Downloaded from ascelibrary.org by Stanford University on 09/06/17. Copyright ASCE. For personal use only; all rights reserved.

Computing in Civil Engineering 2017 467

A Data Integration Framework for Urban Systems Analysis Based on Geo-Relationship Learning
Zheng Yang'; Karan Gupta’; Archana Gupta®; and Rishee K. Jain®*

'Urban Informatics Lab, Dept. of Civil and Environmental Engineering, Stanford Univ., 473 Via
Ortega, Stanford, CA 94305.

*Urban Informatics Lab, Dept. of Civil and Environmental Engineering, Stanford Univ., 473 Via
Ortega, Stanford, CA 94305.

3Ci‘[y of Palo Alto, 250 Hamilton Ave., Palo Alto, CA 94301.

*Urban Informatics Lab, Dept. of Civil and Environmental Engineering, Stanford Univ., 473 Via
Ortega, Stanford, CA 94305.

Abstract

The world is rapidly urbanizing, and for the first time in history over 50% of the world’s
population reside in urban areas. This rapid urbanization brings about tremendous challenges at
the intersection of governance, infrastructure and the environment. Advanced sensing and data
analytics techniques have been developed in the context of so called “smart cities” with the goal
of providing insights on how urban systems could be designed and managed more effectively.
However, the proliferation of data from heterogeneous sources makes interoperability and mining
of such urban data streams difficult. Facilitating the extraction of insights that support data-
informed policymaking and program recommendations will require frameworks to integrate such
heterogeneous data streams. In this paper, we introduce a novel data integration framework that
utilizes a RDF (resource description framework) model to integrate disparate urban data streams
based on geo-relationships that are iteratively learned from semantic information and the
structure of relational databases. The development of our framework was driven by interviews
and observations of city officials responsible for managing and integrating urban data and a
review of the various types of disparate datasets generated from sources like departmental
databases, sensors, and crowdsourcing. Finally, we apply our proposed framework to an urban
data scenario in order to demonstrate the applicability and usefulness of the framework.

1. INTRODUCTION

The world is rapidly urbanizing. Over 50% of world population now reside in cities and the
number is expected to increase to 67% by 2050 (United Nations, 2014). Continuous growth of
urban population increases the demands and consumption of limited resources, resulting in
numerous challenges for city officials in respect to urban systems management and decision-
making. Rapid development of new sensing technologies has led to an explosion of data streams
in numerous urban domains (e.g. land, building, energy, and human). However, harnessing such
data and translating it into insights for more effective and sustainable urban system management
remain a major challenge. Doing so requires collecting, processing, integrating, sharing, and
analyzing data that spans various urban domains and organizational departments within a
municipal government. For the most part, city officials utilize data in an isolated manner as no
framework exists for them to easily integrate and analyze data from heterogeneous sources. Most
city officials rely on a manual process for data integration that is both time- and labor- consuming
and lacks scalability as more and more data becomes available. Moreover, many urban datasets
lack common features or keys to be directly linked with other datasets. This data integration
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problem has prevented city officials from leveraging such data to enhance decision-making and
improve urban systems management.

In this paper, we introduce a novel data integration framework that utilizes a RDF (Resource
Description Framework) model to integrate disparate urban data streams based on geo-
relationships that are iteratively learned from semantic information and the structure of relational
databases. The goal of this framework is to provide a first-step towards enabling more data-driven
analysis and management of urban systems. This paper is structured as follows: Section 2
describes the current city practices in respect to data management and integration based on
interviews and the observations of our embedded research team at the City of Palo Alto, USA;
Section 3 summarizes the common datasets from urban systems, and investigates the existing
methods for urban data integration; Section 4 proposes a novel framework for defining metadata
schema based on geo-relationship learning and demonstrates its merits on a simple example;
Section 5 provides conclusions and avenues for future work.

2. CURRENT DATA INTEGRATION & MANAGEMENT PRATICES IN CITIES

Municipal governments are increasingly making their data publicly available in order to
encourage citizen engagement and academic research on urban systems management. In order to
understand the current practices of how data integration is conducted in cities, we interviewed
several city officials responsible for managing urban data and utilized the observations of our
embedded and integrated research team at the City of Palo Alto, USA.

We found that the current policies of data integration are generally proclaimed as a set of
guidelines, executive orders and legislations, which establish basic governing expectations and
rules and ensure an overall buy-in from various sources. The lifecycle of data integration begins
at identification of data and ends with final publishing of the linked datasets. A robust data
integration process is critical in ensuring the datasets adheres to the policy throughout its
lifecycle. The identification step begins with either an external request for adding new data or the
team responsible for managing the urban data program identifies the programmatic needs for such
addition. Evaluation of such the identification involves rudimentary checks such as availability of
data and whether it is outside the purview of U.S. data protection. The next step is to ensure the
quality of data depending on the specific requirements of different departments. Departments
have ad-hoc technologies that are built to suit their own needs that are not necessarily designed
with a holistic citywide purview. As a result, this leads to heterogeneous data with different levels
of granularity that exist in departmental silos. The qualified datasets are then evaluated for legal,
privacy or security issues. This evaluation is vital to protect the legal and fiduciary
responsibilities of city officials. Findings of this evaluation step are useful to improve and update
current data policies. For example, integrating latitude/longitude of a location with its address
was not allowed for public security reasons. However, with advances in data analytics, this poses
a new challenge as latitude/longitude information can be extrapolated to an actual address. The
final step in this lifecycle is to publish data in an internal system or open data portal.

Generally, for city departments responsible for managing different urban systems, sharing and
linking data is still in its infancy. The current practices require the same formats of data across
heterogeneous sources and face integration barriers if there are no shared features defined by
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prerequisite standardization. As a result, there is no scalable and practical method that can be used
by city officials to represent and analyze interconnected and interdependent urban data streams.

3. URBAN DATA & INTEGRATION METHODS

We conducted a literature review and onsite observations at the City of Palo Alto to identify and
categorize possible datasets from heterogeneous urban sources. Examples of common urban
systems and relevant data types, sources and characteristics are presented in Table 1. It can be
seen that an unprecedented amount of static and dynamic data are already being generated from
departmental databases, sensors, and crowdsourcing. These emerging data are generally dispersed
and unstructured (Yuan et al., 2012; Zielstra et al., 2013; Khan et al., 2013; Balaji et al., 2016),
demonstrating the need for an interpretable and scalable urban data integration framework.

Table 1. Data Examples Available for Urban System Management.

Urban System  Data Type (e.g.) Data Source (e.g.) Characteristics
o1 Architecture, Databases (e.g. BIM), Sensors (e.g., Static +
Building System, PIR), Crowdsourcing (e.g. Smartphone) Dynamic
Occupancy ’ gles p Y
Databases (e.g., GIS), Sensors (e.g. Static +
Land Geometry, Use RFID), Crowdsourcing (e.g. Social .
: Dynamic
Media)
Geometry, .
Road Network Databases (e.g. CAD) Static
Transportation Vehicle, Traffic, Databases (e.g. RDB), Sensors (e.g. Static +
p Parking Camera), Crowdsourcing (e.g. GPS) Dynamic
. Property, .
Vegetation Geospatial data Databases (e.g. open data portal) Static
Utilit Water, Electricity, Databases (e.g. SaaS), Sensors (e.g. Static +
Y Gas Smart Meter), Crowdsourcing (e.g. [oT) Dynamic
e Vet Db e et Senen 6 i
Atmosphere p ) glee Dynamic

portable devices)

In general, we found that data from urban systems have different representations and semantics
and thus pose challenges for data integration. Organizations like OGC (Open Geospatial
Consortium) have published standards for data interoperability such as CityGML (OGC, 2012),
which are only available for integrating homogeneous data with the similar formats. Additionally,
methods such as the information network have been utilized to facilitate the abstraction and
connections of data in a specific domain (e.g., one type of urban system) but are limited in their
ability to integrate data across different domains (Sun and Han, 2012). Relational databases with
consistent schema could address the semantic disparity issue (Ziegler and Dittrich, 2004) but fail
to integrate semi-structured or unstructured data that are common in the urban context.
Automated systems have been then developed to convert tabular data to semantic web
representations or object-oriented models by identifying and analyzing structure, content, and
semantic attributes of local databases (Han et al., 2008; Venetis et al., 2011). However, such
methods are limited in their ability to handle dynamic data streams (e.g., sensor data) and lack the
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interpretability and operability necessary for augmenting decision-making of city officials. Other
studies have tried to integrate fixed data, sensor data, and live social media data but such methods
require manual efforts or well-defined schema that are highly domain-specific (Lopez et al.,
2012; Bocconi et al., 2015). Thus far there is no complete ontology specifically designed for
urban systems management (Zhu and Ferreira Jr, 2015). Some efforts have been made on
methods to directly integrate knowledge behind data instead of the data itself (Zheng, 2016) but
they are task-specific and not generalizable for supporting the wide array of applications required
in urban system management. In summary, currently there is a lack of an interpretable and
scalable data integration framework for data from urban systems (Sheridan and Tennison, 2010),
especially when there are no shared features among datasets. A context-rich metadata schema to
describe the entities, attributes, and relationships of data collected from heterogeneous sources is
required such that smart city applications like energy optimization and transportation
management can be easily implemented across a wide range of cities.

4. GEO-RELATIONSHIP LEARNING BASED METADATA SCHEMA

In order to address the challenges discussed above, we developed a data integration framework
that derives a meta-data schema based on geo-relationship learning. A geo-relationship is defined
as one kind of the ontology which defines the semantics, structures and representations of
concepts in a particular domain. It has the potential to guide the integration of data from different
sources. RDF (Resource Description Framework) (W3C, 2014) model is a data architectural
model by World Wide Web Consortium to represent metadata schema for integrating data from
different sources based on domain ontology. Entities and relationships in the RDF model are
explicitly expressed in a human-logic-similar manner so that city officials can easily follow the
schema and map their data from heterogeneous urban systems to the ontology for comprehensive
understanding and systematic analysis. For example, it is possible to use a RDF model to define
“buildings” in class A as an equivalent to “energy efficient infrastructure”, which is difficult in
traditional relational databases. As a result, we chose to utilize the RDF model as the core basis of
our framework to represent entities, attributes, and relationships of data by triples <subject-
predicate-object>. Each triple indicates the entity subject has the relationship predicate to another
entity object. A RDF model is essentially a graph formed by nodes (subjects and objects) and
directed edges (predicates). The simple structure of #riples makes it possible to represent large
interconnected urban data in an expressive way, especially when the structures of data are
unknown or changing. Our framework was developed to define the metadata schema by
identifying the geo-relationship between two different entities (i.e., adjacency). The learning of a
geo-relationship follows the method of transitioning input from relational databases to a RDB
model using RDBToOnto (Cerbah, 2008a), by which the strong expressive power of sematic web
formalisms capture the underlying connections and hierarchy of geo-information. First the data
are entered into a relational database, and each table is used as the source of an entity
representing one urban system in the RDF model. The latitude/longitude of each entity is used to
search the hierarchical distances with other entities. All distances are classified by the type of
entities and represented as new features (e.g., located in or adjacent to) representing the geo-
relationships among tables. After normalization of the new tables, key-based associations of
tables then form the predicate of entities. Local constraints and dependencies are added to refine
the populated metadata schema with predefined names assigned to instances. Entities are further
categorized into subclasses by mining the patterns of relation attributes to reveal the additional
structure hierarchy (Cerbah, 2008b).
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A typical urban scenario is provided to demonstrate the typical procedure of implementing our
framework and subsequently defining metadata schema. Figure 1 shows the original datasets for
four urban systems within an urban area (Figure 2a), including roads, buildings, vegetation and

in-situ sensors.
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Figure 1. Original datasets for four urban systems (‘Geo’ represents latitude and longitude
information).
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Figure 2a. Prototype for urban scenario. 2b. Process of framework implementation.
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There are five roads in two directions. Five buildings are located on the lands encompassed by the
roads with pink rectangles as the main entrances. Vegetation are planted between buildings and
roads. In-situ sensors are installed at the intersections of two roads for periodically monitoring the
temperature and counting pedestrians, and in the BMS (Building Management System) inside one
building for recording building system energy use. XID is the globally unique identifier of each
entity for the urban system X (X=road, building, vegetation, or sensor). The framework is
implemented to the scenario, including three steps (Figure 2b): 1) search the possible geo-
relationships using the hierarchical distances calculated by the latitude/latitude of each entity. The
results are summarized in Figure 3a with the lines representing the geo-relationships found
among different entities; 2) normalize the database and adjust the structure of datasets based on
local constraints, dependencies and classification; 3) form metadata schema with entities,

attributes, and relationships using triples.
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Figure 3a. Datasets with learned geo-relationships. Figure 3b. Output of metadata schema
based on geo-relationship learning.

The results in Figure 3b show three types of triples (IsLocatedIn, AdjacentTo, SubClassOf) that
are generated in order to integrate the data from the four urban systems. Dynamic and static data
are equally processed with data representations, structures and semantics captured. The
conversion from tables to a RDF model allows the categorization of sensor types and tagging of
specific properties to each. Such categorization and tagging are generally not available through a
traditional relational database. As a result, the output metadata schema captures all the
information in Figure 2a and the interlinked relationships between various datasets. This ability is
not influenced by different urban scenarios. For example, the framework can adapt to the change
of “retrofitting two buildings”, re-calculate hierarchical distances, and update the geo-
relationships between buildings and other entities. Changes made to the data structure or the
addition of new datasets as they become available can be easily integrated into the schema and
thus allow it to be dynamic in nature.

Compared to a relational database, this graph schema facilitates easy analysis of coupled spatial-
temporal dynamics between urban systems and easy interpretation of the results. For example,
using the RDF model, queries of retrieving data under predefined conditions such as “select
energy consumption data of one building when there is no pedestrian on its front street and the
adjacent building is not occupied” can are easily implemented using common querying languages
like SPARQL (W3C, 2008).

5. CONCLUSIONS & FUTURE WORK

With rise of low-cost in-situ sensors and the “smart city” movement, a tremendous amount of
urban data are being generated each day. In order to translate such data into insights and augment
decision-making, city officials must analyze disparate datasets from a wide variety of
heterogeneous sources. In this paper, we introduced a novel data integration framework that
utilizes a RDF (Resource Description Framework) model to integrate disparate urban data
streams based on geo-relationships. Our framework is grounded in observational analysis of
current data management and integration practices occurring in cities.

The primary contribution of this work is the development of an easily interpretable and applicable
metadata schema that enables city officials to analyze disparate, heterogeneous and isolated urban

data. The proposed framework is capable of continuously updating the metadata schema by
learning changes in geo-relationships, allowing it to be dynamic in nature and reflect changing
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data availability and conditions in cities. Overall, this work represents a crucial first-step towards
enabling more data-driven analysis and management of urban systems. Future work aims to
formalize the process of metadata schema formulation and test our framework on real data from a
“living lab” in downtown Palo Alto, CA, USA.
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