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We describe an ab initio approach to compute the optical absorption spectra of molecules and solids,
which is suitable for the study of large systems and gives access to spectra within a wide energy
range. In this approach, the quantum Liouville equation is solved iteratively within first order
perturbation theory, with a Hamiltonian containing a static self-energy operator. This procedure is
equivalent to solving the statically screened Bethe—Salpeter equation. Explicit calculations of single
particle excited states and inversion of dielectric matrices are avoided using techniques based on
density functional perturbation theory. In this way, full absorption spectra may be obtained with a
computational workload comparable to ground state Hartree—Fock calculations. We present results
for small molecules, for the spectra of a 1 nm Si cluster in a wide energy range (20 eV), and for a
dipeptide exhibiting charge transfer excitations. © 2010 American Institute of Physics.

[doi:10.1063/1.3494540]

I. INTRODUCTION

Spectroscopy is a key tool to characterize materials and
nanostructures and the comparison of computed and mea-
sured spectra may greatly help interpret experimental data
and validate theories and models.' In particular, knowledge
of optical absorption spectra is of fundamental importance in
many instances; for example, measurements and predictions
of absorption spectra of candidate photoelectrodes are keys
to understand how to optimize the absorption of sunlight by
specific materials. "’ Unfortunately, in spite of important, re-
cent progress,2 the calculation of absorption spectra from
first principles remains a challenging problem.

In the quantum chemistry community, optical absorption
spectra are often computed with correlated methods such as
coupled-cluster. These are limited to molecules with few at-
oms, especially if good quality basis sets are desired. The
condensed matter physics community has mostly focused on
time-dependent density functional theory (TDDFT)° and
many-body perturbation theory (MBPT).”” While TDDFT in
the adiabatic local density approximation (LDA) and gener-
alized gradient approximation (GGA) has been successfully
applied to molecules and clusters, this theory may become
inaccurate when electron-hole (e-h) interactions play an im-
portant role, e.g., in bulk insulators and semiconductors or in
finite systems where charge transfer excitations are present.
On the other hand, MBPT within a Green’s function formal-
ism may describe excitation properties of both solids and
molecules. Calculations using MBPT involve evaluating
Kohn-Sham (KS) orbitals® and then applying self-energy
corrections, for example, at the so called GW level’ (G de-
notes the Green function and W the screened Coulomb inter-
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action). The Bethe-Salpeter equation (BSE) may then be
solved, e.g., starting from quasiparticle energies and wave
functions.

Solving the BSE is considered the state-of-the-art ap-
proach to the computation of absorption spectra of bulk
materials™”'*!" and it has been applied to many systems,
including silicon, germanium, diamond, GaAs, and LiF; in
addition, several applications of the BSE to systems with
reduced dimensionalities have appeared in the literature and
these include graphene,12 carbon and boron nitride
nanotubes,m’14 and finite systems, such as small sodium clus-
ters and benzene and azobenzene molecules.'”'°

Current techniques to solve the BSE use an electron-hole
basis set and involve the computation of a multitude of
single particle unoccupied states and the inversion of dielec-
tric matrices.”’ Both operations may become prohibitively
expensive, from a computational point of view, even for
small molecules'’” and clusters, and their scaling as a func-
tion of the number of basis functions and of unoccupied
states hamper the applicability of MBPT to nanostructured
materials, e.g., for photovoltaic applications. It is therefore
highly desirable to develop algorithms to solve the BSE that
are scalable to large systems (e.g., containing hundreds of
electrons) without resorting to approximations such as trun-
cation of the number of unoccupied states and number of
basis set functions.

Here we present a new approach to compute the absorp-
tion spectra of finite and periodic systems, based on the it-
erative solution of the quantum Liouville equation within
first order perturbation theory, and with a Hamiltonian con-
taining a static self-energy operator. Techniques based on
density functional perturbation theory'® (DFPT) are used to
avoid inverting dielectric matrices'** and explicit computa-
tion of single particle unoccupied orbitals.”’** This allows

© 2010 American Institute of Physics
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for accurate and efficient calculations of absorption spectra
with a workload comparable to ground state Hartree—Fock
(HF) calculations.

The rest of the paper is organized as follows. In Sec. II,
we derive the BSE within a density matrix formalism based
on the linearized quantum Liouville equation and show how
DFPT techniques can be used to avoid the explicit calcula-
tion of empty electronic states. In Sec. III, we discuss the
technical details regarding the implementation of our
method. In Sec. IV, our numerical implementation is vali-
dated against that of the YAMBO code,23 a standard BSE code
using an e-h basis set, for two small molecules H, and SiH,
(Sec. IV A). Then we show the scalability of the method by
computing the spectrum of a 1 nm silicon nanocluster (176
electrons) in a wide energy range (20 eV) (Sec. IV B). Fi-
nally, we present the study of charge transfer excitations
(Sec. IV C) and discuss the first results for this kind of exci-
tations obtained by solving the BSE. Section V contains our
conclusions.

Il. METHOD

In optical absorption experiments, the intensity of the
electromagnetic field of the incident light, which excites
electrons from occupied to empty levels, is in general much
weaker than that of internal fields, and thus can be treated
within linear response theory. For a finite system, the absorp-
tion coefficient I(w) is proportional to the trace of the dy-
namical polarizability tensor a;(w):/(w)>* o Im(Tr(a(w))).
For solids, the optical absorption is given by the imaginary
part of the macroscopic dielectric function €,(w). In the rest
of this section, we will focus on the formulation for finite
systems based on «a;;(w); the generalization to periodic sys-
tems is presented in the Appendix.

Recently, an approach was propose to compute
a(w) by iteratively solving the time-dependent KS equations
using DFPT, which was successfully applied to model sys-
tems containing hundreds of atoms.”*>° Here we generalize
such an approach to Hamiltonians containing static, nonlo-
cal, self-energy operators, thus obtaining equations equiva-
lent to the statically screened BSE. We then use iterative
techniques to compute the eigenvalues and eigenvectors of
the dielectric matrix entering the definition of the screened
Coulomb interaction.'””’ The starting point of our derivation
is the quantum Liouville equation

21,22
4"

4P
1

o [H(1),p(1)], (1)

where the square brackets indicate commutators and the hat
denotes quantum-mechanical operators. Within a real space
representation, the density matrix is given by p(r,r’,?)
=3,¢,(r,1)¢,(r' 1), where ¢,(r,1) are single particle occu-
pied orbitals. The time-dependent quasiparticle Hamiltonian
in Hartree atomic units is
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fﬁl(r,l",f)ti’(l",f)dr'
= (— %Vz + UH(r’ 1)+ Uext(r’t)> ¢(r’t)

+J2(r,r’,t)¢(r’,t)dr’, (2)

where v, vy, and 3, are the external potential, Hartree po-
tential, and the self-energy operator, respectively. We con-
sider a static approximation to the self-energy and thus 2,
depends on time only through the dependence on p(1).

The linearization of Eq. (1) with respect to v,,, leads to

AW
= L5 )+ (0.5,

L-p'(0)=[H.p 0] +[04(p" 10,57+ [X[510).57,
3)
where variables with superscript represent unperturbed

quantities and those with prime denote linear variations; spe-
cifically, in this case, p' =p—p° denotes the linear variation of

6 093

the charge density. Note the dependence of 0y and S on the

density matrix. In Eq. (3), a non-Hermitian operator £ acting

on p’ has been defined, which is known as Liouvillian
20,22 _ - L

superoperator, as its action is defined on a space of op-

erators. By Fourier transforming Eq. (3) into the frequency

domain, one obtains

(0=L) - p'(w) = [T (@),p7]. (4)

The solution of this equation yields p’(w). The polarizability
tensor « is defined in terms of the components of the dipole
moment d; induced by a uniform external electric field E

dw) =2 a(w)Ejw), (5)
J

with v (r,w)=—E(w)-r. Since dj(w)=Tr(7;p' ()), the com-

ponents of the polarizability tensor can be expressed as
(@) == (Ff(w=L+in™" - [7,p7), (6)

where 7 is a positive infinitesimal and we have written the
scalar product of two operators A and B as (A|B)
=Tr(A'B).

The formalism introduced here is general and, in prin-
ciple, can be applied using any approximation of the nonlo-
cal and static self-energy operator, 2(r,r’); the effect of dy-
namical screening will be discussed in Sec. III. If 3(r,r’)
=v,.(r)8(r-r’), where v,. is the KS exchange-correlation
potential, the adiabatic TDDFT formalism>"*? is recovered.
We now consider the case of the HF and of the static
Coulomb-hole plus screened-exchange (COHSEX) approxi-
mations, yielding the following expressions for the self-
energy operator (Zconsex=2con+ >sex):

EHF(rJ.,’t):_E ¢U(r»l)¢:(r,7t)v(r»r’)’ (7)
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Scon(r,r’) = 38— )W, (r'.x), (8)
Ssex(r,r',) == 2 ¢, (1) (r . HW(r ), )

v
where ov(r,r’) is the Coulomb kernel, W(r’,r)

=[e(r',r")v(r",r)dr" is the statically screened Coulomb
interaction, W,=W-v, and ¢,(¢,) denotes occupied (empty)
states. 2 yp and 2 copspx can be easily linearized and inserted
in Eq. (3). In the case of Sy, the TDHF equations are ob-
tained; in the case of gusex, wWe obtained so called TD-
COHSEX equations. These are equivalent to the BSE with
static screening in the electron-hole interaction and with qua-
siparticle corrections at the COHSEX level of theory.

The practical solution of Eq. (6) requires a basis set for
p'. A commonly used one is the ensemble of occupied and
empty states of the unperturbed Hamiltonian, as the only
nonzero matrix elements of p’ are those between unper-
turbed occupied and empty states: and
&lp'| 2.7 Note that (&|[7;,°
Yv,v’, and ¢,c’;
ever, one needs only the matrix elements (¢ |#|#,) and
when computing the scalar product (trace) in

Egq. (6).”

This so called e-h basis set is often used to solve TDHF
equations and the BSE.*’ For spin singlet excitations of iso-
lated systems, the operator L takes the form”’

D+2]C1x—lcld ZICZX—ICZd
= , 10
(—2/C2x*+IC2d* —D—ZIC“‘*HC“’*) (10
where D, the exchange terms K™ and K%, and the direct
terms /C'¢ and K27 are defined as

D = (g, —&,)0,, 0,01 (11)

ve,v'c!

vcu el f ¢°*( )¢ (I‘)| |¢°X(r’)¢ (I' )dl‘dl‘

(12)
vcv el f ¢°*(I')gb (I‘)| |¢ (r,)(ﬁ (I’ )dl’dl‘

(13)
Kyewrer f & ()¢ ()W(r,r") ¢, (x") b, (x)drdr’,

(14)
vcv el f ¢°*(r)¢ (r)W(r l")(,{) (I")d) (l' )dl‘dl’

(15)

In principle, the solution of Eq. (6) requires the calcula-
tion of the unoccupied single particle states of the unper-
turbed Hamiltonian and the matrix £ needs to be evaluated
and stored explicitly. The need for an exceedingly large num-
ber of unoccupied states (¢,) usually constitutes a bottleneck
for calculations that require the evaluation of a large portion
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of the spectrum and/or involve large systems; even for small
molecules, obtaining converged spectra may be challenging
in cases where the inclusion of many scattering states is
necessary.'’

In order to avoid explicit calculations of the empty states
¢, in the framework of DFPT we introduce pI'OJeCtOI’ opera-

A

tors onto the unperturbed empty state subspace Q I-P=]

.|, where P is the projector onto the occupied state

subspace and I is the identity operator; the evaluation of Q
requires the evaluation of the occupied states ¢, only. In-
stead of using an electron-hole basis, we then represent the
operators required to solve Eq. (6) (p', 7, and [7;,5°]) within
a so called batch representation.22 For a generic operator A,
the batch representation is given by a vector whose 2N,
components are defined in the following way:

(16)

(by| = (17)

where the index v runs from 1 to N; N, is the number of
occupied states. To iteratively solve Eq. (6), we need to
evaluate the action of the Liouvillian superoperator onto op-
erators expressed within a batch representation. The action of
the D and K’s on the components |a,) and |b,) of the batch

representation of an operator A is defined by

vv|a = (HOCOHSEX £,1)6, u|a 0, (18)

Kol = Q(J|
=0l [
r—r’|

K2 layy = Q( j W(r,r )¢ (e (e )dr’ |[a,),  (21)

¢ S(r)ay(x)dr' |[¢,),  (19)

b ()6, (1)’ )

(22)

ICifi,|bv,>=Q(f W(r,r’)b:,(r’)qbf)(r')dr’) )
If Hiopusex and W(r,r') are replaced by H;,, and v(r,r’),
respectively, one obtains the TDHF equations; these can be
easily generalized to those of TDDFT for hybrid functionals.
It is important to note that in this formulation, the calculation
of K, K*K'¢, and K27, at variance from an e-h represen-
tation, involves a number of orbitals equal to the number of
occupied states and for this reason, the required computa-
tional workload is comparable to that of ground state calcu-
lations.

In order to solve the BSE equation, one needs to evalu-
ate the inverse dielectric matrix €! entering the definition of
the self-energy, through the screened Coulomb interaction W.
In principle, such an evaluation requires calculations of
empty electronic states ¢.. However, such computations can
again be avoided by using techniques based on DFPT. In
particular, following Refs. 19 and 20, we use an eigenvalue
decomposition of the symmetrized dielectric matrix”’ € in
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the random-phase approximation and an iterative algorithm
to obtain eigenvalues and eigenvectors that only involves the
evaluation of the action of € on trial potentials. Finally, no
inversion of the dielectric matrix is necessary as €' is easily
obtained from the eigenvalues (\;) and eigenvectors (¥;) of €

N
=1+ 2 V)N = 1), (23)
i=1

where 7 indicates the identity operator. It has been shown that
the eigenvalues \; are always greater than or equal to 1 (Ref.
27) and that for a variety of systems (\;'—1) decays rapidly
to zero, as the eigenvalue index increases.'”?’ Therefore, the
sum in Eq. (23) can be truncated to include just a small
number of eigenvalues and eigenvectors, as discussed in
Refs. 19 and 20 and shown below for several examples. In
this way, the storage of the full dielectric matrix is avoided.

lll. ANALYSIS OF APPROXIMATIONS

In this section, we discuss the effects of several approxi-
mations used in the literature and this work, including the
neglect of the coupling between resonant and antiresonant
excitations (Tamm-Dancoff approximation), dynamical
screening effects, and the choice of the quasiparticle ground
state wave functions.

A. Tamm-Dancoff approximation

In the BSE, the Liouvillian operator £ is non-Hermitian,
due to the coupling between resonant (a,) and antiresonant
(b,) excitations present in the off-diagonal blocks in Eq.
(10). In the literature,>’"!":>328-30 Hermiticity is often en-
forced by neglecting the off-diagonal blocks of L£; this is
known as the Tamm—Dancoff approximation (TDA).*" The
TDA greatly reduces the computational complexity of the
BSE and it appears to accurately describe excitonic effects in
solids, where it often yields a good agreement with experi-
mental results.””'%!""%3% For these reasons, the TDA has
become a standard tool to study the optical absorption spec-
tra of different materials.

However, the TDA does fail to account for plasmons,
which are collective electronic excitations. An example of
such a failure is the description of electron-energy loss
(EEL) spectra of bulk silicon,* where both electron-hole
pairs and antipairs need to be taken into account to capture
plasmons. The effect of the TDA on the excitation spectra of
molecular systems and nanostructures is much less under-
stood than in solids. A negligible effect (of the order of
0.01 eV) has been observed on the lowest singlet and triplet
excitation energies of simple molecules, e.g., SiH4;7 on the
other hand, recent calculations point to the breakdown of the
TDA in describing some confined systems,35’36 for example,
carbon nanotubes.

Griining et al.*® reported that the TDA predicts a quali-
tatively wrong trend in the light polarization dependence of
the absorption and EEL spectra of carbon nanotubes. Ma et
al.’” pointed out that the TDA can introduce an error of 0.4—
0.5 eV with respect to the full BSE results in model chro-
mophores. It is reasonable to expect that excitonic and plas-
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monic excitations in finite systems are not as well separated
in energy as in solids and their very distinction in the case of
molecules may be difficult. Therefore, it is not surprising that
the TDA fails for high energy excitations of carbon nano-
tubes, as well as for high energy excitations of 1 nm Si
clusters, as we will see in Sec. IV B.

Since this work is focused on molecules and finite sys-
tems, we did not make use of the TDA. We used a general-
ized non-Hermitian Lanczos algorithm22 to solve iteratively
the full non-Hermitian BSE. Two coupled Lanczos chains for
L and L' are iteratively computed starting from the same
vector [#;,p°] in Eq. (6); the solution of the linear system
(w=L+in)~! -[#;,p°] is then projected onto three left vectors
7;, each one corresponding to a different polarization direc-
tion. In this way, all components of the polarizability tensor
a;i(w) are computed from only three Lanczos iterative
chains. We note that within the iterative approach adopted
here, the calculation and storage of the full Liouvillian £
matrix are not required.

B. Dynamical screening effects

In principle, it is possible to extend the method within
the static approximation presented in Sec. II to include dy-
namical screening effects in the BSE kernel. However, the
solution of such a problem is computationally complex and
demanding and it has not yet been addressed in our current
implementation. Below we discuss possible effects of the
static approximation on our results.

For valence excitations in solids, the static screening ap-
proximation is justified as long as the exciton binding ener-
gies are much smaller than plasma frequencies.2 In molecular
systems, the range of validity of the static screening approxi-
mation is not as well understood and very few results are
available. In the case of SiH,, Rohlfing and Louie’ found that
the inclusion of the dynamical screening lowers the lowest
excitation energy by about 0.1 eV. For the same system,
Bechstedt et al. used the Shindo approximation37 for the dy-
namical screening and found that a peak at about 10.6 eV
obtained from the static BSE is blueshifted by about
0.2 eV.™ In the case of biological chromophores, Ma et al.
used a plasmon-pole model for € '(w) and first order pertur-
bation theory to solve the dynamically screened BSE. They
found that the inclusion of dynamical screening may lower
the n— 7" excitation energies by about 0.3 eV and the
m— 7 transitions by 0.1 eV.”

Given the very limited number of studies including dy-
namical screening, it is not yet possible to identify system-
atic errors introduced by the static approximation. However,
we should bear in mind that the results presented in Sec. IV
may be affected by errors of the same order of magnitude as
those discussed in Refs. 7, 35, and 38 (~0.1-0.3 eV).

C. Choice of the quasiparticle ground state wave
functions

Within standard GW/BSE frameworks, the GW approxi-
mation is applied to compute a subset of quasiparticle energy
levels (and orbitals) that are within the excitation energy
range of interest, either nonself-consistently (GyW,) or
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self—consistently.39 The BSE is subsequently solved for the
e-h pairs defined within this subset. As shown in Eq. (18),
within density matrix perturbation theory, one needs to com-

pute the direct action of the quasiparticle Hamiltonian I-AI"QP
on batches of orbitals [Egs. (16) and (17)]. Consider the case
where GW self-energy corrections have been performed for
all the occupied states and some of the empty states up to a
given number n,. For the rest of the empty states, we as-
sume a rigid shift in the self-energy correction A= ESCI;[

—q‘fst. The quasiparticle Hamiltonian is then given by

Neut

ﬁOQP = }A]OKS +2 (|¢?P>€QP<¢’?P| - |¢:(S>€}(S<¢1KS|)
i=1

+ A(i— 2 |¢?P><¢?"l), (24)
i=1

where 1 is the identity matrix. If we assume |<;S?P)2 |¢)§<S),
Eq. (24) can be simplified

Meut

Hop=Hys+ 2, (|¢F) (X - €5~ A) () + AL (25)
i=1

An alternative to the GyW, approach is the static
COHSEX approximation. Although nonself-consistent
COHSEX usually overestimates band gaps, a recent work
suggests that band gaps obtained from the self-consistent
static COHSEX (scCOHSEX) calculations may be more ac-
curate than those computed using the GoW, approximation
starting from LDA wave functions and, in some cases, of a
quality comparable to those of self-consistent GW (scGW)
calculations. For example, the GoW, gap of Cu,0 is 1.34 eV,
while scGW (1.97 eV) and scCOHSEX (2.87 eV) results
show better agreement with the experimental value of
2.17 eV Furthermore, using LDA wave functions,42
GyW, predicts the monoclinic VO, to be metallic, in dis-
agreement with a sizable gap of 0.6 eV observed experimen-
tally, while the gaps predicted by scGW (0.65 eV) and sc-
COHSEX (0.78 eV) are consistent with experiment.43
Finally, it has been shown that the scCOHSEX wave func-
tions are a better approximation to the quasiparticle wave
functions than the LDA wave functions.***!** Although
there are not yet enough results available to assess the accu-
racy of the scCOHSEX approximation, the available ones are
very promising.

Among the options for quasiparticle ground state calcu-
lations discussed above, the best choices would appear to be
either the scCOHSEX or GyW,, approaches, which are, how-
ever, computationally rather demanding. In particular, a fully
converged GW calculation for molecules and nanostructures,
in terms of the number of empty states and the dimension of
€ !(q,w), is highly nontrivial to carry out, and one would
have to resort to newly developed algorithms, such as those
proposed by Umari et al.”® The latter approach is not yet
interfaced with the code developed here to solve the BSE.
For this reason, we used a simple “scissor” operator to ap-
proximate the self-energy correction. Work is in progress to
implement more accurate approaches, such as scCOHSEX
and GyW,,.
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Hz ) f| 5 eigenvalues
il H -—- 21 eigenvalues
!i “ —— 50 eigenvalues
B I
=
/I \‘ 'I \\
(I \r'-’/ l‘\~—l_ AN
9 10 11 12 13 14 15
o [eV]

FIG. 1. Absorption spectrum of H, computed by solving the Bethe—Salpeter
equation and using 5, 21, and 50 eigenmodes to represent the dielectric
matrix (see text).

The use of a scissor operator within a GW/BSE formal-
ism has been discussed by several authors®™***" and it is
relatively well justified in s-p bonded solids, where self-
energy corrections may be considered as rigid shifts of both
LDA valence and conduction bands.***’ In molecules and
nanoclusters, the use of a scissor operator approximation is
expected to be less accurate, since self-energy corrections are
likely to exhibit a stronger orbital dependence than in s-p
bonded solids.> This is the case, for example, for systems
with mixed degrees of localization in the valence and con-
duction electronic states. The effect of the scissor operator
approximation in our calculations is discussed in the next
section.

IV. RESULTS

Our approach has been implemented in the software
package QUANTUM ESPRESSO (Ref. 48) using plane wave ba-
sis sets and pseudopotentials. In all the calculations reported
below, we do not truncate the basis set for either the dielec-
tric matrix or the BSE kernel.

A. Code verification

We first compared the absorption spectra of small mol-
ecules obtained with the algorithm of Sec. II with those com-
puted with available codes using an electron-hole basis set.
In particular, we compared with results obtained with the
YAMBO code.”® Since YAMBO uses the TDA, the same ap-
proximation was used in the calculations carried out with our
code. The simplest case is the absorption spectrum of the H,
molecule provided as an example in the YAMBO tutorial.*’
The molecule was placed in a 13.2X 13.2X13.2 A3 super-
cell. A kinetic energy cutoff of 28 Ry for the wave functions
and a scissor operator of 7.6 eV were used, as given in the
YAMBO tutorial. The matrix €' was decomposed into eigen-
values and eigenvectors according to Eq. (23). The eigenvec-
tors of €' have 313 033 Fourier components, corresponding
to the full potential cutoff (four times the wave function cut-
off). Figure 1 shows the convergence of the spectrum of H,
as a function of the eigenmodes included in the summation
in Eq. (23). The spectrum is fully converged by including
only five eigenmodes, even though \5'—1(=—0.16) is still
appreciably different from zero; for example, with 50 eigen-
modes \5i—1=-0.01. In order to converge the YAMBO cal-
culations with respect to the number of unoccupied elec-
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FIG. 2. Absorption spectrum of the H, molecule obtained by solving the
Bethe—Salpeter equation using the algorithm proposed in this work com-
pared to that computed with the YAMBO code. The spectrum is given in
arbitrary units and the Tamm—Dancoff approximation is used.

tronic states, we found it necessary to include 250 empty
states to compute €' and 300 empty states to calculate the
matrix elements of the BSE Hamiltonian. Due to memory
limitations in the YAMBO code, the dimension of €' was
truncated to 10 059 X 10 059, which corresponds to a cutoff
of about 16 Ry. We note that even at the much higher energy
cutoff (112 Ry corresponding to 313 033 Fourier compo-
nents) used in our calculation, the storage of the five eigen-
potentials necessary to represent € ' takes only about 1.5%
of the memory used in the YAMBO code, highlighting one of
the advantages (memory saving) of the algorithm proposed
here. As shown in Fig. 2, the results of the YAMBO code and
of our code are in very good agreement, with differences
smaller than 0.05 eV.

The second example chosen here is the silane molecule.
The molecule is placed in a 13.2X13.2X13.2 A3 supercell
and a kinetic energy cutoff of 20 Ry for the wave function is
used. We adopted a scissor operator of 6.09 eV, from the
COHSEX calculation of Ref. 17. The eigenvectors of &'
have 189 047 Fourier components, corresponding to a cutoff
of 80 Ry. Figure 3 shows the convergence of the spectrum of
SiH, as a function of eigenmodes included in the summation
in Eq. (23). A good convergence is already reached by in-
cluding 19 eigenmodes (A}~ 1=-0.20) as compared, e.g., to
58 eigenmodes ()\gé—1=—0.05). Similar to the case of H,,
we found that the convergence of the absorption spectrum as
a function of the number of eigenmodes is rather fast and can
be achieved even if |\;'~1| is still appreciably different from
zero. In order to converge the YAMBO calculations, we in-
cluded 300 empty states to compute both €' and the BSE
Hamiltonian. The size of &' was truncated to 10 059

SiHy ‘ 19 eigenvalues

‘ i ¢ -~ 32eigenvalues

‘! — — 58 eigenvalues
- | tl
& i o
p— ! h ]
l nn

A f!-'! 3
YA Y |‘\ ',“ Il
Jl\" \4__-/ Lo I

8 9 10 11 12 13 14
o [eV]

FIG. 3. Absorption spectrum of SiH, computed by solving the Bethe—
Salpeter equation and using 19, 32, and 58 eigenmodes to represent the
dielectric matrix (see text).
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FIG. 4. Comparison between the absorption spectrum of the SiH, molecule
obtained by using the method proposed in this work and the YAMBO code.
The spectrum is given in arbitrary units and the Tamm-Dancoff approxima-
tion is used.

X 10 059, corresponding to a cutoff of about 16 Ry. Again, a
28-fold saving in the storage of €' was achieved using our
algorithm. The comparison between the silane spectra ob-
tained with two different techniques is shown in Fig. 4: the
YAMBO spectrum is slightly blueshifted by less than 0.1 eV.
The small discrepancy in the peak positions is likely related
to technical details of our and YAMBO implementations, such
as the cutoff for the BSE kernel.

Despite the approximation introduced by the use of a
scissor operator, we obtain the first three excitations of silane
at 8.97, 9.43, and 10.97 eV in fairly good agreement with the
experimental values of 8.8, 9.7, and 10.7 eV.>" The qualita-
tive trend in oscillator strengths correctly matches that ob-
served experimentally, with the transition at 8.97 eV having
the smallest oscillator strength and the transition at 10.97 eV
having the largest.

B. Efficiency of the technique for computation
of large systems

We now discuss the efficiency of the iterative algorithm
developed here, for the calculation of the absorption spec-
trum of a relatively large system, over a wide energy range.
In Fig. 5, we report the absorption spectrum of a 1 nm silicon
cluster (SizsHzq, 176 electrons) computed over a 20 eV en-
ergy range. The cluster was placed in a 21.2X21.2
X 21.2 A3 supercell. We used a plane wave cutoff of 20 Ry
for the electronic wave functions and 80 Ry for €, which
was approximated by 379 eigenmodes. In this case, due to
the large size of the system, a systematic test of convergence
as a function of the number of eigenmodes was not straight-
forward to carry out; however, the value of )\5719— 1=-0.22,
as compared to the smallest eigenvalues included in the cases
of H, and silane, indicates a reasonably good convergence.
The value of the scissor operator (3.48 eV) was taken from
the GW calculations of Ref. 30. We found that the differ-
ences in the oscillator strengths and in the peak positions
(about 0.1 eV) are small in the lower part of the spectrum up
to about 8 eV when using the TDA; however, the agreement
with the full calculation worsens®® at a higher energy. As
already discussed in Sec. III, the TDA, while performing
well for periodic systems, may not give reliable results for
finite systems, where the contribution of the electron-hole
antipairs cannot be discarded.”° To the best of our knowl-
edge, the results reported in Fig. 5(a) represent the first BSE
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FIG. 5. (a) Absorption spectra in arbitrary units of a 1 nm silicon cluster
obtained by solving the BSE (see text) with and without the TDA. A Lorent-
zian broadening of 0.14 eV was used. (b) Comparison of the BSE and
TDLDA spectra of a 1 nm silicon cluster. A Lorentzian broadening of
0.14 eV was used.

calculations for a 1 nm Si cluster in such a wide energy range
and the first calculation of such a system not employing the
TDA. In Fig. 5(b), we compare the absorption spectra of the
silicon nanocluster as obtained by solving the BSE and by
using time-dependent DFT within the local density approxi-
mation (TDLDA). Although qualitatively similar, as pointed
out in Refs. 29 and 30, the BSE and TDLDA spectra show
quantitative differences in oscillator strengths in the lower
part of the spectrum.

C. Description of charge transfer excitations

We now turn to the study of a system exhibiting charge
transfer (CT) excitations in its absorption spectrum. CT ex-
citations are not only present in biological systems,ﬂ’52 but
also involved in, e.g., functionalized surfaces of photovoltaic
cells.” The correct description of CT excitations requires the
use of nonlocal exchange functionals and cannot be obtained,
e.g., within time-dependent LDA or GGA.” On the other
hand, the use of TDHF, although providing the correct
asymptotic behavior of the exchange potential, generally
leads to a poor description of electronic excitations, due to an
overestimate of the electron-hole interaction because of the
absence of screening. Since the BSE includes proper screen-
ing to the nonlocal exchange, it appears to be a promising
framework to investigate CT excitations. The performance of
BSE on CT excitations is practically unknown, as there has
not yet been any application, primarily due to the high com-
putational cost of conventional BSE implementations. In this
study, we present the first application of the BSE to CT ex-
citations and discuss the strengths and limitations of our ap-
proach.

We considered a model dipeptide molecule, consisting of
two peptide groups (-NHCO-) linked by an alkyl group
(-CH,~) and terminated by methyl groups. In Fig. 6, we
show the specific configuration (that corresponds to configu-
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FIG. 6. HOMO, HOMO-1, and LUMO of the dipeptide molecule computed
within LDA. The HOMO (n;) and HOMO-1 (1r,) are localized on different
peptides with respect to the LUMO (r,") and the transitions n; — ," and
m —," have charge transfer character. Color code: white for hydrogen,
light blue for carbon, blue for nitrogen, and red for oxygen.

ration la in Ref. 54) as well as three electronic orbitals,
namely, the highest occupied molecular orbital (HOMO),
HOMO-1, and the lowest unoccupied molecular orbital
(LUMO).

Understanding the absorption spectrum of this simple
model may help elucidate the features of the optical spectra
of polypeptides; in addition, quantum chemistry results for
portions of the spectrum are available at the complete active
space multiconfigurational second order perturbation theory
(CASPT2) level’ and we will compare our findings with
those results. The low energy spectrum of the model dipep-
tide is characterized by two local (L), weak intrapeptide ex-
citations (namely, involving orbitals localized on the same
peptide group) from oxygen n lone-pair orbitals to the 7"
orbitals of the amides; these transitions are found at 5.62 and
5.79 eV by CASPT2 and have been assigned to the weak
5.7-5.8 eV band observed in the experimental spectra of
polypeptides in solution.”* The charge transfer excitations
m—m, and n;—m," between neighboring peptide units
are found by CASPT2 at 7.18 and 8.07 eV, respectively.
These excitations correspond to the HOMO-1 —LUMO and
HOMO — LUMO transitions and involve orbitals localized
on different peptide groups (see Fig. 6). The CASPT?2 results
are consistent with the experimental findings; indeed a 7.2—
7.6 eV band is found in the spectra of numerous polypeptides
but, for example, not in nylons, where the peptide groups are
separated by more than one alkyl group, and the probability
of interpeptide transitions decreases signiﬁcantly.54 Com-
pared to CASPT2 results, TDGGA generally accounts accu-
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FIG. 7. Absorption spectra in arbitrary units of a model dipeptide obtained
by solving the BSE (see text) with and without the TDA. A Lorentzian
broadening of about 0.03 eV was used. The L and CT excitations are
highlighted.

rately for the L excitations, with an error within 0.3 eV,

The CT excitation energies, however, are underestimated in
TDGGA by about 2 and 3 eV, respec:tively,ss’57 and their
relative position with respect to the local intrapeptide excita-
tions is predicted incorrectly. The use of hybrid functionals,
such as B3LYP, only partially improves over the TDGGA
results™" and the charge transfer excitations are still under-
estimated by about 1 and 2 eV, respectively.

In Fig. 7 and Table I, we present the spectra obtained in
this work (with and without the TDA) and compare them
with the CASPT2 results. The dipeptide was placed in a
14.8 X 14.8 X 14.8 A3 supercell and we used a 60 Ry kinetic
energy cutoff for the electronic wave functions and a 240 Ry
cutoff for €'; 154 eigenmodes were used to approximate
€'(\j3,~1=-0.13). Our TDLDA calculation predicts CT
excitations at 4.61 and 5.16 eV and L excitations at 5.30 and
5.66 eV (in agreement with the TDGGA results in the litera-
ture). Since TDLDA accurately accounts for the peak posi-
tion of local excitations, we choose the value of the scissor
by aligning the first L excitation in the BSE and TDLDA
spectra. The quality of the BSE in describing CT excitations
can be evaluated by comparing the peak positions of the CT
excitations to those obtained at the CASPT?2 level. We found
that the 7, — 5 peak (7.05 eV) is blueshifted by 1.9 eV in
the full BSE, with respect to TDLDA, in good agreement
with the CASPT2 result of 7.18 eV. The use of the TDA
introduces a blueshift of 0.15 eV in the BSE results; quanti-
tatively similar differences between TDA and BSE excitation
energies were found in the case of molecules such as
trans-azobenzene™® and biological chromophores.35 Due to
the small oscillator strength, the n; — 1, transition could not
be identified in our BSE spectra, which is consistent with the

J. Chem. Phys. 133, 164109 (2010)

finding that this transition has zero oscillator strength (0.000)
in the CASPT?2 calculations.”* From both Table I and Fig. 7,
one notices that the TDA and the full BSE results are in
qualitative agreement, although important quantitative differ-
ences exist. A discussion about the limitations of the TDA
has already been given in Secs. III and IV B.

In Table I, we report the peak positions of the dipeptide
spectrum, as obtained from direct diagonalization of the BSE
Hamiltonian in an e-h pair basis set. This calculation allowed
us to test the convergence properties of the e-h approach,
compare the characteristics of the different methods, and as-
sign the first few peaks in the excitation spectrum. In order to
have a straightforward comparison of the results from the e-h
approach and our method, we used our own implementation
of the e-h algorithm based on €' as defined in Eq. (23). In
particular, we found a slow convergence of the CT excitation
energies as a function of N, the number of empty states. For
example, although ) — a7, is the third lowest excitation in
BSE, the use of at least 154 empty states is necessary to
obtain a 0.1 eV accuracy in the peak position. Including 214
empty states slightly improves the accuracy to 0.08 eV. In the
low energy part of an absorption spectrum (like in this case),
the convergence with respect to the number of e-h pairs
could be hindered by the strong mixing of single particle
transitions induced by the electron-hole interaction. In the
high energy part of a spectrum, the electron-hole interaction
is supposed to decrease but the density of single particle
transitions in a given energy range increases, making the
convergence with respect to the number of e-h pairs difficult.
By reformulating the problem within density matrix pertur-
bation theory, this basis set error is eliminated, as we include
implicitly all the single particle empty states below the wave
function kinetic energy cutoff. In the e-h approach, we found
that the peak position of the n; — r, transition (7.37 eV) is
blueshifted by 2.8 eV with respect to TDLDA. Although
showing a large improvement over TDLDA, the peak posi-
tion found by our BSE code is still 0.7 eV lower than the
CASPT?2 result, which may be attributed to the approximate
nature of the scissor operator used here. This implies that the
self-energy correction to the occupied states (or empty states)
is not constant, but have a strong orbital dependence. It is
also possible that the order of the KS electronic states is not
preserved in the quasiparticle picture. This issue may be
fixed by using state dependent GoW or scCOHSEX correc-
tions.

TABLE I. Transition energies of a model dipeptide molecule computed from TDLDA and BSE compared to CASPT2 results. The indices 1 and 2 indicate
orbital localized on different peptides. The transitions that do not significantly contribute to the spectrum in Fig. 7, namely, whose oscillator strength is
approximately zero, are indicated with 0.s.~0 (the negligible oscillator strength found by our BSE code is in agreement with CASPT?2 results).

Optical excitation TDLDA (TDA) TDLDA BSE-e-h" (TDA) BSE-e-h” (TDA) BSE (TDA) BSE CASPT2¢
n;— 5, (CT) 4.61 4.61 7.38 7.37 0.5.=~0 0.5.~0 8.07
m—a, (CT) 5.16 5.15 7.30 7.28 7.20 7.05 7.18
n;—; (L) 5.30 5.30 5.38 5.37 5.33 5.30 5.62
ny— (L) 5.67 5.66 5.67 5.66 5.63 5.60 5.79

4154 empty states are used in the e-h pair basis set.
214 empty states are used in the e-h pair basis set.
“Reference 54.
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In addition to the L and CT transitions, local 7m— 7"
intense excitations (called NV, excitations) are also present
in the dipeptide spectrum. These are found at 6.39 and 6.49
eV within CASPT2, in reasonable agreement with the ex-
perimental results for polypeptides; indeed, an intense band
at 6.4-6.7 eV is typically observed for peptides ranging from
small amides to large polymers.54 An accurate description of
such transitions remains quite challenging. For example,
compared with CASPT2, TDGGA overestimates the NV ex-
citations by more than 0.5 eV and TDB3LYP by almost 1
eV.”> The CAM-B3LYP [a range-separated hybrid functional
using the Coulomb-attenuating method (CAM) that improves
over B3LYP in describing the CT excitations in the dipeptide
model, however, when compared to CASPT2 (Refs. 56 and
57)] overestimates the NV, transitions by 0.34 eV.”° In our
calculation, we did not find NV, excitations in the energy
range predicted by CASPT2, similar to the trend in
TDGGA>’ and TDB3LYP/CAM-B3LYP.”>”’ These excita-
tions are shifted to higher energies in BSE, where many tran-
sitions are present, making it difficult to clearly identify the
nature of the peaks within our approach. From the direct
diagonalization of the e-h BSE Hamiltonian (TDA), NV,
transitions are found at 7.98 and 8.24 eV when including 154
empty states and at 7.88 and 7.67 eV when including 214
empty states. Due to the slow convergence of calculations
using the e-h hole basis, it is difficult to accurately assign
NV, transitions in Fig. 7. In principle, this would be possible
by direct diagonalization of the Liouvillian operator £, but
this has not yet been implemented in our code. A method to
assign transitions in an implementation similar to ours has
been introduced in Ref. 58. However, in order to assign a
single transition of energy w, this approach requires an addi-
tional iterative calculation with a computational cost compa-
rable to the calculation of the full spectrum.

Multiple factors may be responsible for the poor descrip-
tion of the NV transitions in our BSE spectra and the exact
reasons are yet unclear. A substantial source of error might
come from the use of the same scissor operator to account
for the self-energy correction of different excitations. A fully
self-consistent self-energy calculation, at least at the
COHSEX level, would be necessary to improve over the use
of a constant scissor shift and work is in progress to carry out
such a computation. On the other hand, theoretical studies of
the NV transition of N-methylacetamide, the monomer of the
dipeptide studied here, have not reached a consensus on the
position of NV transitions. While the 77— 7" excitation is at
6.76 eV in CASPT2,” in good agreement with the experi-
mental result of 6.8 eV,60 multireference configuration inter-
action (MRCI) calculations obtained a value at 7.46 eV,
about 0.8 eV higher than experiment.61 Clearly, the MRCI
calculation shows the same trend as our BSE calculation,
namely, a significant blueshift of the NV, transition. The
discrepancy between CASPT2 and MRCI has been attributed
to the different treatment of the valence-Rydberg state
mixing.”’61 Hirst er al.®' also argued that the NV excitation
observed in experiments may not be a vertical transition,
similar to the case of ethylene. Therefore, it is not yet clear if
the discrepancy between BSE and CASPT2 results mainly
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stems from approximations in our implementations, e.g., the
use of a constant scissor operator, or from other issues, such
as the valence-Rydberg state mixing.

V. CONCLUSIONS

In conclusion, we have introduced a new ab initio ap-
proach to compute the optical absorption spectra of mol-
ecules and solids by solving the BSE, whose computational
workload is comparable to ground state Hartree—Fock calcu-
lations. Within the framework presented here, explicit calcu-
lations of empty states and inversion of dielectric matrices
are avoided; the efficiency of our method for relatively large
systems was demonstrated for a 1 nm size silicon cluster. We
also applied the new approach to a model dipeptide molecule
that exhibits charge transfer excitations. Work is in progress
to improve the accuracy of the method through the introduc-
tion of quasiparticle corrections to single particle electronic
states.
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APPENDIX: GENERALIZATION TO EXTENDED
SYSTEMS

Here we briefly present the generalization of the formal-
ism of Sec. II to extended systems. The optical absorption
spectrum of a solid is given by the imaginary part of the
macroscopic dielectric function €,; following Ref. 2 [Egs.
2.23 and B26],

&)=~ lim v(q)lm( S 3 (e e

ny,ng n3,ng

o

X(w—L+in);

nlnz n3n4

lqr |¢ >(fn3_fn4))’
(A1)

where v(q)=4m/g* is the Coulomb potential in Fourier
space and f,, are the occupation numbers of the quasiparticle
orbitals d)fl_.lln the long wavelength limit, the exponential
¢~ can be expanded into powers of q,

—zq r

(A2)

hm (¢, |

°
n./»
J

where ¢ is the polarization direction of the external field and
the orthogonality between |¢”> and |¢, > is used. By substi-
tuting Eq. (A2) into Eq. (A1), we obtain
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It is straightforward to see that this equation is equivalent,
but for a constant factor 417, to the imaginary part of Eq. (6);
indeed (¢, [¢ ~r|¢;2) is the e-h hole representation of €-r and
(b, |ex'|#,)(f,,~f,) corresponds to the commutator
[E r' ’ ﬁo] »

The calculation of optical spectra of periodic systems
requires the evaluation of a properly converged integral over
the first Brillouin zone (BZ) and we note that each single
particle state is labeled by wave vector indices k, belonging
to the first BZ.
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