

Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces†

Louise A. Berben and Jonas C. Peters*

Received (in Berkeley, CA, USA) 14th October 2009, Accepted 10th November 2009

First published as an Advance Article on the web 25th November 2009

DOI: 10.1039/b921559j

Aryl-substituted tetraimine complexes related to $\text{Co}(\text{dmgBF}_2)_2(\text{MeCN})_2$ (dmg = dimethylglyoxime) were synthesized and are active for hydrogen evolution. $\text{Co}(\text{dmgBF}_2)_2(\text{MeCN})_2$ can be adsorbed to a glassy carbon electrode. The chemically modified electrode is active for hydrogen evolution in aqueous solution at $\text{pH} < 4.5$, with an overpotential of only 100 mV.

Developing efficient hydrogen evolution catalysts composed of earth-abundant materials is of considerable current interest.¹ Recent work has established that cobalt tetraimine macrocyclic complexes such as $\text{Co}(\text{dmgBF}_2)_2(\text{MeCN})_2$ (dmg = dimethylglyoxime) (**1**)² can function as efficient electrocatalysts for the production of hydrogen from protons.^{3–5} These systems are attractive because they operate at low overpotentials and at potentials that are quite positive relative to previously explored Co and Ni macrocycle systems. Nickel-phosphine and cobalt systems pioneered by the DuBois lab are of similar interest.⁶ Because the ultimate use of such electrocatalysts in a H_2 -evolving device will likely require grafting them to an electrode surface, we sought to ascertain whether these cobalt catalysts would still function once tethered to an electrode, and how their respective stabilities would be impacted.^{7–9} Related surface studies have utilized a Nafion membrane to obtain a functional electrode–catalyst system.¹⁰

Derivatization of tetraimine-based macrocycles with the form of **1** is not very versatile due to the metal-templated method used in the ligand's synthesis. We have therefore examined a ligand related to a known Schiff base/oxime tetraimine construct,¹¹ for which the ligand can be preformed before addition of cobalt. Herein, we report that these tetraimine cobalt complexes can be used to prepare chemically modified electrodes from indium tin oxide (ITO)-coated glass that are active for hydrogen evolution. We moreover establish that **1** is a substantially better hydrogen-evolving catalyst in aqueous solution once attached to a glassy carbon (GC) electrode.

Access to various aryl-substituted tetraimine complexes related to **1** was achieved via a two-step synthesis involving initial isolation of the proton-linked glyoxime tetraimine followed by generation of the BF_2 -linked analogue (see Fig. 1 for labeling scheme and ESI† for synthetic details).¹² Solid-state structures were obtained for compounds **3–6** and **8** (Fig. S1).†

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. E-mail: jc.peters@mit.edu;

Fax: +1 617 324 1554; Tel: +1 617 253 1819

† Electronic supplementary information (ESI) available: Syntheses and characterization of compounds, plots of electrochemical measurements, CIF files for solid-state structures. CCDC 735555–735559. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b921559j

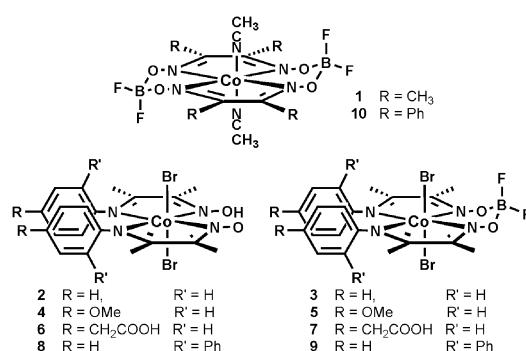
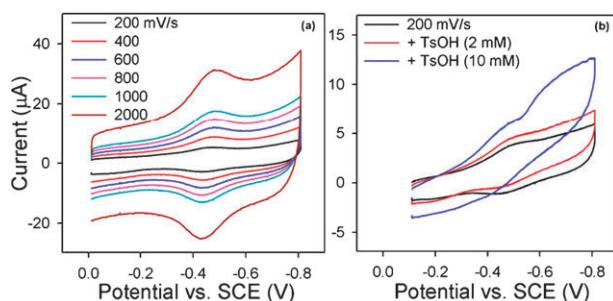



Fig. 1 Line drawings of **1–10**.

Electrochemical measurements performed on 0.1 M Bu_4NClO_4 acetonitrile solutions of **2–9** revealed a quasi-reversible $\text{Co}^{\text{III}/\text{II}}$ couple and a reversible $\text{Co}^{\text{II}/\text{I}}$ couple in each case (Table S1, ESI†). As expected, BF_2 -linked complexes display $\text{Co}^{\text{II}/\text{I}}$ couples shifted ~200 mV anodic of the analogous H-linked complexes. In the presence of acid, electrocatalytic hydrogen evolution is observed at a potential corresponding to the $\text{Co}^{\text{II}/\text{I}}$ couple of the complexes wherein tosylate anion has replaced the bromide axial ligand (Fig. S2).† We have previously used tosic acid as a non-coordinating acid to study catalysis by **1**.³ In the present case, binding of the TsO^- anion to the Co centers occurs and shifts the electrocatalytic potential positive of the $\text{Co}^{\text{II}/\text{I}}$ couple for H-linked catalysts, and to the negative of this couple for BF_2 -linked catalysts; this was confirmed by electrochemical experiments on **4** and **5** performed in the presence of excess Et_4NOTs , which resulted in analogous peak shifts (Fig. S3).† These catalysts operate with overpotentials ranging from 250 to 500 mV, and controlled potential electrolysis experiments performed in 53 mM $\text{TsOH}\cdot\text{H}_2\text{O}$ indicated approximately 75% Faradaic efficiency for the BF_2 -linked catalysts; the H-linked catalysts are far less stable (Table S1).†

Chemically modified electrodes were prepared from the carboxylic acid-substituted derivative **7** by heating ITO-coated glass slides in an acetonitrile solution of the complex at 70 °C for 16 h.¹³ Variable scan rate cyclic voltammetry experiments revealed a reversible redox couple at -0.46 V vs. SCE (Fig. 2a), coincident with the couple observed for **7** in solution (-0.41 V, Fig. S4).† The small peak to peak separation ($E_p = 50$ mV) and the linear relationship between peak current and scan rate (Fig. S5)† strongly suggest that the active redox species is adsorbed on the electrode surface.¹⁴ The cross-sectional area of each molecule on the surface was estimated from the single crystal X-ray structure determination of **6** and yielded a theoretical coverage value of 2.0×10^{-10} mol cm⁻². This value assumes that

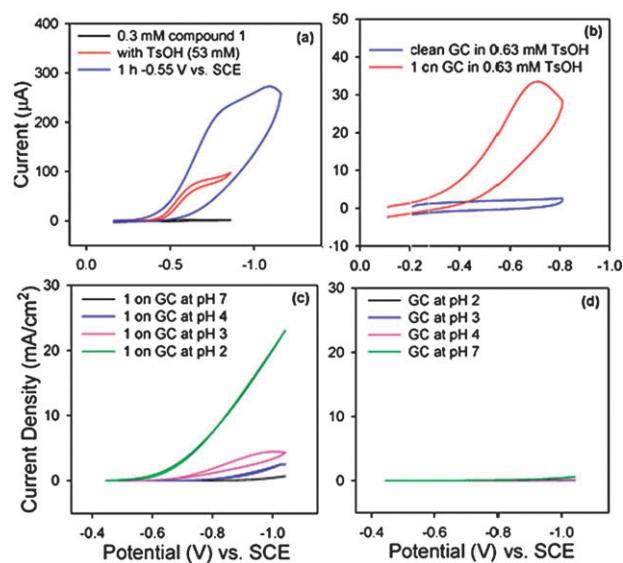


Fig. 2 (a) Scan rate dependence ($0.2\text{--}2\text{ V s}^{-1}$) of the current response for **7** adsorbed on ITO in 0.1 M TBAClO₄ MeCN solution. (b) Catalytic H⁺ reduction using an ITO electrode modified with **7** in 0.1 M TBAClO₄ and tosic acid MeCN (scan rate 0.2 V s^{-1}).

each molecule binds through the carboxylate-appended unit. From the slope of the peak current *versus* scan rate plot a value of $1.3 \times 10^{-10}\text{ mol cm}^{-2}$ was determined experimentally for the surface coverage, corresponding to roughly a monolayer of catalyst.

When tosic acid (2 mM) was added, a rise in current above the Co^{II/1} redox couple was evident, consistent with electrocatalytic hydrogen production (Fig. 2b). The ITO electrode could be removed from solution and rinsed with MeCN before immersion in fresh electrolyte to see that the catalyst remained bound to the surface. However, experiments involving immersion of the electrode in acid for several hours resulted in substantial leaching of the catalyst into solution.

In response to the poor stability of the ITO electrodes we have developed an alternate method for attachment of a cobalt catalyst to a GC electrode surface that is more robust. In the presence of tosic acid (53 mM), compound **1** could be adsorbed to a GC electrode surface by controlled potential electrolysis at -0.6 V for 1 h (3.1 C passed, 2 mA cm^{-2}).^{15,16} CV's recorded before and after adsorption revealed a rise in current of over 100% compared with the GC electrode in solution prior to electrolysis (Fig. 3a). We presume that the implied increase in reaction rate stems from faster electron transfer to the catalyst now in contact with the electrode surface. When the electrode was removed from solution, rinsed with MeCN and reimmersed in a fresh electrolyte solution of tosic acid (0.63 mM), a catalytic wave associated with the Co^{II/1} redox couple was observed (Fig. 3b). Moreover, the catalytic current remained constant for a stirred solution when the potential was held constant at -0.60 V . This indicates that under reducing conditions in the presence of acid the chemically modified electrode with compound **1** is a stable and functional hydrogen evolution catalyst in acetonitrile. When a CV of the modified electrode was recorded in MeCN solution containing 0.1 M TBAClO₄ and 10 mM Bu₄NOTs an irreversible wave at -0.5 V was observed (Fig. S6, ESI†), which is within 100 mV of the Co^{II} \rightarrow Co^I reduction half-wave for complex **1** in solution. A surface coverage of $1.14 \times 10^{-9}\text{ mol cm}^{-2}$ was calculated from the area under this cathodic peak in a typical experiment. When the same experiment is performed in the absence of Bu₄NOTs an asymmetric stripping wave at -0.3 V is observed on the first cathodic scan (Fig. S6),† suggesting that the TsO⁻ anion is involved in maintaining contact of **1** to the surface in the MeCN system.¹⁷ Attempts to attach **1** to pyrolytic graphite edge-plane (PGE) electrodes were unsuccessful. A control experiment was

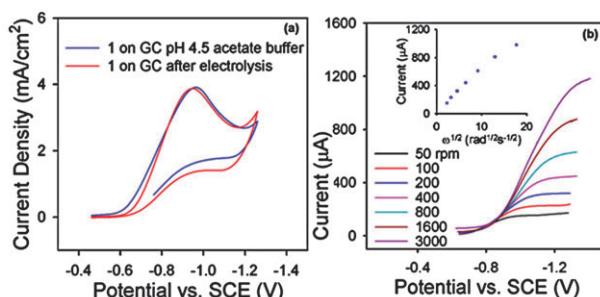


Fig. 3 (a) Catalytic H⁺ reduction by **1** before (red) and after (blue) electrolysis at -0.55 V . 0.3 mM **1** in 0.1 M TBAClO₄ MeCN (black), (b) (blue) CV recorded with GC electrode in 0.1 M TBAClO₄, 0.63 mM TsOH in MeCN. (red) CV recorded with GC electrode modified with **1** in 0.1 M TBAClO₄, 0.63 mM TsOH in MeCN. (c) CV's recorded using a GC electrode modified with **1** in aqueous phosphate-buffered solutions at pH 2, 3, 4 and 7. (d) Control experiment with clean GC. Scan rates: 0.1 V s^{-1} .

performed using GC and tosic acid wherein catalyst **1** was replaced by CoBr₂.¹⁸ Enhancement of the catalytic current was not observed (Fig. S7).† This result, in addition to the location of the catalytic wave, coincident with the Co^{II/1} potential for **1** in solution (Fig. 3b), suggests that the tetraimine complex is the active catalyst in this system.

Investigations were performed on related tetraimine cobalt catalysts that promised similar behavior. Complex **7** was assessed because carboxylic acid functional groups might be expected to yield better adsorption to the electrode surface; **3** and Co(dpgBF₂)₂(MeCN)₂ (**10**) were investigated because they have far lower solubility in acetonitrile, which might be expected to enhance the modified-electrode longevity. However, in all cases stable modified electrodes could not be obtained using GC or PGE electrodes: desorption was observed upon subsequent cathodic scans in 0.63 mM tosic acid solution (Fig. S8 and S9).† These observations lead us to speculate on the possibility that it is the zwitterionic nature of **1**, combined with its planar structure, that allows the charged centers to interact favorably with the GC surface.

The discussion above concerns measurements performed in acetonitrile solution using the organic acid, tosic acid. For **1** dissolved in phosphate-buffered aqueous solution at pH 7 irreversible Co^{III/II} and reversible Co^{II/1} redox couples are observed at 0.09 and -0.70 V *vs.* SCE, respectively, and an increase in current at -0.95 V occurs as the pH is lowered (Fig. S10).† However, bulk electrolysis experiments establish very limited hydrogen production activity suggesting degradation instead; a Faradaic yield measured at pH 4 using phosphate buffer confirmed only a 15% hydrogen yield. We therefore hoped that the GC electrode modified with **1** might exhibit enhanced catalyst stability and hence activity in aqueous solutions.⁹

Fig. 4 CV's in 0.1 M NaClO₄, 2 mM NaOAc, 2 mM HOAc, pH 4.5. (a) Catalytic H⁺ reduction by **1** before (blue) and after (red) electrolysis (10 mV s⁻¹). (b) Rotating disc electrode voltammetry (1 mV s⁻¹). Inset: Levich plot of limiting current at -1.2 V.

A chemically modified electrode was prepared from **1** as described above. When the modified electrode was immersed in pH 7 phosphate buffer the current barely increased above that observed when a clean GC electrode was used (Fig. 3c and d). However, as the pH was lowered from 7 to 2, the current increased by two orders of magnitude compared to the clean GC surface.¹⁹ At the lowest pH value studied (pH 2), the onset of current increase occurred at -0.6 V, corresponding to an overpotential of 240 mV. Controlled potential electrolysis experiments performed on a stirred solution (-0.90 V, pH 2) operated with a current density of ~ 1 mA cm⁻²; the pH of the buffered solution remained constant and analysis of the headspace revealed an 80(±10)% Faradaic yield for hydrogen evolution, which remained constant for a period of more than 7 h (TON $\approx 5 \times 10^5$). These data establish that **1** retains its H₂-evolving efficacy and its stability in aqueous phosphate solution more favorably once attached to a GC electrode.

CV measurements were also performed in acetate buffered solution (Fig. 4a). In this case a peak-shaped catalytic wave was observed at -0.85 V. The onset of current increase occurred at -0.6 V corresponding to an overpotential of only 100 mV.²⁰ This catalysis by the modified GC electrode is coincident with the Co^{II/III} couple for **1** observed in a homogeneous acetate buffered solution (Fig. S12, ESI†), providing further circumstantial evidence that **1** is the active species on the electrode. A Faradaic measurement performed in acetate buffered solution (-0.95 V, $\eta = 400$ mV) indicated a 75(±10)% H₂ yield and TON of 5×10^6 ,²¹ the experiment operated at ~ 1 mA cm⁻² for 16 h. A CV recorded after the experiment revealed a trace identical to that collected prior to electrolysis indicating that the modified electrode remained intact (Fig. 4a). The non-linearity of the Levich plot (current vs. $\omega^{1/2}$, Fig. 4b) from a rotating disc electrode voltammetry experiment indicates a kinetic, rather than mass transport, limitation for the reaction under these conditions; reduction of protons must be the rate determining step since electron transfer to **1** adsorbed on GC is presumably fast.

In summary, we have introduced a synthetically versatile cobalt tetraimine system for electrocatalytic hydrogen evolution. These systems can be modified with carboxylic acid appendages and adsorbed to ITO. Similarly, the BF₂-substituted glyoximato system **1** can be adsorbed to a GC electrode upon which it is active for hydrogen evolution in aqueous solutions at low overpotential. We are currently investigating the mechanism of the immobilization of **1** on GC.

This work was supported by an NSF Center for Chemical Innovation (CHE-0802907) and by the Chesonis Family Foundation. Grants from NSF provided instrument support to the DCIF at MIT (CHE-9808061, DBI-9729592). We thank Dr Bruce Parkinson for helpful comments.

Notes and references

- C. Mealli and T. Rauchfuss, *Angew. Chem.*, 2007, **46**, 8952; M. L. Singleton, N. Bhuvanesh, J. H. Reibenspies and M. Y. Darenbourg, *Angew. Chem.*, 2008, **47**, 9492; F. A. Armstrong and J. C. Fontecilla-Camps, *Science*, 2008, **321**, 498; C. Tard, X. Liu, S. K. Ibrahim, M. Bruschi, L. De Gioia, S. C. Davies, X. Yang, L.-S. Wang, G. Sawers and C. J. Pickett, *Nature*, 2005, **433**, 610; I. Hatay, B. Su, F. Li, R. Partovi-Nia, H. Vrubel, X. Hu, M. Ersoz and H. H. Girault, *Angew. Chem.*, 2009, **48**, 5139.
- P. Connolly and J. H. Espenson, *Inorg. Chem.*, 1986, **25**, 2684.
- X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis and J. C. Peters, *Chem. Commun.*, 2005, 4723; X. Hu, B. S. Brunschwig and J. C. Peters, *J. Am. Chem. Soc.*, 2007, **129**, 8988; Overpotential in non-aqueous solvents is calculated from the pK_a of the acid, in the appropriate solvent, and the Nernst equation, according to: G. A. N. Felton, R. S. Glass, D. L. Lichtenberger and D. H. Evans, *Inorg. Chem.*, 2006, **45**, 9181.
- M. Razavet, V. Artero and M. Fontecave, *Inorg. Chem.*, 2005, **44**, 4786; C. Baffert, V. Artero and M. Fontecave, *Inorg. Chem.*, 2007, **46**, 1817.
- P. Du, K. Knowles and R. Eisenberg, *J. Am. Chem. Soc.*, 2008, **130**, 12576; O. Pantani, S. Naskar, R. Guillot, P. Millet, E. Anxolabéhère-Malart and A. Aukauillo, *Angew. Chem.*, 2008, **47**, 9948.
- A. D. Wilson, R. H. Newell, M. J. McNevin, J. T. Muckerman, M. R. DuBois and D. L. DuBois, *J. Am. Chem. Soc.*, 2006, **128**, 358; G. M. Jacobsen, J. Y. Yang, B. Twamley, A. D. Wilson, R. M. Bullock, M. R. DuBois and D. L. DuBois, *Energy Environ. Sci.*, 2008, **1**, 167.
- F. C. Anson, C. Shi and B. Steiger, *Acc. Chem. Rev.*, 1997, **30**, 437.
- L. Chen, J. Huang, G. F. Swiegers, C. O. Too and G. G. Wallace, *Chem. Commun.*, 2004, 308; R. M. Kellet and T. G. Spiro, *Inorg. Chem.*, 1985, **25**, 2373; R. M. Kellet and T. G. Spiro, *Inorg. Chem.*, 1985, **25**, 2378; O. A. Osmanbas, A. Koca, M. Kandaz and F. Karaca, *Int. J. Hydrogen Energy*, 2008, **33**, 3281.
- T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff, *Science*, 2007, **317**, 100.
- For example: A. Koca, M. K. Sener, M. B. Kocak and A. Gul, *Int. J. Hydrogen Energy*, 2006, **31**, 2211; T. Abe, F. Taguchi, H. Imaya, F. Zhao, J. Zhang and M. Kaneko, *Polym. Adv. Technol.*, 1998, **9**, 559.
- E. Uhlig and M. Friedrich, *Z. Anorg. Allg. Chem.*, 1966, **343**, 299; G. Costa, G. Mestroni and E. de Savornami, *Inorg. Chim. Acta*, 1969, **3**, 323.
- E. Zangrandi, M. Trani, E. Stabon, C. Carfagna, B. Milani and G. Mestroni, *Eur. J. Inorg. Chem.*, 2003, 2683.
- C. M. Elliot, S. Caramori and C. A. Bignozzi, *Langmuir*, 2005, **21**, 3022.
- A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, John Wiley & Sons, Inc., New York, 2nd edn, 2001.
- M. Shamsipur, A. Salimi, H. Haddadzadeh and M. F. Mousavi, *J. Electroanal. Chem.*, 2001, **517**, 37.
- Compound **1** could also be adsorbed by cycling the potential from -0.4 to -1.1 V. Soaking a GC electrode in solution for 1 h does not result in physisorption of **1** to the GC electrode.
- Other anions were not screened: but ClO₄⁻ is present in higher concentration as electrolyte and does not aid in immobilization of **1** in the absence of OTs⁻.
- T. Uchida, H. Mogami, A. Yamakata, Y. Sasaki and M. Osawa, *J. Am. Chem. Soc.*, 2008, **130**, 10862.
- With TsOH, in the absence of **1**, no rise in current is observed (Fig. S11, ESI†).
- This overpotential is based on thermodynamic potentials often quoted in H₂ catalysis literature. Note that these values assume $p(H_2) = 1$ atm: J. A. Craknell, K. A. Vincent and F. A. Armstrong, *Chem. Rev.*, 2008, **108**, 2439.
- TON's for **1** in MeCN solution are lower, but difficult to measure because **1** begins to plate on the electrode, still producing H₂, but no longer an authentic solution catalyst. In addition, not all solution catalyst can be active at one time since it is not all in contact with the electrode.