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a b s t r a c t

The properties of RuII complexes involving the imidazole moiety are discussed. Complexes [Ru(bpy)2(L)]2+

[bpy = 2,2′-bipyridine, L = 2-(2′-pyridyl)imidazole (2-pimH) and 4-(2′-pyridyl)imidazole (4-pimH)] have
been synthesized and fully characterized. Reduction potentials are 0.76 V vs. Fc+/Fc0 for both complexes
in acetonitrile solution, and the deprotonated complexes undergo irreversible electrochemical oxidation
oles

etry

at 0.38 V vs. Fc+/Fc0. Density functional theory (DFT) calculations suggest that oxidation of the protonated
complexes is primarily metal-based and that of the deprotonated complexes is ligand-centered. The pKa of
the 4-pimH complex was found to be 9.7 ± 0.2; the pKa of the 2-pimH complex is 7.9 ± 0.2. Luminescence
lifetimes (L = 4-pimH, 277 ns; 2-pimH, 224 ns; 4pim−, 40 ns; 2pim−, 34 ns in 5% methanol/water solution)
combined with quantum yield data and acid–base behavior suggest that the non-coordinated imidazole
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Table 1
Electronic absorptiona features of Ru(bpy)2(L)2+.

L 5% MeOH/H2O pH 3 �max (ε × 10−3 M−1 cm−1) 5% MeOH/H2O pH 12 �max (ε × 10−3 M−1 cm−1) Dichloromethane �max (ε × 10−3 M−1 cm−1)

(2-pimH) 23.47 (10.5), 21.51 (11.0) 22.83 (8.00), 20.49 (10.70) 23.47 (10.60), 21.51 (12.10)
(4-pimH) 27.40 (8.30), 23.70 (7.80), 21.37 (10.20) 26.88 (9.80), 22.94 (7.00), 20.41 (10.20) 27.40 (8.80), 23.53 (8.00), 21.37 (10.90)

a Absorption energies are reported in kilokaisers. Uncertainties in band positions are ±0.05 kK. Extinction coefficients are correct to within 5% based on triplicate analysis.
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s 10 �M, pH 3 for protonated and pH 12 for deprotonated complexes.

e lifetimes are considerably reduced upon deprotona-
this behavior could be a consequence of the energy-gap
e posit that it arises due to a change in character of the
ate from 3MLCT to 3LLCT (vide infra). In protic solvent,
ibit 7-fold increased emission decay rates upon depro-
1− and 2−. In deuterated solvent the lifetimes of both

rease in both protonation/deuteration states. Complex
onger lifetimes than 1 in all cases and presents a larger
ct (1.8 vs. 1.4). The observed isotope effects suggest that
ination of solvent hydrogen-bonding effects and N–H/D
ontribute to excited state deactivation in these systems.
e (kr) and non-radiative (knr) rate constants for the pro-

plexes in aqueous solutions were calculated from Eqs.

kr

+ knr
= ϕisckr�m (1)

kr (2)

is the measured lifetime and ϕisc is the efficiency
tem crossing. Assuming ϕisc = 1 (all observed emis-
sphorescence), rate constants are: 1, kr = 3.6 × 104 s−1,
06 s−1; 2, kr = 4.7 × 104 s−1, knr = 3.6 × 106 s−1. The faster
ve decay and decreased solvent isotope effect of 1 sug-
for pimH-based non-radiative states that are populated
ng efficiencies between the two isomers. There is a sim-
is behavior to the divergent solvent isotope effects on
s of [Ru(bpy)3]2+ and [Ru(phen)3]2+ observed by Sriram
n [44], which were attributed to decay by differing rel-

nts of non-radiative relaxation and upconversion to the
d field state. By analogy, quenching by upconversion

be more important relative to non-radiative relaxation
1−, 2, or 2−.

se behavior

monitored pH titrations reveal that 1 and 2 have
iffering acidities (pKa of 7.9 ± 0.2 for 1, 9.7 ± 0.2 for
copic and electrochemical parameters being approxi-

al between the complexes, we suggest that the increased
lculated 4.14 Å for 1, 4.27 Å for 2, vide infra) between the
e and the metal center of 2 is largely responsible for the

cidity of the molecule. Excited state pKa values were
ed through use of the Förster cycle (3) [45], rather than
of Sun and Hoffman [46], which requires pKa measure-
e ground state of an oxidation state that mimics the
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onated imidazole (Fig. 10). The HOMO–LUMO gaps increase
eV (1) and 3.10 eV (2). This increase arises from greater

um diimine complex ground and excited state acidities.

ound pKa pK∗
a Reference

7.9 7.5 This work
Fig. 8. Optimized gas-phase molecular structures of

ibution of the excited state.

− pK∗
a = EHA − EA−

2.3RT
(3)

are the excited to ground state energy gaps (E0,0) of the
and deprotonated complexes, respectively. R is the gas
d T is the temperature (Kelvin). Estimation of E0,0 as the
f emission intensity results in approximately equiva-

Ka units) shifts towards greater acidity upon excitation.
cidic shift indicates that the long-lived emissive states
ecules are bpy-rather than pimH-3MLCT states. Pop-
imH-based excited states, on the other hand, would

ctron density to the non-coordinated amine, resulting
sicity, as observed with bipyrimidine and bipyrazine
ble 4) [24,28,46]. These shifts in pKa are substantial
the minor shifts in the case of 1 and 2, as rather
the acid–base properties by a coulombic interaction

e formally RuIII and the imidazole, electron density is
tributed to the ionizable nitrogen that stabilizes pro-
milar behavior has been observed in the case of the

nated imidazole in Ru(bpy)2(PhenImHPh) [18].

lication of DFT and time-dependent DFT (TDDFT) to
nic structures of ground and excited states of tran-
l complexes has been demonstrated as a valuable
t to experiment [50,51]. In the present case, calcu-
e performed using ORCA [52]. Molecular geometries
ized in the gas phase (Fig. 8), with electronic struc-
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1

quently calculated at these stationary points. The
upied molecular orbital (HOMO) for both protonated
consists of a predominantly (∼80% by Löwdin popu-
sis) Ru 4dz2 metal-centered (MC) orbital. The lowest
molecular orbital (LUMO) is a ligand-centered (LC)

2
Ru(bpy)(bpz
Ru(bpy)2(bp
Ru(bpz)3

2+

Ru(bpm)3
2+
(b) 2, (c) 1− , and (d) 2− .

elocalized primarily over both bpy ligands. The com-
hase HOMO–LUMO gap calculated is 3.42 eV for both

Modeling of solvation by water with COSMO [53] results
lterations to the electronic structures (Fig. 9). The
O gaps shrink to 3.35 eV. pimH-based MOs exhibit the

rturbation upon inclusion of solvation into the calcula-
are minimal effects from solvation on the calculated

structures, as has been observed previously in calcu-
e electronic structures of Ru(II) polyimine complexes

nation leads to dramatic perturbation of the calculated
te electronic structure. The gas-phase HOMO–LUMO

to 2.45 eV (1) and 2.61 eV (2). The HOMO of each
ecomes a largely pim−-based M–L delocalized orbital.
nd-centered redox locus may be implicated in the CVs
otonated complexes (vide supra). The LUMO remains a
ed ligand state, though with quite asymmetric popula-
n the two bpy ligands. The metal-centered orbitals of
arger energy gaps than those of 2−, presumably owing
r ligand field due to closer proximity of the distal N�−

− −
9.7 9.3 This work
)2

2+ −0.72 3.5 [47]
m)2+ −2.9 1.95 [48]

−2.2 2.0 [28]
−1.0 2.2 [49]



1808 K.M. Lancaster et al. / Coordination Chemistry Reviews 254 (2010) 1803–1811

Fig. 9. Energy diagram for complexes 1 and 2 in solution (water, COSMO) with
orbitals plotted on a scale normalized to the HOMO. Frontier orbital pictures are
displayed.

Fig. 10. Energy diagram of complexes 1− and 2− in solution (water, COSMO) with
orbitals plotted on a scale normalized to the HOMO. Frontier orbital pictures are
displayed.

Fig. 11. TDDFT-calculated absorption spectrum of Ru(bpy)2L2+. Triplet excitations
are plotted along the negative y-axis with arbitrary normalized intensity.
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e optimized structures, TDDFT calculations were per-
orporating the COSMO solvation model with water
he solvent (Fig. 11, Table 5). For simplicity, only sin-
ions were included in the spectra as triplet excitations
cted to be minor contributors to the absorption spectra.

rgies and intensities accord with experiment. The calcu-
est that the broad absorption spectra are attributable
bers of 1MLCT and 1LLCT excited states. The spectrum

rom multi-component transitions; notably, many low-
let and triplet excitations include contributions that are
ized. Transitions in the spectrum of 1 arising purely from
to pimH-centered 1LC states are conspicuously absent.
ure pimH transitions are predicted for 2; notably this
ives rise to the intense absorption band at ∼27 kK that is
e spectrum of 1. Thus we suggest that the greater energy
between pimH-based LC excited states and bpy-based

states disfavor internal conversion to and subsequent
ased excited state deactivation of 2, resulting in its
sion lifetime.
retical spectra of the deprotonated complexes are also
ith experiment (Fig. 12). Almost double the number of
ted states are predicted between the intense, low energy
and the 40 kK LLCT system. As differences between
e lifetimes measured for the deprotonated complexes
level of instrumental error, we have not made a thor-

sis of their calculated spectra in order to explain their
tophysical properties.
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Table 5
TDDFT-calculated singlet transitions for 1 and 2.

1

Transition energya Oscillator strength Transition classb Dominant transition orbitals

22.54 0.047 MLCT d�-bpy(�*), d�-pimH(�*)
23.59 0.087 MLCT d�-bpy(�*), d�-pimH(�*)
24.06 0.116 MLCT d�-bpy(�*), d�-pimH(�*)
31.05 0.081 MLCT d�-bpy(�*)
34.37 0.063 LLCT bpy(�)-pimH(�*), pimH(�)-pimH(�*)
35.77 0.094 LLCT bpy(�)-pimH(�*), pimH(�)-pimH(�*)
37.54 0.553 LLCT pimH(�)-bpy(�*), bpy(�)-bpy(�*)

2
22.95 0.135 MLCT d�-bpy(�*)
24.53 0.060 MLCT d�-bpy(�*)
27.19 0.067 MLCT d�-pimH(�*)
31.03 0.048 MLCT d�-bpy/pimH(�*)
31.08 0.037 MLCT d�-bpy(�*)
37.99 0.548 LLCT bpy(�)-pimH(�*), bpy(�)-bpy(�*)

a Transition energies in kK.
b Transition e orb
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est-lying triplet excited states of the protonated com-
rd with experiment; they are calculated as 19.16 kK
9.00 kK for 2. These excited states are entirely Ru 4d
CT in nature, consistent with the observed acid–base
he lowest-lying triplet excited states of the deproto-
lexes also agree with experiment; these are calculated
for 1− and 16.94 kK for 2−. In this case the excited
imH to bpy 3LLCT. Thus the energy-gap law cannot

as an explanation for the dramatically reduced quan-
f the deprotonated complexes [54]. Rather, we suggest
ination of poor electronic coupling between the bpy
gands and efficient non-radiative deactivation by distal
interactions as factors contributing to the weak emis-

ions

rations between the anodic and first cathodic electro-
aves of 1 and 2 in both protonation states correlate with
energy electronic absorption observed in each spec-
edicted by theory for redox processes with minimal
ion [55]. The emission energies correlate with redox
observed for other Ru-diimine complexes [15]. How-
bserved photoacidity of Ru-pimH contrasts with the
ty observed for Ru(bpz) and Ru(bpm) by Meyer [24],
and Hoffman [46], supporting the conclusion that the
ted states of 1 and 2 are bpy-centered. Complexes 1
lay divergent acid–base and photophysical behaviors
g largely indistinguishable spectroscopically and elec-

lly. The former is attributable to the relative position of
roton relative to the metal center and hence the elec-
ation in the ring [24]. The latter has been shown by
ng TDDFT to arise from variable mixing of pimH-based
inglet and triplet excited states, likely leading to the
on-radiative decay observed for 1. Due to the more ster-
sible N–H of 4-pimH relative to its well-studied isomer,
the slower non-radiative relaxation of its ruthenium
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(s, 1H)
1H), 7.
we suggest that molecules based on those reported
d find potential use in studies of proton transfer and
pled electron transfer. Tuning of photoacidities through
s on the bpy and pimH rings should be a straightfor-

s to synthesize a collection of Ru(II)-based photoacids.

The proton
vent refere
137.840, 15

[Ru(bpy
0.145 g 4 an
ital contribution from the metals that would technically classify the

es

nts were obtained from Sigma–Aldrich and used with-
purification. Solvents for electronic absorption and

easurements were of spectroscopic grade. Ru(bpy)2Cl2
pared according to a published procedure [42].
ridiyl)imidazole (2-pimH) (7) was prepared according
ed procedures [39].
5-(2-pyridyl)oxazoline (8): Tosylmethyl isocyanide

as suspended in absolute ethanol. Pyridine-2-
hyde (0.5 mL) was added with stirring. Freshly crushed
nide (0.026 g) was added and the mixture was allowed
0 min. The product was filtered and washed with 20 mL
l ether:hexanes. The product was allowed to air-dry
9 g of an odorless tan powder, m.p. 121–124 ◦C. The
spectrum (300 MHz, CDCl3, TMS reference) gave peaks

m (s, 3H), 5.590 ppm (dd, 5.77, 1.65 Hz, 1H), 6.072 ppm
1H), 7.160 ppm (dd, 1.65, 0.41 Hz, 1H), 7.295 ppm (dd,
z, 1H), 7.321 ppm (dd, 4.81, 1.09 Hz, 1H), 7.385 ppm

69 Hz, 2H), 7.450 ppm (dm, 7.83 Hz, 1H), 7.759 ppm (td,
z, 1H), 7.880 ppm (dm, 8.24 Hz, 2H), 8.645 ppm (ddd,
.83 Hz, 1H). The proton decoupled 13C NMR spectrum

DCl3, TMS reference) gave peaks at 22.001, 79.617,
2.346, 124,346, 129.787, 130.080, 133.582, 137.445,
0.479, 155.571, and 159.182 ppm.
ridyl)imidazole (9): 8 (1.210 g) was dissolved in a
pressure tube with 40 mL of anhydrous ammonia-
ethanol. The mixture was heated to 90–110 ◦C for 18 h
to cool to room temperature. The solvent was removed
aporation and the remaining material was purified by
aphy on silica gel in 9:1 methylene chloride:hexanes to
of a dark brown oil with an odor of burnt butter. The

solved in isopropyl alcohol, acidified with hydrochlo-
precipitated as the dihydrochloride salt with acetone.
NMR spectrum (600 MHz, CD3OD, solvent reference)
at 7.228 ppm (ddd, 7.37, 6.62, 1.72 Hz, 1H), 7.690 ppm
84 ppm (d, 1.06 Hz, 1H), 7.807 ppm (td, 6.47, 0.89 Hz,
pm (br d, 7.37 Hz, 1H), 8.472 ppm (br d, 6.32 Hz, 1H).

13
decoupled C NMR spectrum (150 MHz, CD3OD, sol-
nce) gave peaks at 120.815, 123.205, 123.257, 137.759,
0.026, 150.121, and 166.237 ppm.
)2(2-pimH)](PF6)2 (1): 0.520 g of 7 was combined with
d 0.040 g LiCl in 80 mL of a 3:1 absolute ethanol:water
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d heated at reflux for 4 h. A few drops of 37% HCl were
ffect complete isolation as the protonated complex.
s removed by rotary evaporation. 0.736 g of KPF6 dis-
minimal amount of water was added to the red-orange
separate a dark red powder. The solid was filtered in
orosity frit and washed 3× each with 25 mL of water
thyl ether. The solid was dried by suction. The proton
um (600 MHz, CD2Cl2, solvent reference) gave peaks at
s, 1H), 7.304 ppm (t, 7.20 Hz, 1H), 7.380 ppm (t, 7.20 Hz,
pm (m, 4H), 7.539 ppm (d, 5.40 Hz, 1H), 7.724 ppm (d,
), 7.793 ppm (d, 5.40 Hz, 2H), 7.839 ppm (d, 5.40 Hz,
pm (dd, 8.4 Hz, 7.8 Hz, 2H), 8.050 ppm (t, 7.20 Hz, 3H),

(d, 7.80 Hz, 1H), 8.367 ppm (t, 7.20 Hz, 2H), 8.414 ppm
H), 11.780 ppm (br, s, 1H). ESI MS m/z (calc) = 558.6 for
; m/z (obs) = 558.3. Elemental analysis (single) (calc)
2.70, N = 11.5, Ru = 11.91; (found) C = 39.86, H = 2.90,

u = 11.8.
)2(4-pimH)](PF6)2·H2O (2): Preparation of 2 proceeded
1 using 9 as the ligand, though the material required
urification. The red solid isolated following filtration

workup was applied to a silica gel column, washed
mn volume each of acetone, acetone containing 10%
turated KNO3 solution, and finally eluted with ace-
ning 40% of a 10% saturated KNO3 solution. Acetone
ed by rotary evaporation from the pool of 2, KPF6
to crash out product. This material was collected on
sity fritted glass funnel and washed with water and
proton NMR spectrum (600 MHz, CD2Cl2, solvent ref-
e peaks at 7.205 ppm (t, 6.32 Hz, 1H), 7.275 ppm (s,
pm (t, 6.53 Hz, 1H), 7.460 ppm (m, 3H), 7.493 ppm (t,

), 7.707 ppm (d, 5.54 Hz, 1H), 7.804 ppm (d, 5.30 Hz, 1H),
(m, 2H), 7.920 ppm (d, 7.87 Hz, 1H) 7.955 ppm (br s,
pm (t, 7.82 Hz, 1H), 8.050 ppm (m, 3H), 8.345 ppm (d,

), 8.375 ppm (d, 8.17 Hz, 1H), 8.415 ppm (d, 7.85 Hz, 2H),
(br s, 1H). ESI MS m/z (calc) = 558.6 for C28H23N7Ru; m/z

3. Elemental analysis (single) (calc) C = 39.6, H = 2.70,
= 11.91, loss on drying (H2O) 2.07%; (found) C = 40.0,
11.2, Ru = 11.77, loss on drying (H2O) 2.07%.
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