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Abstract—The ever-increasing variety of services built on top
of the Controller Area Network (CAN), along with the recent
discovery of vulnerabilities in CAN-based automotive systems
(some of them demonstrated in practice), stimulated a renewed
attention to security-oriented enhancements of the CAN protocol.
The issue is further compounded nowadays because, unlike in
the past, security can no longer be enforced by physical bus
segregation.

This paper describes how CAN XR, a recently proposed
extension of the CAN data-link layer, can effectively support
the distributed calculation of arbitrary binary Boolean functions,
which are the foundation of most security protocols, without
necessarily disclosing their operands on the bus. The feasibility
of the approach is then shown through experimental evaluation
and by confirming its applicability to a shared key generation
protocol proposed in literature.

Index Terms—Network security, Cryptographic protocols,
Controller area network (CAN).

I. MOTIVATION AND RELATED WORK

Although the Controller Area Network (CAN) [1] was con-

ceived primarily as a real-time bus for engine-related control

functions at its inception [2], it is nowadays used for an ever-

increasing variety of applications and services. For instance,

it gained popularity in on-board vehicle diagnostics [3] and

industrial automation [4].

Starting in 2010 [5] researchers also gathered compelling

evidence that CAN security features were fairly weak, even-

tually leading to practically demonstrated attacks [6]. The

issue is made even more complex by the fact that it is no

longer possible to enforce “security by obscurity” or resort

to physical bus segregation, like it was done in the past [7].

In fact, infotainment equipment connected to critical on-board

CAN buses was shown to be a viable attack target [8], even

through a wireless channel.

As a result, there is a strong need to enhance the CAN proto-

col data-link layer to better support security-oriented protocols.

Those enhancements ought to satisfy two key features, namely

low overhead (given the very limited maximum CAN payload

size) and compatibility with standard CAN controllers.

CAN with eXtensible in-frame Reply (CAN XR) [9] is

a recent proposal that brings a number of enhancements to

the CAN data-link layer. The basic idea behind CAN XR is

to let more than one node transmit concurrently on the bus

during the payload transmission phase (hence not only in the

arbitration phase), while maintaining backward compatibility

with legacy CAN controllers. By means of this feature, as

it will be demonstrated in the following, it is possible to

efficiently calculate any binary Boolean function directly on

the bus without necessarily disclosing its operands to bus

observers.

To confirm applicability to protocols of practical interest,

we focus on previous work [10], in which the authors propose

a key establishment protocol between two CAN nodes. In

particular, as it will be shown in this paper, the proposed

protocol is based on performing an Exclusive Nor (XNOR)

operation, which is just a special case of binary Boolean

function and can be conveniently carried out on the bus by

means of CAN XR. Using CAN XR as a framework also

addresses most open issues pointed out in [10], for instance,

proper handling of bit stuffing and of the Cyclic Redundancy

Check (CRC) field.

Moreover, this approach also ensures correct synchroniza-

tion between nodes that send overlapping data on the bus.

An additional shortcoming mentioned in [10]—namely, insuf-

ficient payload length—can easily be addressed by means of

fragmentation and reassembly mechanisms that have already

been applied to other CAN-based protocols [11], [12] and can

coexist with CAN XR.

The paper is organized as follows. Section II summarizes

CAN XR and extends [9] by providing a rigorous definition

of its behavior upon multiple, overlapping bus transmissions.

Then, Section III shows how to leverage CAN XR primitives

to calculate arbitrary binary Boolean functions and Section IV

redefines the protocol proposed in [10] in terms of a distributed

XNOR operation. Section V presents experimental results

obtained from a prototype implementation and Section VI

concludes the paper.

II. CAN XR AND OVERLAPPING TRANSMISSIONS

A. Protocol Definition

As outlined previously, CAN XR allows multiple nodes to

transmit concurrently within the data field of the same bus

transaction, rather than only during arbitration, as standard

CAN does. Although CAN XR requires a new breed of
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Fig. 2. Binary Boolean function calculation (not optimized).

method can be extended to handle the case in which A and

B are multi-digit binary values and f is a bit-by-bit binary

Boolean function, by simply using a k-bit cluster for each bit.

The idea is to split Equation (1) into three parts. Two of

them can be calculated by each node in isolation, without

knowing the value held by the other node, and the third one is

calculated by the bus itself during data transfer. In particular:

1) both RA and RB calculate the complement of their

value, A and B respectively; then, they build the 4-bit

strings VA = A,A,A,A and VB = B,B,B,B to be

sent on the bus;

2) during the frame exchange, the bus calculates the

Boolean product G = VAVB as described in Section II;

denoting by G(k) the k-th bit of G, this corresponds to

the 4 minterms G(0) = AB, . . . , G(3) = AB;

3) given the G(k) received from the bus, both A and B
calculate fc(A,B) =

∑3
k=0 ckG

(k).

Fig. 2 illustrates the algorithm and the frame exchange in

more detail. As shown in the figure, RA and RB transmit their

value and its complement twice within a 4-bit cluster of a fully

overlapping CAN XR slot, as indicated. Then, they gather the

result of the wired-AND bus operation and calculate fc(A,B).

Although the worst-case cluster length is k = 4, if c is

fixed and known in advance then one can ensure a cluster

length of k ≤ 2 by leveraging two observations. First is that

any fc having more than two bits in c set (namely ci = 1)

can be substituted by fc = fc where fc is the Boolean

dual of fc and, in our formulation, is exactly the function

obtained by using c in place of c. This first observation is a

direct application of Boolean duality under de Morgan’s laws.

The second observation is that clusters may be shortened for

efficiency by omitting terms in which ci = 0 (respectively, ci
in case the dual is in use).

As an example, we note that the XOR function, denoted by

⊕, and its complement XNOR are defined as

A⊕B = AB +AB, and A⊕B = AB +AB. (2)

TABLE II
XNOR OPERATION ON THE CAN BUS

Operands Bus bits Result Key bit

A B A B AB AB X = A⊕B K

0 0 1 1 0 1 1 —
0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 1
1 1 0 0 1 0 1 —

Hence, as already proved in general terms, k = 2 suffices

to calculate XOR (respectively, XNOR), which is of particular

interest for the discussion in Section IV.

For what concerns operand disclosure, it is worth mention-

ing that neither A nor B can be observed directly on the

bus. Then, the amount of information a (possibly malevolent)

bus observer can gather depends on which minterms are

transmitted and their value. For instance, if the minterm AB
is transmitted on the bus and its value is 1, the bus observer

can infer that A = B = 1 for certain. On the other hand,

if it is 0, the observer gains more limited information and

cannot distinguish between the three remaining combinations

of values of A and B.

IV. XNOR-BASED KEY ESTABLISHMENT

The goal of the protocol defined in [10] is to establish a

shared secret between two nodes RA and RB . In the following

we initially consider, for simplicity, a 1-bit secret.

A. Protocol Reformulation

After being reformulated according to the concepts pre-

sented in Sections II and III, the protocol works as follows.

1) Both RA and RB generate a 1-bit random value, A and

B, respectively. All possible combinations are listed in

the four leftmost columns of Table II.

2) They calculate the XNOR between A and B, that is,

X = A⊕B, according to (2) and using an optimized

version of the procedure depicted in Figure 2, based

upon a 2-bit cluster consisting of the first and last

element of the 4-bit cluster shown in the figure. Cluster

contents are shown in the fifth and sixth column of the

table. The seventh column lists the corresponding value

of X .

Depending on the value of X , two cases are possible:

3) If X = 1, then A = B and no shared secret can be

established because any bus eavesdropper can determine

their value, by observing cluster contents. This case

corresponds to the gray rows of Table II.

4) If X = 0, then it is known that A = B, but their value

cannot be determined by the eavesdropper since the two

possible cases generate exactly the same bus traffic, as

shown in the two middle rows of the table. Hence, the

two nodes can establish a 1-bit secret K = A = B.

It should be noted that, after a successful protocol run,

RA and RB possess K and K, respectively. Therefore, the

protocol is not symmetric and it is important to tell their roles



apart. This is not an issue because the CAN XR protocol

already supports nodes with multiple roles in a transaction.

For instance, RA can be defined to also take the role of I
(and S), while RB is a plain responder.

The extension to multi-bit secrets is very simple and consists

of n protocol runs, each one attempting to establish a 1-bit

secret as described above. For what concerns bus traffic related

to the distributed XNOR operation, the n runs are performed

as outlined in Section III, by sharing a single frame up to

its capacity. If needed, it is then possible to use multiple

frames according to suitable fragmentation and reassembly

mechanisms like [11], [12].

B. Probability of Success

Under the assumption that bit values 0 and 1 are equiprob-

able, and A and B are statistically independent, all rows of

Table II have the same probability of occurrence. Hence, a

single protocol run succeeds in establishing a 1-bit shared

secret with probability p = 1
2 .

We can define the protocol efficiency as the average ratio

between the number of secret bits established in n runs,

expressed by the random variable Q(n), and the number of

bits exchanged, namely 2n. As also stated in [10], it is

E

[

Q(n)

2n

]

=
E[Q(n)]

2n
=

pn

2n
=

1

4
. (3)

However, a more interesting formulation of the problem

from the practical point of view is to determine what is

the minimum number of protocol runs n0(k, ρ) of n ≥ k
that ensures the establishment of Q(n) ≥ k secret bits with

confidence probability ρ. In formula, we want to determine

n0(k, ρ) = min
n

(P [Q(n) ≥ k] ≥ ρ), n ≥ k. (4)

This can easily be done by observing that Q(n) is a binomial

random variable corresponding to n Bernoulli experiments

with probability of success p = 1
2 . Denoting with F (k;n, 1

2 )
the well-known cumulative distribution function (CDF) of

Q(n), it is

P [Q(n) ≥ k] = 1− P [Q(n) < k] = 1− P [Q(n) ≤ k − 1]

= 1− F (k − 1;n,
1

2
). (5)

Substituting (5) into (4) we eventually obtain

n0(k, ρ) = min
n

(F (k − 1;n,
1

2
) ≤ 1− ρ), n ≥ k. (6)

Table III lists the values of n0 for several commonly used

values of k and two different values of ρ. The same table also

lists the overall number of frames needed for key establishment

M(n0) =

⌈

⌈

2n0

8

⌉

63

⌉

, (7)

under the hypothesis that frames of length up to 64 bytes (the

maximum frame size currently supported in CAN [1]) are

TABLE III
VALUES OF n0 , M(no), AND L(n0) FOR COMMON k AND ρ

ρ = 0.99 ρ = 0.999
k n0 M L [B] n0 M L [B]

128 295 2 12 (12) 310 2 16 (16)
256 567 3 17 (20) 586 3 22 (24)
512 1101 5 25 (32) 1127 5 31 (32)

used, in which one byte is reserved for control information

related to fragmentation and reassembly. All frames are of

maximal size, with the possible exception of the last one,

whose length in bytes is

L(n0) =

⌈

2n0

8

⌉

− 63(M(n0)− 1) + 1. (8)

The values of L(n0) calculated in (8) neglect that not all

frame lengths above 8 are allowed in CAN [1]. Hence, it may

be necessary to use a larger length than strictly needed. The

corrected value is shown between parentheses in Table III. As

we can see, just 5 frame exchanges are needed to establish

a 512-bit shared key with at least 99.9% of success. Hence,

protocol overhead is considered to be acceptable.

V. PROTOTYPE IMPLEMENTATION AND EVALUATION

The protocol proposed in Section III has been evaluated

experimentally by means of a prototype implementation, in

terms of correctness, memory footprint and execution time.

A. Experimental Setup

The setup used for the evaluation consists of 3 CAN nodes,

namely, one initiator/responder I/RA (which also acts as S),

one responder RB , and one consumer C. Both I/RA and

RB are implemented by means of a software-defined CAN

controller (SDCC), extended to support CAN XR, as explained

in Section II and [9]. SDCC consists of several layered

modules, whose structure closely reproduces the one specified

by the CAN standard [1].

Unlike a regular CAN controller, which does not leave

room for extension at/below the data-link layer, because it

implements those layers in hardware, SDCC can be easily

modified at will. In addition to the functions implemented

in a normal CAN controller, it also includes extra support

for role-dependent transmission/reception and takes particular

care of bit synchronization and stuffing as they become much

tricky when multiple nodes are involved in the same data

field. The only hardware components needed by SDCC are

a timer, a General-Purpose Input-Output (GPIO) port, and

a transceiver. The timer drives SDCC real-time operations,

while the GPIO port enables SDCC to communicate with the

off-chip transceiver. In turn, the transceiver takes care of the

physical-layer electrical interface to the CAN bus.

On the other hand, C plays a passive role in CAN XR

transactions. It makes use of a standard, hardware CAN

controller (HCC) to verify that bus traffic still conforms to

the ISO 11898 standard [1], and hence, CAN XR is backward
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compatible. All nodes are based on a LPC1768 microcon-

troller [14], whose Cortex-M3 CPU runs at 100 MHz. In order

to cope with current SDCC processing time limitations on

the aforementioned CPU, the CAN bit rate has been set to

50 kb/s, one of the standard rates specified by the CANopen

standard [4].

As shown in Fig. 3 (white blocks), I/RA and RB imple-

ment the protocol for calculating arbitrary Boolean functions

proposed in Section III. More specifically, they start from two

pseudo-random values, namely A and B. Each bit of them

is extended to a 4-bit sequence as indicated in Fig. 2 and

then concatenated to serve as the data field of a CAN XR

frame to be exchanged on the CAN bus. As aforementioned,

SDCC is in charge of frame formatting as well as simultaneous

transmission and synchronization when more than one node

takes part in sending the data field.

Besides, I/RA checks that protocol results (achieved via the

white blocks) are correct by means of an oracle (gray blocks).

The oracle is able to predict the pseudo-random material that

RB shall generate at each protocol round and use it to calculate

the expected outcome X ′. It then compares X ′ with the actual

outcome X established by the protocol.

The same setup can also be used to realize the key establish-

ment protocol proposed in [10], by specializing the structure

shown in Fig. 2 according to the reformulation discussed in

Section IV. However, this possibility has not been further

explored in this paper for conciseness and is planned as an

upcoming work.

B. Results

The experimental evaluation aimed, first of all, at confirming

the correctness of the proposed protocol and its implementa-

tion, beyond the theoretical reasoning presented in Section III.

To this purpose the experimental setup outlined in Fig. 3 was

configured to perform a total of 768000 protocol rounds in

several hours of runtime. Upon each round I/RA and RB

randomly select one point within the operand space, consisting

TABLE IV
MEMORY FOOTPRINT BY MODULE (BYTES)

Text and RW init. BSS

Module RO data data data

I/RA MAC extension and PCBs 877 0 264
RB MAC extension and PCBs 460 0 244
General protocol implementation 1316 0 0

CAN medium access control (MAC) 1728 0 0
Physical coding sub-layer (PCS) 376 0 0
Platform-independent PMA 16 0 0
Timer and GPIO PMA 324 0 0

Total (excl. runtime library modules)

I/RA 4637 0 264
RB 4220 0 244

Total (incl. runtime library modules)

I/RA 44692 1292 10000
RB 44180 1292 9980

of 236 elements (two 16-bit operands A and B, plus the 4-bit

function selector c).

Since the random number generator produces uniformly

distributed values, the operand space is explored according to

the classic Monte Carlo method [15]. The number of collected

samples corresponds to 1.12 · 10−5 of the space, which is

deemed to be sufficient to double-check correctness. Further

experiments involving an even larger number of samples are

in progress and no failures were detected so far.

Afterwards, the firmware was statically inspected to assess

its memory footprint, yielding the figures listed in Table IV.

Footprint has been broken down by module and divided into

three categories: code (traditionally called text) and read-only

data, read-write initialized data, and read-write uninitialized

data (traditionally called BSS data). This is because in an

embedded system they may correspond to different kinds of

memory (typically, Flash memory versus static RAM).

As shown in the third row of the table, the general protocol

implementation accounts for about 28% and 31% of the total

I/RA and RB text sizes, respectively, while it does not contain

either read-write or BSS data. At the same time, the total

firmware text sizes compare very favorably to the amount of

Flash memory available on the microcontroller in use (less

than 5 KB used on each node versus 512 KB available, that is,

about 1%). The total data sizes are also negligible with respect

to the available static RAM (less than 300 B used versus 64 KB

available, about 0.5%). It should also be noted that the size

of the I/RA and RB MAC extension modules, given in the

first two rows of Table IV, includes all protocol control blocks

(PCBs) needed by SDCC as BSS data.

Those results confirm that the proposed approach can eas-

ily be integrated with existing, low-cost firmware designs

without concerns about overflowing memory capacity. The

overall firmware image sizes (last two rows of Table IV) are

significantly larger because they include C library modules

linked in by the printf function, used to log test results and

debugging information. However, these modules will likely not

be included in production firmware.

Last, but not least, the firmware was instrumented to evalu-
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ate the execution time of the general protocol implementation,

by means of a 32-bit timer running at 100 MHz. The execution

time of the main protocol functions was evaluated by calculat-

ing the differences between timer readings taken immediately

after/before calling the function and collecting them into a

histogram for 10000 protocol rounds. Code inspection shows

that data collection requires about 10 assembly language

instructions, leading to an estimated overhead under 0.5µs.
The bus transmission time has not been evaluated because it

depends on the CAN bit rate rather than software performance.

Results are depicted in Fig. 4. The majority of the time is

spent in payload preparation (about 12µs) and setting up data

that are needed by other protocol functions and depend on

c (about 4.5µs). It is however worth noting that data setup

overheads can be reduced when running multiple protocol

rounds with the same c, because the setup must be carried

out only once. Moreover, overheads can be avoided altogether

if c is constant and known in advance, since the setup can be

performed at compile time in this case.

The calculation of fc after the frame exchange is the fastest

operation and it takes less than 2µs. Overall, this leads to

a total protocol execution time of 12 + 4.5 + 2 = 18.5µs,
which is a small fraction of the bus transmission time even

considering the highest bit rate supported by classic CAN, that

is, 1 Mb/s. All protocol functions, except fc calculation, are

affected by an amount of data-dependent jitter between 1 and

2µs. No attempt to reduce the jitter has been made because

it was deemed irrelevant for this kind of application.

VI. CONCLUSION

This paper illustrates how CAN XR—a backward-

compatible extension of the CAN data-link layer—can be

leveraged to calculate arbitrary binary Boolean functions, in

a distributed way and without necessarily disclosing their

operands. As a special case, it was shown that CAN XR can

effectively implement a key establishment protocol formerly

appeared in literature [10], which also paves the way to support

other security protocols.

The experimental evaluation of a prototype implementation

(SDCC) further substantiates that the proposed method works

correctly and meets the typical memory footprint and exe-

cution time requirements of low-cost embedded systems. The

SDCC implementation has been carried out in analogy with the

well-established concept of software-defined radio [16]. With

respect to other software simulators proposed in literature [17],

SDCC’s advantage is that it operates completely in real time.

Hence, it can communicate with hardware-based controllers

directly for cogent correctness and compatibility checks.

As future work, it is foreseen to extend the method to sup-

port n-ary Boolean functions, assess its applicability to other

scenarios, and better investigate its operand non-disclosure

properties, also with the help of further improvements to

SDCC.
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