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We report a quantitative theoretical analysis of long-range electron transfer through sensitizer wires
bound in the active-site channel of cytochrome P450cam. Each sensitizer wire consists of a substrate
group with high binding affinity for the enzyme active site connected to a ruthenium-diimine through
a bridging aliphatic or aromatic chain. Experiments have revealed a dramatic dependence of electron
transfer rates on the chemical composition of both the bridging group and the substrate. Using combined
molecular dynamics simulations and electronic coupling calculations, we show that electron tunnel-
ing through perfluorinated aromatic bridges is promoted by enhanced superexchange coupling through
virtual reduced states. In contrast, electron flow through aliphatic bridges occurs by hole-mediated
superexchange. We have found that a small number of wire conformations with strong donor–acceptor

couplings can account for the observed electron tunneling rates for sensitizer wires terminated with
either ethylbenzene or adamantane. In these instances, the rate is dependent not only on electronic cou-
pling of the donor and acceptor but also on the nuclear motion of the sensitizer wire, necessitating the
calculation of average rates over the course of a molecular dynamics simulation. These calculations along
with related recent findings have made it possible to analyze the results of many other sensitizer-wire
experiments that in turn point to new directions in our attempts to observe reactive intermediates in the
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Table 1
Donor–acceptor couplings (HDA) for electron and hole transfer were computed as described in Section 4. Electron transfer rates are computed from Eq. (1) using the maximum
calculated HDA value (|HDA|2 = maximum[HDA(electron transfer)2, HDA(hole transfer)2] divided by the square root of six to account for all of the bipyridine ligands) and assuming
� = 0.9 eV. Driving forces and experimental rates are taken from references [1,6].

Wire MD RMS HDA (electron transfer)
(eV)

MD RMS HDA (hole transfer)
(eV)

Driving force,
−�G (eV)

ET rate computed (s−1) ET rate experimental (s−1)

[bpyRu-C13-Im]2+ 1.5 × 10−6 5.1 × 10−7 0.9 1.6 × 104 2 × 104 [1]
[bpyRu-C11-Ad]2+ 1.7 × 10−6 8.6 × 10−7 0.9 2.1 × 104 2 × 104 [1]
[bpyRu-C11- 2+ −7 −7 0.9 3 4

[bpyRu-F8bp 0.32
[tmbpyRu-F 0.45
[bpyRu-F8bp 0.32

bution of a
couplings. I
be much sm
puted in a ra
from X-ray
is complica
This issue w
and EB term
der Waals i
overlap bet
iron atom.

Beratan
cal analysis
b562 [22].
two genera
occurs from
tor; here, th
into Ru(III)
was found
couplings t
multiple pa
specific nuc
trons tunne
structure-d
ence the ET
similar to th

There ar
influenced
that the rate

Fig. 4

tion
een f
ns [4

dge o

Ha
e-po

stem
des

nic s
repro
ectro
). Ta
s of t
ropy
r).
tron

iabat
acce
tion

2�

h̄
√

4��kBT
DA 4�kBT

es averaged over thermally accessible geometries agree rea-
EB] 6.7 × 10 3.5 × 10
-Im]2+ 8.3 × 10−5 2.4 × 10−4

8bp-Im]2+ 8.3 × 10−5 2.4 × 10−4

-Ad]2+ 2.6 × 10−6 1.1 × 10−6

few configurations that exhibit strong donor–acceptor
t follows that a computed ET rate will almost certainly
aller than the experimental value if the coupling is com-
ndomly chosen configuration (or in a geometry derived

structural analysis). Indeed, appropriate averaging here
ted, since a few geometries favoring ET are dominant.
as found to be especially important for wires with Ad
inal groups that interact with the heme via weak van

nteractions, as only certain conformations show good
ween the orbitals of the terminal group and those of the

and co-workers have published an extensive theoreti-
of electron tunneling through Ru-modified cytochrome
They analyze different Ru-modified proteins, and find
l categories of electronic coupling behavior. In one, ET
the heme edge through the protein to the Ru(III) accep-
ere are multiple possible pathways through the protein
orbitals. This is a structure-insensitive regime—while it
that specific conformations are likely to have greater
han other conformations, dynamical averaging along
thways largely negated the dependence of ET rates on
lear coordinates. However, the second case, where elec-
l from an axial heme position to Ru(III), does show a
ependent limit. Here, conformational fluctuations influ-
rate, as there is only one entry pathway. This case is

fluctua
have b
junctio

6. Bri

Our
wire–F
the sy
model
electro
model
one-el
change
orbital
(dihyd
transfe

Elec
nonad
donor–
calcula

kET =

Rat

e P450:wire system under discussion here.

e other important cases where ET rates are known to be
by molecular dynamics, for example, Troisi et al. found
of charge transfer in a C clamp molecule depends on the

. Experimental [1,6] and computed ET rates for P450:wires.

sonably we
P450:wire c

Table 2
Results of sens
Superscripts (
was reduced
flash/quench
directly from R

Wire

Cytochrome
[bpyRu-C11-
[bpyRu-C13-
[bpyRu-C9-A
[bpyRu-C11-
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[bpyRu-F8bp
[tmbpyRu-F
[Ru-F8bp-Ad
[tmbpyRu-F
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[Re-Im-F8bp
[Re-Im-C3-F
[Re-Im-C8-A
[Re-Im-F9bp
[tmbpyRu-F
3.3 × 10 2 × 10 [1]
1.1 × 107 4 × 106 [6]
4.7 × 107 3 × 107 [6]
1.3 × 103 NA

s of intervening solvent molecules [19]. Dynamics also
ound to tune the ET rates in certain molecular transport
0,41].

rbital energies
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itizer-wire/protein experiments with cytochrome P450cam and iNOS.
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method but a rate was not determined; (d) the heme was reduced
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RRu–Fe (Å) Rate of heme reduction (s−1)

P450cam
Im]2+ NA NA
Im]2+ 21.2 [2] 2 × 104 [1]b

d]2+ 21.4 [2] NA
Ad]2+ 21.0 [2] 2 × 104 [1]b

B]2+ 19.5 [2] 1 × 103 [3]b
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EB]2+ 19.9 [2] NA [3]c

EB]2+ 20.1 [2] 2 × 104 [1]b
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EB]2+ 20.6 [2] NA [3]c

-Im]2+ 22.1 [2] 4.4 × 106 [6]d

8bp-Im]2+ 18.1 [6] 2.8 × 107 [6]d
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9bp]2+ 17.0 [6] NA

-Im]+ 18.0 [7]a 7 × 109 [8]d

8bp-Im]+ 18.0 [7]a 3 × 109 [8]d

rgNO2]+ 25.5 [10] >1 × 106 [10]d

]+ 18.0 [7] NA
9bp]2+ 20.0 [7] 2 × 107 [12]b
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