
Optimized Event Notification in CAN through
In-Frame Replies and Bloom Filters

Gedare Bloom∗, Gianluca Cena†, Ivan Cibrario Bertolotti†, Tingting Hu‡, Adriano Valenzano†
∗Howard University, 2300 6th St NW, Washington, DC 20059, USA

Email: gedare@scs.howard.edu
†CNR – IEIIT, c.so Duca degli Abruzzi 24, I-10129 Torino, Italy

Email: {gianluca.cena, ivan.cibrario, adriano.valenzano}@ieiit.cnr.it
‡University of Luxembourg – FSTC, 6 Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

Email: tingting.hu@uni.lu

Abstract—Thanks to its distributed and asynchronous medium
access control mechanism, CAN is the ideal choice for intercon-
necting devices in event-driven systems. When timing require-
ments of applications are not particularly demanding, as in the
case of, e.g., reactive and proactive maintenance, constraints on
event delivery can be relaxed, so that their notification may rely
on best-effort approaches.

In this paper, a number of techniques are taken into account
for notifying events in such a kind of systems, and their
performance has been evaluated. Besides conventional CAN, a
recent proposal for extending this protocol, termed CAN XR, is
considered. Moreover, the adoption of Bloom filters to cope with
rare events in very large systems has also been evaluated.

I. INTRODUCTION

Controller Area Network (CAN) [1] was introduced more

than 20 years ago for on-board vehicle use, but is now very

popular in networked embedded systems as well because

of its low cost and high robustness [2], [3]. Basically, the

Medium Access Control (MAC) mechanism CAN relies on

implements a bit-wise distributed arbitration procedure among

nodes, which permits contentions to be resolved at runtime

based on message identifiers. This prevents collisions and

makes this network suitable for use in event-driven systems.

In fact, good reactivity is achieved in spite of the relatively

low transmission speed of CAN (1Mb/s at most, which can

be increased by resorting to the newer CAN FD protocol [4]).
By coupling bit-wise arbitration and schedulability analysis,

hard real-time constraints can be satisfied when traffic patterns

(period, payload size, and deadline of all data streams) are

known in advance [5]–[8]. However, CAN proves to be

very suitable for the use in soft real-time systems as well,

including those which actually have no real-time constraints.

In particular, it offers interesting performances in those cases

where details on message generation are only partially known

at design time, provided that constraints on their delivery are

relaxed. For instance, it makes little sense to define strict

bounds on delivery times when warning messages have to

be collected from a (possibly large) plant, where they can

be generated by devices sporadically. Conversely, a best-effort

strategy often suffices in these cases, which strives to minimize

latencies on the average.

978-1-5090-5788-7/17/$31.00 c©2017 IEEE

In this paper, CAN-based event-driven systems, character-

ized by loose timing requirements, are considered. A number

of techniques are proposed for dealing with event notification

in such a kind of systems, by using both existing solutions

(classical CAN and CAN FD) and new technologies, like the

CAN with eXtensible in-frame Reply (CAN XR) proposal [9].

The adoption of Bloom filters [10], [11]—a data structure

conceived for efficiently managing huge data sets—has also

been considered for those scenarios where false positives are

tolerated. Simple metrics have been employed to assess, in

very general terms, the performance these solutions offer. A

thorough analysis of these aspects requires to suitably model

event generation, and will be left for future works.

The paper is structured as follows: in Sections II, III, and IV,

concise descriptions are provided about event-driven systems,

the CAN protocol, and Bloom filters, respectively, while in

Section V the conceptual model of the architectures we are

taking into account is introduced. Sections VI describes some

best-effort approaches for implementing event notification in

classical CAN, whereas Sections VII and VIII refer to the

CAN FD protocol and the CAN XR proposal, respectively.

Finally, some conclusions are drawn in Section IX.

II. NOTIFICATIONS IN EVENT-DRIVEN SYSTEMS

Industrial distributed monitoring and control systems based

on the event-driven paradigm are made up of nodes that

cooperate by exchanging, asynchronously or acyclically, mes-

sages over a communication network. Unlike systems where

devices are polled cyclically—with cycle times typically in the

order of tens of milliseconds, and even less—noticeably lower

bandwidth is required, especially in the case a large number of

nodes are interconnected whose state changes slowly. A sec-

ond advantage of event-driven systems is given by their higher

robustness: the lack of a centralized coordinator—typically

termed the application/network master, e.g., a programmable

logic controller (PLC)—implies that not necessarily there

is a single point of failure (besides, obviously, the bus).

On the other hand, no warranties can be provided for the

timings of message transmissions, unless their generation rate

is suitably constrained (a particular case is represented by

periodic traffic). This implies that latencies may grow sensibly

1

when many events take place at about the same time, and not

always reasonably tight upper bounds can be found for them.

In this paper, we restrict our attention to interactions that

can be modeled by means of “pure” unqualified events (i.e.,

no ancillary information is needed to further qualify them).

Possible examples are digital systems where each change of

state is mapped on a specific event. Extension to qualified

events (that is, events that bear some additional information

with them) is also possible, but it is slightly more complex and

will be left for future work. When receiving a notification re-

lated to a particular event, a node understands that, somewhere

in the network, a specific condition has occurred on another

node (the one that raised the notification). For instance, the

event may correspond to a warning threshold being exceeded

by a specific analog signal (or that signal returning below the

threshold again), a proximity sensor detecting the presence of

an object (or its absence), the start/completion of an activity

(e.g., a software task), a heartbeat pulse, and so on.

In the following, we will focus on systems where a large

number (hundreds) of nodes (sources) can potentially generate

a huge amount of different unqualified events (thousands to

millions), which must be notified as soon as possible over

a CAN bus. It is worth remembering that the adoption of

repeaters to interconnect network trunks permits to increase

fan-out, and hence, the number of connected devices. More-

over, when running at low speed (e.g., 50 kb/s or less), CAN

networks can stretch over quite large areas (1 km and more).

Therefore, the envisaged solutions are likely suitable to

cover the whole plant (or large parts of it). Unlike central-

ized systems, we assume that there is not a single event

engine (sink). Conversely, following the well-known producer-

consumer paradigm, events are broadcast from source nodes

on the CAN bus, so that they can reach all the related sink

nodes at once. According to this approach, sources are not

required to know which sinks will actually consume their

events. This scenario closely resembles next-generation sensor

networks, which are used to collect information in industrial

plants for maintenance purposes (customarily classified as big

data).

Although generation times of events by sources are not

known in advance, as they are spontaneously produced by

devices upon specific local conditions, we assume that only

a limited number of events are typically raised system-wide

at the same time, and in particular that the average (overall)

traffic related to event notification, also including a suitable

safety margin, is strictly lower than the portion of network

bandwidth reserved to this purpose. In fact, for several classes

of events (e.g., those related to warning conditions), occur-

rence is usually considered to be rare. In this way, the network

almost always operates well below the saturation threshold,

so that all events are eventually notified. With little loss of

generality, and while not strictly necessary, events are assumed

to be sporadic, i.e., a minimum interarrival time is defined for

them. Since event generation is unpredictable and sources are

not synchronized in any way, chances are that, from time to

time, the amount of events to be delivered may temporarily

exceed the network capacity. In turn, this causes undue delays

in event notification. Since timing requirements are assumed to

fall under the soft real-time category, late delivery is tolerated

as long as it happens seldom.

In order to statistically improve latencies in the above

scenario, suitable approaches are needed, which mostly aim

at reducing network utilization by increasing communication

efficiency. In the following, several techniques for accom-

plishing this task are described and discussed. A number of

them are quite straightforward, and are customarily employed

in existing CAN networks. Others are instead based on the

CAN XR proposal, possibly combined with fast searching

techniques like Bloom filters. Generally speaking, there is not

a single, optimal solution, as many factors have to be taken

into account.

It has to be pointed out that mixing different kinds of

messages in CAN is indeed possible. As a consequence,

besides asynchronous notifications, other pieces of information

can be concurrently conveyed on the same network, like

analog readings (temperature, level, flow, position, etc.) or

structured data (parameter blocks, text strings, and others),

possibly carried out at a periodical pace and even characterized

by firm deadlines. For instance, a set of real-time streams

(corresponding to, e.g., process data objects) can be mapped

on higher-priority identifiers, and feasibility analysis can be

exploited to assess whether or not timing constraints are met.

Part of the lower-priority identifiers can instead be reserved

to event notification according to the techniques described

below. Hence, full composability can be achieved, merely

considering the blocking effect lower-priority messages have

on higher-priority ones during feasibility analysis. Importantly,

encoding schemes that may cause false positives can coexist

side-by-side with those which do not suffer from this limitation

(by mapping them on either distinct messages or different

parts of the same message). Every application will select the

most suitable notification approach, depending on its specific

requirements.

We assume that devices (CAN nodes) can behave as either

sources or sinks of events (sensors and actuators, respec-

tively), and they can possibly assume both roles at the same

time too (controllers). Dealing with events once they have been

delivered to the sink(s) is outside the scope of this work.

III. CAN BASICS

The MAC mechanism of CAN is based on bit-wise arbi-

tration, which is (mostly) carried out on the identifier field.

Two different sizes are foreseen for this field, namely base

(11 bits) and extended (29 bits). Concerning the size of the

data field, it is possible to distinguish between classical CAN

(8 bytes at most) and CAN FD (up to 64 bytes). By combining

these options, four frame formats are actually defined for data

frames in [1], that is: Classical Base Frame Format (CBFF),

Classical Extended Frame Format (CEFF), FD Base Frame

Format (FBFF), and FD Extended Frame Format (FEFF).

2

TABLE I
FRAME SIZE S VS. PAYLOAD SIZE D IN CAN (ALL VALUES IN BITS)

Section CBFF CEFF FBFF FEFF

Arbitration 13 33 13 33

Control 6 6 9 8

Data 8D 8D 8D 8D

Data (max) 64 64 128 [512] 128 [512]

CRC 15 15 27 [32] 27 [32]

Trailer 10 10 10 10

IMS 3 3 3 3

Total 47 + 8D 67 + 8D 62[67]+8D 81[86]+8D

Total (min) 47 67 62 81

Total (max) 111 131 190 [579] 209 [598]

A. Message size

CAN DATA messages are made up of several sections:

• Arbitration: Start of Frame (SOF) bit, Identifier (ID)

encoded on either 11 or 29 bits—in the latter case

also including the Substitute Remote Request (SRR) and

Identifier Extension (IDE) bits—as well as the Remote

Transmission Request (RTR/RRS) bit.

• Control: its exact format depends on the specific CAN

flavor; besides the Data Length Code (DLC) on 4 bits,

the FD Format indicator (FDF), and possibly one reserved

bit, it includes, in FD formats, the Bit Rate Switch (BRS)

and Error State Indicator (ESI) bits; importantly, for base

formats the IDE bit is also located here.

• Data: Includes a variable number D of bytes (D = 0...8
for classical CAN and D = 0...64 for CAN FD); in

the former case DLC directly encodes D, whereas in the

latter DLC patterns above 8 are put into correspondence

with D = 12, 16, 20, 24, 32, 48, and 64, respectively.

• CRC: Stuff Count (3 bits plus parity) and CRC sequence

(15 bits in Classical CAN, either 17 or 21 bits in CAN

FD, depending on whether D ≤ 16 or 20 ≤ D ≤ 64);

fixed stuff bits must be added in CAN FD at the beginning

and after each fourth bit of the CRC field, this resulting

in 6 or 7 additional bits, depending on D.

• Trailer: CRC delimiter (CDEL), ACK slot (ASLOT), and

ACK delimiter (ADEL), followed by the End of Frame

(EOF) field encoded as 7 recessive bits.

• Intermission (IMS): 3 recessive bits located between any

pair of adjacent frames.

The lower part of Table I reports the frame size S (in bits)

vs. the payload size D (in bytes) for CBFF, CEFF, FBFF,

and FEFF, as well as the minimum and maximum size (for

empty and maximal payloads, respectively). For FBFF and

FEFF, sizes refer to both the case D ≤ 16 and (in square

brackets) the case 20 ≤ D ≤ 64. Non-fixed stuff bits have

been neglected for simplicity, as their exact number may vary

depending on the payload. However, they affect in a similar

way all formats. As we are dealing with channel occupation,

intermission is included in the computation of S.

B. CAN XR

CAN with eXtensible in-frame Reply (XR) [9] is a recent

proposal for extending CAN functionality. Although it applies

to both classical and FD frames, the latter choice brings

higher benefits because of the larger payload. While the frame

format remains exactly the same as CAN (or CAN FD),

in order not to impair coexistence with existing controllers,

the protocol is augmented is such a way that a plurality of

nodes can take part into the transmission of the same frame.

Basically, every exchange in CAN XR is started by a specific

node (initiator), and corresponds to an atomic XR transaction.

Multiple nodes (responders) are allowed to be writing on the

bus in the data field of XR frames (in-frame replies). Target

nodes (consumers), which may rely on conventional CAN

controllers, obtain all such pieces of information at once.

The data field of an XR frame is conceptually split into one

or more slots, which are assigned to responders. Replies of re-

sponders can be either disjoint (exclusive slots) or overlapping

(shared slots). In the latter case, which is quite relevant for this

work, the resulting bit pattern on the bus corresponds to the

bit-wise AND among the bit patterns sent by all responders.

Besides starting a transaction, the initiator also takes care

of supervising it, by inserting stuff bits when needed so as

to preserve the encoding rules of CAN (supervisor role). It is

worth remarking that, at any time, both the active responder

and the initiator carry out this task, and that the related stuff

bits will overlap since they are inserted according to the

same rules. The initiator also takes care of terminating the

frame, by transmitting the CRC and the trailer. Additional

details on a preliminary version of CAN XR can be found

in [9]. A prototype implementation of CAN XR on a software-

defined CAN controller (SDCC) proved that the protocol

behaves correctly and retains full compatibility with existing

controllers.

IV. BLOOM FILTERS BASICS

Bloom filters are typically used with data structures op-

timized for insert and search operations. They are a valid

alternative to bitmaps, when the cardinality of the set among

which elements are drawn (universe) is very large but the

number of elements actually stored in the data structure is

much smaller. Both bitmaps and Bloom filters can be used

for creating and managing dynamic sets, and can be seen as

functions that, given an element (unambiguously characterized

by its key), check whether or not it belongs to the set. Although

techniques are available that permit removal of elements from

Bloom filters, we will consider the case where elements can

only be added (by far simpler and more space-efficient).

The only drawback of Bloom filters is that, sometimes they

may return false positives, i.e., they may indicate that a given

element is present in the set while it is actually not there. By

carefully choosing the size of the data structure, the probability

of this event happening can be made arbitrarily low. However,

the lower this probability is, the higher the overhead, which

means that there is a trade-off between these quantities.

3

A. Bloom filters basics

A Bloom filter basically consists of a bit array b (bitmap)

which includes m Boolean values (bits, for short), used to

“store” elements drawn from a universe A. It is modeled as

a function β(a) : A 7→ {1, 0} that checks the presence of

element a ∈ A in the data structure (a coincides with the key

of the element). Additionally, k hash functions are defined, we

denote hi(a) : A 7→ {0, ...,m− 1} , i = 1...k.

Initially, all bits of an empty Bloom filter are set to 0. Every

time an element a is inserted in the data structure, all the hash

functions are evaluated and the bits of b in the corresponding

positions are set to 1. In formulas, b [hi(a)] ← 1, i = 1...k,

where operator “←” denotes assignment.

Checking the presence of element a in the data structure is

also very simple and efficient. Hash functions are evaluated

in a and the bits of b in the corresponding positions are

checked. If all of them are at the value 1 the element is

possibly present, while on the contrary it is certainly absent.

In formulas, β(a) =
∏k

i=1
b [hi(a)] , i = 1...k, where operator

“
∏

” represents the logical product of a sequence.

This approach may result in false positives, i.e., a Bloom

filter may occasionally report that an absent element is present.

The probability of false positives can be calculated [12], [13],

and mostly depends on the ratio between the size m of b
and the number n of inserted elements, as well as on k. For

instance, if m/n = 8, then such a probability can be as low

as 2.16% when k is set to 6. Importantly, unlike conventional

bitmaps, the cardinality of A is, in theory, irrelevant.

B. Using Bloom filters for event notification

Bloom filters can be applied to event notification in dis-

tributed systems where a certain amount of false positives

(i.e., when sinks mistakenly assume that a certain event has

been notified, while it was not) is tolerated. It is worth

remarking that, unlike the case where Bloom filters are used

with data structures, having sinks checking separately every

event notification to discover false positives nullifies most of

the advantages of using Bloom filters. Hence, we must look

at use cases where these additional checks do not take place.

A first example is given by system warnings, whose pres-

ence is used to update diagnostic data in distributed control

systems (e.g., to achieve reactive and proactive maintenance).

In these cases, changing marginally statistics (due to a rela-

tively small number of false positives being counted as actual

warnings) is usually perfectly acceptable.

A second example is given by modern safety systems, where

moving near a piece of equipment (e.g., a robot) causes it to

move more slowly, and only when the distance falls below the

safety limit to stop completely. This is sometimes referred to

as Dual Check Safety (FANUC DCS). Again, if from time to

time the equipment is unnecessarily slowed down, the impact

on system performance is negligible.

A third example is found in control systems where a certain

event, notified by a source, is the direct cause of another

event, which is consequently generated by the sink. In the

case the source senses the second event but it did not raise

the originating event, it can try to undertake corrective actions

(only applicable to non-critical systems with slow dynamics).

V. SYSTEM MODEL

Let S = {s1, ..., s|S|} be the set of nodes in the network,

while ES = {e1, ..., e|ES |} is the set of all events defined in

the system (universe). Operator |·| denotes the cardinality of

the set it is applied to.

A. Encoding of Events

In order to send notifications over CAN, events are mapped

on specific messages. Let MS =
{

m1, ...,m|MS|

}

be the set

of messages reserved to event notification. Quite obviously

|MS| ≤ NID, where Nstd
ID

= 211 for base (standard) CAN

identifiers and Next
ID

= 229 for extended ones. In the follow-

ing, for simplicity, we will implicitly assume that the whole

identifier space is available for events.

One or more messages mi,j can be assigned to node

si for notifying events. Let Msi = {mi,1, ...,mi,|Msi |
} be

the set of such messages. These sets are exhaustive, i.e.,

MS =
⋃

i=1...|S| Msi , and exclusive, i.e., Msx∩Msy = ∅, x 6= y.

The latter property can be relaxed if empty CAN messages are

considered, for which more than one producer can be active

at the same time in the network. This means, that the same

empty message can be assigned to more than one node.

Roughly speaking, two classes of solutions can be devised

for event mapping: either a flat event space is envisaged

or a hierarchical scheme is adopted. In the former case,

each event is mapped onto a distinct empty message, which

ensures the highest flexibility in the system configuration

phase (every node can in theory notify all events). In the

latter case, events are exclusively assigned to (and managed

by) the related source node (up to |S| distinct devices). So

as to optimize notifications, multiple distinct events can be

mapped onto the same non-empty message with hierarchical

schemes, by suitably encoding them in the data field. This

is not possible when mapping is flat, because non-empty

messages in conventional CAN must have a unique producer.

Let Emi,j
be the set of events that are mapped by si on

a given message mi,j . If Emi,j
= {eg} the notification of

eg coincides with the transmission of mi,j . Otherwise, if
∣

∣Emi,j

∣

∣ > 1 at least one event has to be active in Emi,j
so

as to trigger the message exchange. The set of all events

generated by node si is denoted Esi , and can be expressed

as Esi =
⋃

j=1...|Msi |
Emi,j

. Generally speaking, |Esi | depends

on the number of messages assigned to si, their size, and the

encoding scheme used for events. Overall, ES =
⋃

i=1...|S| Esi .

When
∣

∣Emi,j

∣

∣ > 1, not necessarily all pending events in

Emi,j
are able to fit into a single instance of mi,j . This

property, in fact, only holds for some of the encoding schemes.

Let mi,j,` denote instance ` of mi,j , and Vmi,j,`
the set

of distinct events which are conveyed in that instance. For

simplicity, in the following we will assume that encoding is

such that the maximum number Vmi,j
of events that can be

included in a single instance of mi,j (message capacity) is

fixed and does not depend on the specific events included.

4

This means,
∣

∣Vmi,j,`

∣

∣ ≤ Vmi,j
, ∀`. Whenever message capacity

is exceeded several instances of mi,j will be sent on the bus.

B. Performance Metrics

The following metrics are considered in order to character-

ize solutions for event notification:

• Maximum number of events (ES): how many distinct

events can be defined in the system whose notification

is supported by the considered solution, |ES| ≤ ES.

• Maximum event notification rate (Λ): how many events

can be conveyed in a specific time interval under sus-

tained traffic conditions (all events always active).

• Effective event notification rate (λ): how many events

can be conveyed in a specific time interval under specific

event generation conditions.

Let R be the bit rate on the CAN bus, R = 1/Tbit, and let

Cm be the duration of message m on the bus, which depends

on its size S (in bits) and R. For message m it can be expressed

as Cm = Sm/R, where Sm depends on the data field size

Dm (in bytes) and the frame format (either base or extended

identifier, for both classical and FD frames).

The maximum event notification rate Λm for message m

(that is, assuming that it can exploit the whole network

bandwidth and all the related instances are always filled with

events up to their capacity), can be evaluated as

Λm = Vm/Cm = R · Vm/Sm. (1)

Since only one node can be transmitting in CAN at any given

time, if all messages in MS are assumed to have the same size

and encoding, then ΛS = Λm.

Unlikely, in a well-dimensioned network, many events may

be pending on the same node at the same time waiting for

transmission. Nevertheless, the ability to pack several pending

events into the same message can help to overcome temporary

overload conditions quickly. The effective event notification

rate λm can be evaluated as

λm = ν̄m/Cm = R · ν̄m/Sm. (2)

where ν̄m denotes the average number of events included in

each single instance of m (ν̄m ≤ Vm). Let ε̄m be the mean

number of pending events, among those mapped on message

m, a node has to notify when gaining bus access (ε̄m ≤ |Em| ≤
Em), where Em is the maximum number of events that can

be mapped on m. If Vm ≥ |Em| then all pending events can

always fit in m, and hence ν̄m = ε̄m. Conversely, if Vm < |Em|
several instances of m may be required to convey the pending

events (∼ dε̄m/Vme, on average). In steady-state conditions,

the mean number of events carried in an instance of m can be

approximated as ν̄m ' ε̄m/ dε̄m/Vme.

VI. MAPPING EVENTS ON CAN MESSAGES

Thanks to its access scheme based on arbitration, CAN is

a very good choice for connecting devices in event-driven

systems. Unlike most industrial communication systems based

on the master-slave (centralized) approach, there is no need for

a node that continuously polls networked devices to determine

ARB+CTRL CRC+EOFsi
mi,j

l

ei,j,l

ARB+CTRL 0 CRC+EOFsi
mi,j

ei,j,l

ARB+CTRL CRC+EOFsi
mg

eg

si’

Source node(s) CAN message(s) Event(s)

a) Flat assignment of events to empty messages

b) Message payload includes an event bitmap (local events mapped on bit positions l)

c) Message payload includes an event list (local events encoded as a small integers l)

0l’

si’’

l

l’ ei,j,l’

0

ei,j,l’

Fig. 1. Mapping of events in conventional CAN (flat, bitmap, list).

if some event has possibly arisen. When a condition occurs

on a device which need to be quickly notified to the system,

a message is spontaneously broadcast over the CAN bus

according to the producer-consumer (distributed) approach.

This means that more than one sink can be notified at the

same time using a single message transmission.

In the following, a number of basic approaches are described

for dealing with event notification in classical CAN. Besides

using a separate message per event, solutions like bitmaps and

lists will be taken into account, which permit several events

to be gathered in the same message.

A. Flat event mapping

As depicted in Fig. 1-a, each event eg ∈ ES is directly

mapped on a distinct CAN message mg , where g is a global

index which identifies that specific event system-wide. In other

words, Vmg
= Emg

= {eg}. If, as assumed, no ancillary

information has to be provided along with the event, empty

messages can be used. By exploiting the properties of empty

messages in CAN, the same event (characterized by a specific

CAN identifier) can be notified by more than one node,

without causing any issues to the arbitration mechanism. The

related bit sequences, in fact, are exactly the same and will

overlap on the bus. This is the simplest and most straight-

forward solution, and in the following it will be used as the

baseline.

Mapping between events and CAN identifiers can be mod-

eled as an injective function, but it is typically not bijective as

in real networks some identifiers are likely to be reserved for

other kinds of data exchanges. Thus, ES = |MS|, which implies

Estd
S

= 2048 and Eext
S
' 537 · 106. If we consider a network

made up of a single node, which generates only one kind of

event, mapped on message m, Λstd
m = 21.28 · 10−3 · R while

Λext
m = 14.93 ·10−3 ·R. As all empty messages have the same

size, for the whole network we have ΛS = Λm. For example,

on conventional CAN running at 50 kb/s, the notification rate

can be as high as about 1 kHz.

5

The case where more than one event can be generated by

the same node can be trivially dealt with by assigning the node

more than one message (one per event). The overall maximum

number of events ES does not change, because the amount of

CAN identifiers available network-wide remains the same. The

same holds for the maximum notification rate ΛS.

B. Hierarchical event mapping

When devices are allowed to generate multiple events,

possibly at the same time, hierarchical mapping could be a

better solution than flat mapping. Each event eg in the whole

system is mapped on a triple, g 7→ 〈i, j, l〉, where si is the

producing node, mi,j is the message used by si for notifying

eg , and l is a local index that identifies a specific event among

those encoded in mi,j . Unless a single, fixed event is mapped

on the message (which bring us back to the case of flat

mapping), the data field can not be empty, which implies that

the producing device of each event must be unique on the

whole network.

So as to make comparison of the performance indices for the

different solutions easier, in the following we will assume that,

for any given solution, all messages used for event notification

by every node in the network have the same encoding and

size. This implies that the maximum cardinality Em of the set

of events that can be mapped on any message m, as well as

its actual capacity Vm, are fixed and do not depend on m.

Under the above hypotheses, ES = |MS| · Em. Moreover, the

expressions of the maximum network event notification rate

ΛS are greatly simplified, as this quantity becomes equal to

the maximum notification rate Λm in the case only message

m is repeatedly being exchanged over the network.

The case of the effective notification rate is noticeably more

complex to deal with. In this paper, for sake of simplicity we

will assume that the generation law for every event in ES,

although random, is the same. Therefore, the average number

ν̄m of events included in each message instance does not

depend on m. This means that the rate at which events are

notified in the whole system can be reasonably approximated

by the notification rate evaluated for a single message (that

is, λS is about the same as λm). An in-depth analysis, based

on statistical characterization of event generation on nodes

and their distribution on messages, requires a suitable network

simulator, and will be left for future works.

Concerning notification rates, it should be noted that the

frame size Sm in (1) and (2) depends on Dm, which in turn

is decided depending on Em, Vm, and the scheme adopted to

encode local events. Clearly, optimized solutions can be also

devised, possibly based on mixed notification schemes, where

the above assumptions no longer hold.

Two sample encoding schemes will be described below.

While meaningful for real applications, by no means they have

to be considered exhaustive.

1) Event Bitmap: A very efficient approach to encode the

events raised by a node is to use the data field of its messages

as a bitmap, as shown in Fig. 1-b. In particular, the simplest

scheme is to rely, for each message m, on a static assignments

of the events in Em to the bits in the data field on m. In this

case, l coincides with the bit position in the bitmap. Moreover,

Em coincides with Vm. In particular, if the data field of m

includes Dm bytes, Em = Vm = 8Dm.

As per our simplifying assumptions, all messages have the

same size and encoding, and so for the whole network we have

ES = |MS| · 8Dm and ΛS = Λm = R · 8Dm/Sm, whatever the

assignment of messages to nodes. If the maximal frame size

allowed in classical CAN is taken into account (Dm = 8), then

Estd
S
' 131 ·103 and Λstd

S
= 576.58 · 10−3 · R, much higher

than with flat mapping. However, unlikely all local events of a

given device will be raised at the same time. Since for bitmaps

Em = Vm, all pending events will always fit in a single instance

of m (that is, ν̄m = ε̄m). Thus, the effective event notification

rate is λstd
S
' λstd

m = ε̄m · 9.01 · 10
−3 ·R.

Obviously, the unused message capacity of mi,j cannot be

reused by nodes other than si, and not even by node si itself

for its events mapped on messages other than mi,j . However,

this is not a severe issue, given the non-negligible protocol

overhead in CAN frames. Comparing λS to the baseline

solution (flat mapping), it turns out that, in the case Dm = 8,

bitmaps are advantageous when at least ν̄m = 3 events are

conveyed, on average, in every CAN message, whereas 2
events suffice in the case Dm ≤ 5.

It is worth noting that, when |Esi | > 64, more than one

message has to be allocated to si, that is, |Msi | > 1. Because

of our simplifying assumptions, this does not change neither

|ES| and not even ΛS. In this case, unless events generated by

the same node are statistically correlated, the optimal solution

is to minimize the number of messages allocated to each node,

by enlarging their size Dm as much as possible.

2) Event List: In order to provide higher flexibility, the

message data field can be used to convey a variable number

of local events encoded as a list, as sketched in Fig. 1-c (many

different implementations can be devised to this aim). Unlike

bitmaps, Em and Vm are typically not the same. Generally

speaking, encoding local events using patterns of w bits

(w ≤ 8Dm) permits the assignment of up to Em = 2w distinct

events to message m (one less, in the case a specific pattern is

reserved to encode the “no event” condition). In other words,

1 ≤ l ≤ 2w − 1. In the simplest case when, as per our

simplifying assumptions, w is the same for every message

in the network, ES = |MS| · (2
w − 1). Instead, the capacity of

message m is up to Vm = b8Dm/wc.

For instance, if Dm = 8 bytes (largest classical CAN

frame) and w = 8 bits (local events are encoded on one

byte, which means ES = |MS| · 255), then up to Vm = 8
events can be conveyed at a time in the same message,

which implies Λstd
S

= Λstd
m = 72.07 · 10−3 · R. Message

capacity Vm is lower than for bitmaps, even though set Em

can be noticeably larger. Typically, Vm ≤ |Em|, in which case

λstd
S
' λstd

m ' ε̄m/ dε̄m/ b8Dm/wce · 9.01 · 10
−3 ·R. The case

Vm > |Em| is hardly interesting, as this means that bandwidth

is being wasted (more room is allocated for events in messages

than needed to notify them).

6

TABLE II
EVENT NOTIFICATION SCHEMES BASED ON CONVENTIONAL CAN (FLAT, BITMAPS, AND LISTS)

Scheme D (B) ID ES Em Vm w ΛS (kHz) λm (kHz) Notes

CAN flat (baseline) 0 std ∼2 · 210 (2.05 · 103) 1 1 — 21.28 ·R 21.28 ·R one message per event

CAN flat (baseline) 0 ext ∼512 · 220 (537 · 106) 1 1 — 14.93 ·R 14.93 ·R one message per event

CAN bitmap 1 std ∼16 · 210 (16.4 · 103) 8 8 — 145.45 ·R ν̄m · 18.18 ·R ν̄m refers to a single message

CAN bitmap 1 ext ∼4 · 230 (4.29 · 109) 8 8 — 106.67 ·R ν̄m · 13.33 ·R ν̄m refers to a single message

CAN bitmap 8 std ∼128 · 210 (131 · 103) 64 64 — 576.58 ·R ν̄m · 9.01 ·R ν̄m refers to a single message

CAN bitmap 8 ext ∼32 · 230 (34.4 · 109) 64 64 — 488.55 ·R ν̄m · 7.63 ·R ν̄m refers to a single message

CAN FD bitmap 64 std ∼1 · 220 (1.05 · 106) 512 512 — 884.28 ·R ν̄m · 1.73 ·R ν̄m refers to a single message

CAN FD bitmap 64 ext ∼256 · 230 (275 · 109) 512 512 — 856.19 ·R ν̄m · 1.67 ·R ν̄m refers to a single message

CAN list 8 std ∼30 · 210 (30.7 · 103) 15 16 4 144.14 ·R ν̄m · 9.01 ·R ν̄m refers to a single message

CAN list 8 ext ∼7.5 · 230 (8.05 · 109) 15 16 4 122.14 ·R ν̄m · 7.63 ·R ν̄m refers to a single message

CAN list 8 std ∼510 · 210 (522 · 103) 255 8 8 72.07 ·R ν̄m · 9.01 ·R ν̄m refers to a single message

CAN list 8 ext ∼128 · 230 (137 · 109) 255 8 8 61.07 ·R ν̄m · 7.63 ·R ν̄m refers to a single message

CAN list 8 std ∼128 · 220 (134 · 106) 65535 4 16 36.04 ·R ν̄m · 9.01 ·R ν̄m refers to a single message

CAN list 8 ext ∼32 · 240 (35.2 · 1012) 65535 4 16 30.53 ·R ν̄m · 7.63 ·R ν̄m refers to a single message

CAN FD list 64 std ∼510 · 210 (522 · 103) 255 64 8 110.54 ·R ν̄m · 1.73 ·R ν̄m refers to a single message

CAN FD list 64 ext ∼128 · 230 (137 · 109) 255 64 8 107.02 ·R ν̄m · 1.67 ·R ν̄m refers to a single message

CAN FD list 64 std ∼128 · 220 (134 · 106) 65535 32 16 55.27 ·R ν̄m · 1.73 ·R ν̄m refers to a single message

CAN FD list 64 ext ∼32 · 240 (35.2 · 1012) 65535 32 16 53.51 ·R ν̄m · 1.67 ·R ν̄m refers to a single message

In theory, more than one message can be allocated to each

node in order to enlarge Esi , but this is usually pointless

because, with event lists, the same goal can typically be

achieved more effectively by a proper selection of w. For

example, by setting w = 16 then ES = |MS| · 65535 (while

Vm = 4 events per message). It is worth pointing out that

many different ways exist to encode the list of pending events.

For instance, efficiency can be further increased by resorting

to Huffman codes, so that more frequent events take less bits

and can be packed more densely. A thorough analysis of these

aspects is beyond the scope of this paper.
3) Bloom filters: Applying Bloom filters to hierarchical

schemes over conventional CAN has little practical relevance.

As said above, their use can be advantageous with respect to

bitmaps when the number of distinct events that can be gener-

ated by a node is huge (in theory, sets Em with unlimited size

are supported) but their occurrence is rare, and false positives

may be occasionally tolerated. For instance, when events are

encoded using this approach in a classical CAN frame with

maximal size using k = 5 hash functions (increasing this value

excessively is likely a bit tricky), the probability Pfp of false

positives does not exceed 0.00633% when up to Vm = 2 events

are conveyed in m, but increases to 0.139% and 2.17% when

the events are 4 and 8, respectively [13].

However, using an event list and allocating the whole data

field to encode at most Vm = 2 events (i.e., setting w = 32),

yields (about) the same notification rate and permits to deal

potentially with up to 232 distinct events per message (which

is far beyond most reasonable applications’ needs), but does

not lead to any false positives. For this reason, we will not

analyze Bloom filters over conventional CAN in detail.

VII. MAPPING EVENTS ON CAN FD MESSAGES

Basically, the same considerations made above for classical

CAN also hold for CAN FD. The main difference is that, the

data field can consist of up to 64 bytes (i.e., 512 bits) instead

of 8, which means that the number of events Vm that can fit

in every message increases sensibly, in spite of the slightly

worse overhead due to the larger frame header and trailer.

Exploiting bit-rate switching [14], [15], which consists in

increasing the network bit rate during data transmission (with

the exception of the initial and final parts of the frame, where

arbitration and acknowledgment are carried out, respectively)

usually leads to noticeably shorter transmission times, even

when the larger payload size achieved by CAN FD is used.

A. Hierarchical event mapping

Using flat mapping is hardly advantageous when CAN FD

is taken into account, since the larger payload (up to 64 bytes)

is left unused. For this reason, only the case of hierarchical

mapping is considered in the following.
1) Event Bitmap: When the data field contains a bitmap,

the maximum number of distinct events that can be encoded in

a single message grows by a factor 8 with respect to classical

CAN. In particular, up to Em = Vm = 512 events are made

available for any message m (and can be included in it), which

implies that one message per node is often sufficient. System-

wide we have ES = |MS| · 512 events.

When Dm = 512 the maximum notification rate Λstd
S

=
Λstd
m = 884.28 · 10−3 ·R is ∼53% higher than using bitmaps

with classical CAN, while the effective notification rate is

λstd
S
' λstd

m = ν̄m · 1.73 · 10
−3 · R. Since unlikely all the

local events will become active at the same time, the higher

payload of CAN FD is going to be wasted most of the

times, which means that throughput actually decreases. As a

consequence, in order to globally increase ES, switching to the

extended CAN identifier format is probably a better solution

than moving from CAN to CAN FD.
2) Event List: The larger payload offered by CAN FD

can be useful also with event lists. For instance, for any

7

given size w of the patterns on which events are encoded,

message capacity increases to Vm = b64Dm/wc events. It

is worth pointing out that the maximum notification rate ΛS

only improves marginally with respect to classical CAN (for

example, 110.54·R vs. 72.07·R when w = 8 bits, and 55.27·R
vs. 36.04 ·R when w = 16).

Moreover, as for bitmaps, increasing too much the number

of events that can be collected by a node into the same message

is often pointless, because bandwidth may be wasted uselessly.

3) Bit rate switching: Bit rate switching in CAN FD (by

setting BRS to recessive) is an effective way to improve

the notification rate. In this case, the transmission speed is

increased for the part of frame included between the sampling

points of the BRS bit and the CRC delimiter. For the FD base

format (FDFF), this means that 29 bits (arbitration field, initial

part of the control field, and most of the trailer) are sent at

the nominal bit rate R, while 38 + 8D bits (final part of the

control field, plus data and CRC fields) are transmitted at the

(higher) data bit rate α · R. For example, when α = 5 and

Dm = 512, the maximum notification rate, when bitmaps are

used, can be as high as Λm = 3683.5 · 10−3 · R (the largest

value achievable in CAN). However, when its effective value

is considered, it shrinks to λstd
m = ν̄m · 7.19 · 10

−3 ·R, slightly

lower than when bitmaps are used with maximal-size classical

CAN frames.

Table II reports a synoptic about the simple performance

metrics we considered, for a number of approaches based on

conventional CAN (either classical or FD), which rely on flat

message assignment, event bitmaps, and event lists. The most

interesting columns are Em and λm. Calculations about the

event notification rate in overclocked CAN FD are quite trivial,

and hence no values are explicitly included in the table.

VIII. MAPPING EVENTS ON CAN XR SHARED SLOTS

Static slots offered by the CAN XR proposal permit multiple

nodes to write dominant values in selected parts of the

data field of the same message. It is worth remarking again

that compliance to the CAN and CAN FD frame formats,

including proper bit stuff insertion, is carried out by the

initiator/supervisor, irrespective of the values the event sources

(modeled as XR responders) actually write on the bus. We

verified the proper operation of CAN XR by means of an

experimental campaign on a software-defined CAN controller.

This behavior can be exploited to increase the event no-

tification rate. In order not to loose the ability to carry out

notifications in a truly distributed way, the implicit initiator

feature of CAN XR has to be exploited [9]. In practice,

any node wishing to notify an event initiates the related

XR transaction on the bus. If there are other nodes in the

same conditions, they join the data exchange as responders,

including their events in the data field.

Let XS =
{

x1, ..., x|XS|

}

be the set of XR transactions

defined in the system to support event notifications. Although

they are almost indistinguishable from other CAN messages,

a different symbol has been used to improve clarity.

,,,ARB+CTRL CRC+EOF

si’

xj

eg’

Source node(s) CAN message(s) Event(s)

g’

h1

h2

h3

g

h1

h2

h3

si

eg

eg’’

Filters on

sink node(s)

False positive

Fig. 2. Mapping of events in CAN XR using Bloom filters.

A. Mapping through event bitmaps

The data field of a CAN XR frame (or part of it) can be

seen by nodes as made up of an array of slots, where each

slot takes exactly one bit. A dominant slot value denotes the

presence of the event, whereas a recessive value stands for its

lack. If event mapping is flat, slots are shared among nodes

and globally assigned to specific events, so that any node can

set their value dominant. This is useful when the same event

could be raised by a plurality of distinct sources. Conversely, if

mapping is hierarchical, then each slot is exclusively assigned

to a specific node. In this specific case, event lists can be

employed as well, besides bitmaps, which require the size of

the slots to be enlarged to w > 1 bits. Mixed solutions are

also possible, but they are not considered here.

As the frame format in CAN XR is exactly the same as

CAN/CAN FD, the maximum number Ex of events that can

be mapped onto an XR message x, and the maximum number

Vx of events that can be included in one of its instances,

are the same as in non-XR cases. This also means that

performance metrics, apparently, do not vary, for example,

ES = |XS| · Ex. However, events in CAN XR are allocated

to slots network-wide, and not on a per-node basis. This may

lead to a dramatic improvement of the effective capacity of the

network to quickly deliver notifications, since a single CAN

XR message can collect events generated, almost at the same

time, by a plurality of nodes. In this way, a larger number of

pending events are likely to be collected in the same message

than in the case of conventional CAN, where event gathering

can be carried out only in hierarchical schemes and on a local

basis.

Roughly speaking, in solutions based on conventional CAN

messages, like those analyzed in the previous sections, the

average number of pending events network-wide can be ap-

proximated as ε̄S = |MS| · ε̄m, while in CAN XR they are

ε̄′
S
= |XS| · ε̄x. In systems with a large number of devices, each

of which generates a small number of events, |XS| � |MS|.

8

TABLE III
EVENT NOTIFICATION SCHEMES BASED ON CAN XR (BITMAPS AND BLOOM FILTERS)

Scheme D (B) ID ES Ex Vx w̄ ΛS (kHz) λx (kHz) Pfp Notes

XR bitmap 64 std ∼1 · 220 (1.05 · 106) 512 512 — 884.28 ·R ν̄x · 1.73 ·R 0% ν̄x refers to a single XR message

XR bitmap 64 ext ∼256 · 230 (275 · 109) 512 512 — 856.19 ·R ν̄x · 1.67 ·R 0% ν̄x refers to a single XR message

XR Bloom 64 std ∞ ∞ 64 8 110.54 ·R ν̄x · 1.73 ·R 2.17% ν̄x refers to a single XR message

XR Bloom 64 std ∞ ∞ 32 16 55.27 ·R ν̄x · 1.73 ·R 0.139% ν̄x refers to a single XR message

XR Bloom 64 std ∞ ∞ 16 32 27.63 ·R ν̄x · 1.73 ·R 0.00633% ν̄x refers to a single XR message

For instance, if there are 100 nodes and 500 events, |MS| has

to be at least 100. Conversely, a single XR transaction (i.e.,

|XS| = 1) mapped on an FD frame permits to encode all such

events at once using a bitmap. If ε̄′
S

was equal to ε̄S, then

ε̄x � ε̄m, which means that, on average, a larger number of

pending events can be collected together, and hence a smaller

portion of the capacity of XR messages goes wasted. In reality,

improvements are not so high since, due of the higher capacity

of XR-based solutions to drain notifications, the mean number

of pending events (all over the system) shrinks, i.e., ε̄′
S
< ε̄S.

The price to pay for the increase in the overall notification

rate is that the maximum number of distinct events that can be

defined system-wide is relatively small. Using multiple CAN

XR messages, on which distinct events are mapped, permits to

overcome this limitation. If a number |XS| of such messages

are used, on which different global events are encoded as a

bitmap, then ES = |XS| · 512 (in the case XR transactions are

mapped on FD frames). When doing so, however, events are

scattered across more than one XR message, which means that

ε̄x is likely to decrease by about the same factor, and so does

the effective notification rate λx. Again, the best option is to

use as few messages as possible.

B. Bloom Filters

As Fig. 2 shows, applying Bloom filters to event notification

in CAN XR is quite straightforward:

1) A shared slot is defined in the data field of a CAN XR

message (possibly taking all D bytes) and used as the

supporting data structure. Basically, it mimics a shared

bitmap made up of m = 8D entries.

2) When an event eg has to be notified, the related source

determines which bits have to be set dominant by eval-

uating k independent hash functions hi(g), 1 ≤ i ≤ k,

in g, each of which returns an index in the range

[0...m− 1]. More than one event may be included by

each node in the same message.

3) The dominant–recessive behavior of the CAN bus is ex-

ploited to merge results. Having a node writing dominant

values on specific bits of a shared slot corresponds to

the insert-only operation carried out by Bloom filters on

the data structure.

4) The content of the shared slot in the CAN XR message

exchanged on the bus corresponds to the data structure

after all the pending events have been inserted. This

frame is received by all sinks at the same time.

Clearly, it is just impossible for a sink to obtain the original

events back: in fact, Bloom filters rely on hash functions

and are not intended to be reverted. However, every sink

can easily assess whether or not the events it is interested

in have been included by the related source. Simply, it has to

evaluate the hash functions for these events, and check if all

the corresponding bits in the received message are dominant.

What is particularly relevant about Bloom filters coupled

with CAN XR shared slots is that they permit to map events

drawn from a very large set (much larger than allowed by a

bitmap) onto one (or few) XR messages. This makes them

advantageous for systems where a huge amount of distinct

events are foreseen (many thousands to millions), generated

by a large number of devices (many hundreds), but each one

of them occurs seldom.

By referring to the typical notation used for Bloom filters,

reported in Section IV, the number n of elements inserted in

an XR transaction x is on average ν̄x, and, if the whole data

field is used as the supporting data structure, the related size

is m ≡ 8Dx. Let w̄ = m/n = 8Dx/ν̄x be the mean number

of bits per event in x. The probability of false positives Pfp

depends on w̄ and, to a lesser extent, k. When using Bloom

filters, ν̄x = ε̄x because all pending events can in theory be

collected in the same XR message. If only one message is

considered in the system, then ε̄S = ε̄x and, consequently,

ν̄x = ε̄S. In this case, w̄ = 8Dx/ε̄S.

As an example, let us assume that, on average, ε̄S = 64
events are pending, at any time, network-wide, which have to

be notified as soon as possible, and that Dx = 64 bytes (i.e.,

512 bits). This means that w̄ = 8 bits in each XR message are

allocated on average per event. In such conditions, the overall

effective notification rate is λS = 110.53 · 10−3 · R. When

ε̄S is cut by half and by 4 (which means that w̄ = 16 and

32 bits), the notification rate λS falls to 55.27 · 10−3 · R and

27.63 ·10−3 ·R, respectively. According to Section VI-B3, the

probability Pfp of false positives for these three cases, when

k = 5, is about 2.17%, 0.139%, and 0.00633%.

A synoptic about the metrics we took into account, for the

case of CAN XR, when either bitmaps and Bloom filters are

adopted, is shown in Table III. As can be seen, Bloom filters

have two main disadvantages with respect to the case when a

bitmap is directly coupled with CAN XR: first, the notification

rate is noticeably lower (ten times or more), and second, false

positives are possible. However, they also show a peculiar

advantage, since the number of events that can be potentially

9

defined in the system, even with a single XR message, is

virtually unlimited, ES =∞.

For these reasons, Bloom filters on CAN XR are mostly

suitable for dealing with rare events in large systems, and

should be more correctly compared against classical CAN so-

lutions which rely on either a flat mapping on extended frames

(ES ' 537 · 106, Λext
S

= 14.93 · 10−3 · R) or a hierarchical

mapping using event lists where, e.g., Dm = 2 bytes and

w = 16 bits (ES ' 134 · 106, Λext
S

= ε̄S · 15.87 · 10
−3 · R).

When false positives up to 2.17% are tolerated, coupling CAN

XR and Bloom filters is about 7 times faster than CAN.

An important aspect to be taken into account when using

CAN XR with Bloom filters is that the number of events

system-wide to notify at any given time is not known a

priori, and cannot be checked at run time because there is

no coordination among nodes. While the number of events

that can be “inserted” in an XR message is unbounded, when

it increases above the expected value the probability of false

positives may become unacceptably high. So as to lower the

likelihood of this condition happening, multiple XR messages

can be foreseen, and events can be scattered among them in

the configuration phase. Importantly, in this case increasing

the number of messages is not meant to enlarge ES, but just

to reduce statistically the occurrence of false positives.

IX. CONCLUSIONS

Controller Area Networks are very suitable to interconnect

devices in event-driven systems, where interactions occur

asynchronously. Besides real-time applications, they can be

profitably employed also in those cases where information to

be exchanged is characterized by relaxed timing constraints.

For instance, wired sensor networks used for online diag-

nostics, as well as for reactive and proactive maintenance,

can be inexpensively implemented and deployed using this

communication technology.

In this paper, best-effort techniques for efficiently managing

event notifications in such a kind of systems have been

considered, and their performance evaluated by means of quite

simple and generic metrics, like the maximum number of

distinct events supported by each solution and the rate at which

events are transferred from sources to sinks over the network.

Concerning the underlying communication technology, both

classical CAN and CAN FD have been taken into account,

also including the recent CAN XR proposal, which enables

data slotting in CAN without losing backward compatibility

Results show that CAN XR, by allowing multiple nodes to

be writing at the same time into the same message, permits

a higher number of events to be collected (and exchanged)

together, which in turn increases the effective overall notifi-

cation rate. The use of Bloom filters, possibly coupled with

CAN XR, is useful in the case of systems where a very large

with existing devices and systems. To improve communication

efficiency, techniques can be employed that allow a set of

events to be gathered in the same message. Besides obvious

solutions like bitmaps and lists, Bloom filters were also

considered to this purpose.

number of rare events are defined, provided that false positives

are occasionally tolerated.

As future work we plan to assess performance by consider-

ing some specific event generation schemes for nodes. Doing

so will probably require a suitable ad-hoc simulator to be

purposely developed.

ACKNOWLEDGMENT

This research has been supported in part by the US National

Science Foundation (CNS Grant No 1646317).

REFERENCES

[1] ISO, ISO 11898-1:2015 – Road vehicles – Controller area network

(CAN) – Part 1: Data link layer and physical signalling, International
Organization for Standardization, Dec. 2015.

[2] CiA, CiA 301 V4.2.0 – CANopen application layer and communication

profile, CAN in Automation e.V., Feb. 2011.
[3] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “Design,

verification, and performance of a MODBUS-CAN adaptation layer,”
in Proc. 10th IEEE International Workshop on Factory Communication

Systems (WFCS), May 2014, pp. 1–10.
[4] CAN with Flexible Data-Rate Specification Version 1.0, Robert Bosch

GmbH, Apr. 2012.
[5] H. A. Hansson, T. Nolte, C. Norstrom, and S. Punnekkat, “Integrating re-

liability and timing analysis of CAN-based systems,” IEEE Transactions

on Industrial Electronics, vol. 49, no. 6, pp. 1240–1250, Dec. 2002.
[6] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network

(CAN) schedulability analysis: Refuted, revisited and revised,” Real-

Time Systems, vol. 35, no. 3, pp. 239–272, 2007.
[7] R. I. Davis and N. Navet, “Controller area network (CAN) schedulability

analysis for messages with arbitrary deadlines in FIFO and work-
conserving queues,” in Proc. 9th IEEE International Workshop on

Factory Communication Systems (WFCS), May 2012, pp. 33–42.
[8] M. Di Natale and H. Zeng, “Practical issues with the timing analysis

of the Controller Area Network,” in Proc. 18th IEEE Conference on

Emerging Technologies and Factory Automation (ETFA), Sept 2013, pp.
1–8.

[9] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “CAN
XR: CAN with eXtensible in-frame Reply,” in Proc. 14th IEEE Intl.

Conference on Industrial Informatics (INDIN), Jul. 2016, pp. 1198–
1201.

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul.
1970.

[11] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Communications Surveys

Tutorials, vol. 14, no. 1, pp. 131–155, 2012.
[12] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-

able wide-area Web cache sharing protocol,” IEEE/ACM Transactions

on Networking, vol. 8, no. 3, pp. 281–293, Jun. 2000.
[13] P. Cao, “Bloom filters — the math,” Available online, at http://pages.cs.

wisc.edu/∼cao/papers/summary-cache/node8.html, Mar. 2017.
[14] G. Cena and A. Valenzano, “Overclocking of Controller Area Networks,”

Electronics Letters, vol. 35, no. 22, pp. 1923–1925, Oct. 1999.
[15] F. Hartwich, “CAN with flexible data-rate,” in Proc. Intl. CAN Confer-

ence (iCC), Mar. 2012, pp. 14-1–14-9.

10

