domains (Sun and Han, 2012). Relational databases with 

consistent schema could address the semantic disparity issue (Ziegler and Dittrich, 2004) but fail 

to integrate semi-structured or unstructured data that are common in the urban context. 

Automated systems have been then developed to convert tabular data to semantic web 

representations or object-oriented models by identifying and analyzing structure, content, and 

semantic attributes of local databases (Han et al., 2008; Venetis et al., 2011). However, such 

methods are limited in their ability to handle dynamic data streams (e.g., sensor data) and lack the 
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interpretability and operability necessary for augmenting decision-making of city officials. Other 

studies have tried to integrate fixed data, sensor data, and live social media data but such methods 

require manual efforts or well-defined schema that are highly domain-specific (Lopez et al., 

2012; Bocconi et al., 2015). Thus far there is no complete ontology specifically designed for 

urban systems management (Zhu and Ferreira Jr, 2015). Some efforts have been made on 

methods to directly integrate knowledge behind data instead of the data itself (Zheng, 2016) but 

they are task-specific and not generalizable for supporting the wide array of applications required 

in urban system management. In summary, currently there is a lack of an interpretable and 

scalable data integration framework for data from urban systems (Sheridan and Tennison, 2010), 

especially when there are no shared features among datasets. A context-rich metadata schema to 

describe the entities, attributes, and relationships of data collected from heterogeneous sources is 

required such that smart city applications like energy optimization and transportation 

management can be easily implemented across a wide range of cities.  

 

4. GEO-RELATIONSHIP LEARNING BASED METADATA SCHEMA  

 

In order to address the challenges discussed above, we developed a data integration framework 

that derives a meta-data schema based on geo-relationship learning. A geo-relationship is defined 

as one kind of the ontology which defines the semantics, structures and representations of 

concepts in a particular domain. It has the potential to guide the integration of data from different 

sources. RDF (Resource Description Framework) (W3C, 2014) model is a data architectural 

model by World Wide Web Consortium to represent metadata schema for integrating data from 

different sources based on domain ontology. Entities and relationships in the RDF model are 

explicitly expressed in a human-logic-similar manner so that city officials can easily follow the 

schema and map their data from heterogeneous urban systems to the ontology for comprehensive 

understanding and systematic analysis. For example, it is possible to use a RDF model to define 

“buildings” in class A as an equivalent to “energy efficient infrastructure”, which is difficult in 

traditional relational databases. As a result, we chose to utilize the RDF model as the core basis of 

our framework to represent entities, attributes, and relationships of data by triples <subject-

predicate-object>. Each triple indicates the entity subject has the relationship predicate to another 

entity object. A RDF model is essentially a graph formed by nodes (subjects and objects) and 

directed edges (predicates). The simple structure of triples makes it possible to represent large 

interconnected urban data in an expressive way, especially when the structures of data are 

unknown or changing. Our framework was developed to define the metadata schema by 

identifying the geo-relationship between two different entities (i.e., adjacency). The learning of a 

geo-relationship follows the method of transitioning input from relational databases to a RDB 

model using RDBToOnto (Cerbah, 2008a), by which the strong expressive power of sematic web 

formalisms capture the underlying connections and hierarchy of geo-information. First the data 

are entered into a relational database, and each table is used as the source of an entity 

representing one urban system in the RDF model. The latitude/longitude of each entity is used to 

search the hierarchical distances with other entities. All distances are classified by the type of 

entities and represented as new features (e.g., located in or adjacent to) representing the geo-

relationships among tables. After normalization of the new tables, key-based associations of 

tables then form the predicate of entities. Local constraints and dependencies are added to refine 

the populated metadata schema with predefined names assigned to instances. Entities are further 

categorized into subclasses by mining the patterns of relation attributes to reveal the additional 

structure hierarchy (Cerbah, 2008b).   
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data availability and conditions in cities. Overall, this work represents a crucial first-step towards 

enabling more data-driven analysis and management of urban systems. Future work aims to 

formalize the process of metadata schema formulation and test our framework on real data from a 

“living lab” in downtown Palo Alto, CA, USA. 
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