
1

Unsupervised Mechanisms for Optimizing On-Time

Performance of Fixed Schedule Transit Vehicles
Fangzhou Sun, Chinmaya Samal, Jules White, Abhishek Dubey

Institute of Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

{fangzhou.sun, chinmaya.samal.1, jules.white, abhishek.dubey}@vanderbilt.edu

Abstract—The on-time arrival performance of vehicles at stops
is a critical metric for both riders and city planners to evaluate the
reliability of a transit system. However, it is a non-trivial task for
transit agencies to adjust the existing bus schedule to optimize the
on-time performance for the future. For example, severe weather
conditions and special events in the city could slow down traffic
and cause bus delay. Furthermore, the delay of previous trips may
affect the initial departure time of consecutive trips and generate
accumulated delay. In this paper, we formulate the problem as
a single-objective optimization task with constraints and propose
a greedy algorithm and a genetic algorithm to generate bus
schedules at timepoints that improve the bus on-time performance
at timepoints which is indicated by whether the arrival delay is
within the desired range. We use the Nashville bus system as
a case study and simulate the optimization performance using
historical data. The comparative analysis of the results identifies
that delay patterns change over time and reveals the efficiency
of the greedy and genetic algorithms.

Keywords—public transportation; optimal scheduling; statistical
distributions; genetic algorithm;

I. INTRODUCTION

Emerging trends and challenges. In the last decade, public
transit ridership in the United States increased by 37% [1].
Compared with other modes of transportation like subway and
light rail, bus service has advantages of low cost and large
capacity, and thus is the backbone of public transit services in
many cities. However, bus operations are also more easily af-
fected by uncertain factors, such as traffic congestion, weather
condition, road construction, passenger/bicycle loading, big
events, etc. If the same vehicle or operator is scheduled to
be used by two consecutive bus trips, the accumulated delay
occurred on previous trips may cause a delay in consecutive
trips by affecting the initial departure time of the next trip. This
unreliability in bus services can decrease rider satisfaction and
loyalty, resulting in lower fleet utilization [2]. Regarding this
issue, studies [3], [4], [5] have been conducted to reduce the
uncertainty in transit systems and provide predictive informa-
tion to users.

Providing convenient, efficient and sufficient bus services
to meet the expanding demand and reliability requirement for
public transit remains a great challenge for transit agencies.
Therefore, transit agencies have developed various indicators
to evaluate public transit systems and monitored service re-
liability through several key performance measurements from
different perspectives [6]. Common indicators of public transit

system evaluation include schedule adherence, on-time per-
formance, total trip travel time, etc. To quantity bus on-time
arrival performance, many regional transit agencies use the
range of [-1,+5] min compared to the scheduled bus stop time
as the on-time standard to evaluate bus performance using
historical data [7]. They analyze the historical data and adjust
the scheduled time by hand, which is time consuming and
heavily relies on the past experience of transit engineers.

A variety of studies have been conducted on improving
bus on-time performance and many use heuristics solutions.
Specific and ad-hoc heuristic search (e.g. greedy algorithms),
neighborhood search (e.g. simulated annealing (SA) and tabu
search (TS)), evolutionary search (e.g. genetic algorithm [8],
[9], [10], [11]) and hybrid search [12], [13] are popular meth-
ods to search for the optimization solutions. The optimization
objectives of existing works also vary, such as minimizing
passenger transfer time (required time to switch from one
route to another route to get to destinations) [11], minimizing
transfer user cost [14], bus frequency setting (the frequency
of departure buses of one route) [12]. However, there are few
stochastic optimization models that focus on optimizing bus
timetables to maximize the probability of bus trips where buses
arrive at timepoint with delay within a desired on-time range
(e.g. one minute early and five minutes late), which is widely
used as a key indicator of bus performance in the United States
[7]. Timepoints are special bus stops that transit agencies use
to record and coordinate the bus arrival times along a trip.
Studying the travel time of timepoint segments can be an
effective way to set bus timetables, however, because of the
monthly and seasonal variation in historical monthly patterns,
generating one timetable for all months may not be the best
solution, and how to divide months into clusters and optimize
timetable for each month cluster remains an open problem.

Contributions. This paper focuses on creating and imple-
menting a mechanism to improve the on-time performance of
bus services with fixed schedules at the re-planning stage (re-
planning stage is when transit agencies adjust the existing bus
schedules to make a future timetable). Specific contributions
are 1) We describe an unsupervised mechanism to find out
how months can be divided to generate new timetables. We
apply outlier analysis and clustering analysis on bus travel
times to identify monthly patterns, and then generates new
timetables for month clusters that have similar patterns. The
feature vectors we use include mean, median and standard
deviation of the historical travel time aggregated by route,
trip, direction, timepoint segment and month. 2) We present

 978-1-5090-6517-2/17/$31.00 ©2017 IEEE

a genetic algorithm to optimize the scheduled arrival and
departure time at timepoints to maximize the probability of bus
trips that reach the desired on-time range. A greedy algorithm
is also developed for comparison purpose. 3) We evaluate the
proposed mechanism via simulation. Results show that the
genetic algorithm outperforms the greedy algorithm in on-time
performance and the month grouping method that generates
separate bus schedules for clustered months can further im-
prove the optimization. The average on-time performance on
all bus routes was improved from 62.9% to 74.7%.

Paper outline. Section II compares our mechanism with
related work; Section III presents the problem description and
formulation, and key research challenges; Section IV outlines
the details of the unsupervised mechanism; Section V uses
real-world data from the Nashville transit system as a case
study to evaluate our methodology’s performance; Section VI
presents conclusion remarks and future work.

II. RELATED WORK

A wide range of studies have been conducted on the bus on-
time performance optimization problem. Friedman et al. [15]
formulated a mathematical model of a general transportation
network and presented a procedure to optimize bus departure
times for minimizing the average waiting time of passengers
by changing decision variables (i.e. bus departure time). Hora
et al. [13] applied a Mixed Integer Linear Programming
(MILP) model to obtain robust bus schedules that minimize
the differences between scheduled times and actual arrival
time Their solution works on allocating the slack time of two
subsequent stops. Guihaire et al. [16] presented a classification
of 69 approaches dealing with route design, bus frequency and
timetabling.

Genetic algorithms (GAs) are search and optimization meth-
ods based on the evolutionary ideas of natural selection.
Chakroborty et al. [17] first used genetic algorithms to develop
optimal schedules for urban transit systems. The problem is
formulated as a mathematical program that minimizes the sum
of total time transferring from one route to another route for all
transferring passengers and initial waiting time for all passen-
gers at the origin. Later, Pattnaik et al. [8] proposed a genetic
algorithm for designing urban bus transit route network. Their
research focuses on selecting a set of optimum route sets using
a GA. Charkroborty et al. [9] developed genetic algorithm
based procedures for route planning and scheduling. Zhao et
al. [14] presented a mathematical stochastic methodology to
minimize transfer and user cost. Yang et al. [10] proposed
an improved genetic algorithm to optimize timetables that
passenger transfer time is minimized using constraints of traffic
demand and departure time and maximum headway.

Naumann et al. [18] presented a stochastic programming
approach for robust vehicle scheduling in public bus trans-
portation. Szeto et al. [12] proposed a genetic algorithm for
route design problem and a neighborhood search heuristic
for bus frequency setting problem. Their goal is to reduce
the number of transfers and the total travel time of the
users. Tilahun et al. [19] modeled single frequency route bus
timetabling as a fuzzy multi-objective optimization problem

Fig. 1. A bus route example: two consecutive trips in the same block.

using preference-based genetic algorithm. Nayeem et al. [11]
presented a genetic algorithm based optimization model for
maximizing the number of satisfied passengers, minimizing
the total number of transfers and minimizing the total travel
time of all served passengers.

Using genetic algorithms for transit optimization is well
studied. However, to the best of the authors’ knowledge, even
though the on-time arrival range (e.g. one minute earlier and
six minute later than advertised schedule) is widely used as a
key transit reliability indicator by transit agencies for analyzing
and timetabling in the United States [7], there are few stochas-
tic optimization models focusing on optimizing bus timetables
to increase bus trips within the on-time performance range.
Also, they didn’t realize that grouping months according to
the travel time patterns and generating cluster-specific schedule
can further increase the on-time performance. The difference
between existing approaches and our approach is that since
traffic and delay patterns change over seasons and different
times, we generate clusters based on unsupervised learning
and develop optimization models for these clusters. In this
paper, we propose an unsupervised mechanism with genetic
algorithm to solve this problem. We show how we formulate
the problem and set up the solution population for the genetic
algorithm. A greedy algorithm is developed as a comparison.
We also study the seasonal variations on bus delay patterns,
which help to build a robust bus timetable.

III. SYSTEM MODEL

Public transit bus service in a city typically consists of
multiple routes. Each route contains a set of trips that depart
at different times according to a published public timetable. A
timepoint is a special transit stop that can accurately record
the departure and arrival time of buses [20] (In Figure 1, Stop
1, 3 and 5 are timepoints). Transit agencies use timepoints to
coordinate the buses by constraints that (1) a bus should wait
at a timepoint until the scheduled time if it arrives early (2) a
bus should departure as soon as possible if it arrives on time
or late. There are some other key concepts that are involved
in the problem:

∙ Block: A block consists of a group of sequential trips that
use the same vehicle. Transit Authorities divide trips in a
day into several blocks by choosing the first trip and connect
it with next trip that leaves from the end of the same line.
In Figure 1, Trip 1 and 2 belong to the same block. The
bus of Trip 1 will only continue trip 2 after it has arrived
at stop 5. Thus, the delay in trip 1 will affect trip 2.

∙ Slack Time: The slack time is the layover time between the
scheduled arrival time at the last timepoint of a trip and the
scheduled departure time at the first timepoint of the next

TABLE I. NOTATIONS USED IN THE OPTIMIZATION PROBLEM

ℎ a bus trip that departures at the same time in dif-
ferent days. In Figure 1, there are two bus trips that
scheduled to depart at 10:00 and 10:45.

𝑏 a bus schedule that defines the departure and arrival
time at bus stops and timepoints

𝑠 a timepoint

𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙ℎ,𝑠 the actual arrival time at a timepoint 𝑠 on trip ℎ

𝑡
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

ℎ,𝑠 the actual departure time at a timepoint 𝑠 on trip ℎ

𝑡𝑡𝑟𝑎𝑣𝑒𝑙ℎ,𝑠𝑖,𝑠𝑗
the actual travel time between two adjacent timepoints
𝑠𝑖 and 𝑠𝑗 on trip ℎ

𝑇 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
ℎ,𝑠 the scheduled arrival time at timepoint 𝑠 on trip ℎ

𝑇
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

ℎ,𝑠 the scheduled departure time at timepoint 𝑠 on trip ℎ

[𝑡𝑒𝑎𝑟𝑙𝑦, 𝑡𝑙𝑎𝑡𝑒] the time window that the arrival delay on-time bus
should satisfy within

𝑡𝑑𝑤𝑒𝑙𝑙
𝑠𝑗

the dwell time (in simulation) at timepoint 𝑠𝑗 that
caused by riders getting on/off

trip in the same block. The scheduled layover between Trip
1 and 2 in the example is 5 minutes.

Timepoint Schedule Adherence (TSA) is an important indi-
cator that calculates how often buses adhere to their schedule.
TSA is widely used by transit agencies to estimate the histori-
cal bus on-time performance on different routes [21]. The main
purpose of this study is to create a methodology to improve
the on-time performance of a given set of routes by optimizing
the scheduled time at timepoints.

A. Problem Formulation

In order to formulate an optimization problem that aims
to obtain a timetable that maximizes on-time performance at
timepoints, we define the notations in Table I.

Let 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑚} be a set of 𝑚 historical trips
of a given bus trip schedule 𝑏. Each trip passes a set of 𝑛
timepoints {𝑠1, 𝑠2, ..., 𝑠𝑛}. The on-time performance of the bus
trip schedule 𝑏 can be expressed as :

𝑃 =

∑𝑚

𝑖=1

∑𝑛

𝑗=1
𝐼(ℎ𝑖, 𝑠𝑗)

𝑚× 𝑛
(1)

where ℎ𝑖 denotes a historical trip and 𝑠𝑗 denotes a timepoint
on the trip. The indicator function 𝐼(ℎ𝑖, 𝑠𝑗) is defined as:

𝐼(ℎ𝑖, 𝑠𝑗) =

{

1, if 𝑑𝑖,𝑗 ∈ [𝑡𝑒𝑎𝑟𝑙𝑦, 𝑡𝑙𝑎𝑡𝑒]

0, otherwise
(2)

𝑑𝑖,𝑗 = 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙ℎ𝑖,𝑠𝑗
− 𝑇 𝑎𝑟𝑟𝑖𝑣𝑎𝑙

ℎ𝑖,𝑠𝑗
(3)

where 𝑑𝑖,𝑗 is the actual delay that a bus from the historical
trip ℎ𝑖 arrives at a timepoint 𝑠𝑗 , 𝑡𝑒𝑎𝑟𝑙𝑦 and 𝑡𝑙𝑎𝑡𝑒 are two time
parameters that transit authority has pre-defined to rate the
schedule adherence of the bus at that timepoint. The goal of the

schedule optimization problem is to generate new 𝑇
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
ℎ,𝑠 ,

such that the on-time performance is maximized. However, any
updated schedule must satisfy the following constraints:

∙ Constraint 1. The scheduled slack time between two adja-
cent bus trips that belong to the same block must be greater
than or equal to zero minute i.e. 𝑇

𝑠
′

1

− 𝑇𝑠𝑛 ≥ 0, where 𝑠𝑛

Fig. 2. The overall work flow of the unsupervised bus timetable optimization
mechanism.

is the last timepoint of the current trip and 𝑠
′

1 is the first
timepoint of the next trip in the same block.

∙ Constraint 2. The actual departure time at a timepoint
should be greater than or equal to the scheduled departure
time i.e. 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑠 ≥ 𝑇 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

𝑠

∙ Constraint 3. The scheduled departure time at a timepoint
should be equal to the scheduled arrival time at the timepoint
i.e. 𝑇 𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝑠 = 𝑇 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
𝑠 . How we handle dwell time at

timepoints is described in Section IV-E.

IV. METHODOLOGY

This section describes: (1) a genetic algorithm to solve
the optimization problem described in sectionIII-A (details
related to solution representation, initialization, evaluation,
selection, crossover, mutation and termination are discussed),
(2) a greedy algorithm as a comparison to the GA. Working
code can be found in our public repository [22].

The overall work flow of the unsupervised bus timetable
optimization mechanism is shown in Figure 2. First, outlier
analysis is applied to identify and remove the outlier data from
historical dataset. Clustering analysis is used to cluster months
according to the feature vectors generated for each month. This
is important because travel time during different seasons have
different patterns as shown in Figure 3, which plots the [mean,
standard deviation, median] vector of the monthly travel time
for a segment (WE23-MCC5 5) on a bus trip of route 5.
It should be noted that we provide an upper bound on the
number of clusters as an algorithmic parameter. Setting the
upper bound to one will ensure that only one schedule is
generated for the whole year.

A. Data Aggregation

We have been collaborating with the Nashville Metropolitan
Transit Authority (MTA) to access the bus schedules and real-
time bus data feeds in Nashville. Also, we are integrating
data from multiple other data sources to collect the real-time
traffic and weather data in the city. The data sets that we have
integrated into our system are as follows:

∙ Bus schedule datasets are the static public transportation
schedules and associated geographic information of routes,
trips, stop times, physical route layout in General Transit
Feed Specification (GTFS) format [23] for all the 57 bus
routes in Nashville.

∙ Real-time transit feeds are the real-time updates of transit
fleet information in real-time GTFS format [23], including
three types of information: (1) trip updates: bus delays and
changes, (2) service alerts: routes and buses that are affected
by unforeseen events, (3) vehicle position: bus locations with
timestamps.

TABLE II. REAL-TIME AND STATIC DATASETS COLLECTED IN THE

SYSTEM.

Bus Schedules Real-time Transit

Format Static GTFS Format Real-time GTFS

Source Nashville MTA Source Nashville MTA

Update Every public release Update Every minute

Size 30.6 MB (used version) Size 411 GB

Timepoints Real-time Traffic

Format Excel Format JSON

Source Nashville MTA Source Here API

Update Every month Update Every minute

Size 300,000 entries/month Size 49.5 GB

∙ Time-point feed provides the historical bus operating details,
including each bus’s route, trip and vehicle ID, accurate
arrival and departure time at timepoints, etc. Nashville MTA
releases the time-point data sets at the end of each month.

B. Outlier Analysis

Median Absolute Deviation (MAD) [24] is a robust measure
of statistical dispersion . For a data set [𝑥1, 𝑥2, ..., 𝑥𝑛], the
MAD of the data set can be calculated using the following
equation: 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(∣𝑥𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)∣) where function
𝑚𝑒𝑑𝑖𝑎𝑛(𝑋) returns the median of data set 𝑋 . For normal
distribution, the scaled MAD is defined as (MAD/0.6745),
which is approximately equal to the standard deviation. For
any 𝑥𝑖, if the difference between 𝑥𝑖 and median is larger
than 3 times of standard deviation (i.e. scaled MAD), then
we consider, 𝑥𝑖 as an outlier.

C. Feature Vector

To cluster the months, a representation of the data distri-
bution in each month is needed. For a bus trip consists of
𝑛 timepoints, there are 𝑛 − 1 timepoint segments. Since the
historical travel time for each timepoint segment in each month
will have a data distribution (which is represented as the mean
value 𝜇, the median value 𝑚 and the standard deviation 𝜎),
the feature vector for each month can be represented as:

[𝜇1,𝑚1, 𝜎1, 𝜇2,𝑚2, 𝜎2, ..., 𝜇𝑛−1,𝑚𝑛−1, 𝜎𝑛−1] (4)

D. Clustering Analysis

The trip data per month was clustered using the feature
vector in Equation 4 by K-Means algorithm:

argmin
𝑆

𝑘
∑

𝑖=1

∑

𝑥∈𝑆𝑖

∥𝑥− 𝜇𝑖∥
2 (5)

where 𝜇𝑖 denotes the mean of all points in cluster 𝑆𝑖.
If the upper bound on the number of clusters is not set, then

it is set to the number of months for which the data is available.
The gap statistic [25] is used to find the optimal number of
clusters. Figure 3 plots the [mean, standard deviation, median]
vectors of the monthly travel time for a segment (WE23-
MCC5 5) on a bus trip of route 5 (Figure 7). It clearly shows
the variation between monthly data and these 5 months can
be clustered into two groups: [April, May, June] and [July,
August]. This variation is used to produce different schedule

Fig. 3. The feature vectors (mean, standard deviation, median]) of the travel
time in 5 months for a segment (WE23-MCC5 5) on a bus trip of route 5.

for these clusters. It should be noted that if the upper bound
of number of clusters is set to 1 then only one schedule
is generated. However, in our analysis we have seen that
generating the schedule per cluster is better. This is shown
later in section V-A.

E. A Genetic Algorithm to Optimize Bus Schedules

Since in our problem there are constraints that (1) the
scheduled time at the first timepoint in each trip should not
be changed, (2) the scheduled arrival time and departure
time at the proceeding timepoints should remain in the same
(dwell time is included in the expected travel time of the next
segment, plus the range of [-1,+6] of on-time performance is
able to account for dwell time variations as well) , the timetable
for each trip can be decided by (1) the scheduled departure time
at first timepoint, which is fixed, and (2) the scheduled arrival
times at other timepoints, which are decided by the scheduled
travel time between any two subsequent timepoints along the
trip. Particularly, the following genetic algorithm terms are
used:

∙ chromosome/individual: a solution in the genetic algo-
rithm, which is a vector of integers representing travel
time between subsequent timepoints.

∙ population: a set of solutions in each iteration.

In order to reduce the search space and match the real-world
scenarios, the travel time in each individual is re-sampled to a
multiple of 60 seconds.

Initialization When designing a genetic algorithm, estimat-
ing a good initial state is critical. Population size determines
how many chromosomes are there in one population and
affects the ultimate performance and computation efficiency
[26]. Smaller population makes iterations faster but less various
in chromosome crossover. Larger population will have the
opposite effects. We chose 50 as the population size 𝑝𝑆𝑖𝑧𝑒.

In order to initialize the first population, the actual travel
time between timepoints is aggregated from the historical
datasets. Then the travel time in each individual is randomly
selected between the maximum and minimum of historical
data. We observed that the seeding in the initial population
with heuristic solutions such as original scheduled travel time
or optimized results from the greedy algorithm (presented in
Section IV-F) would only affect the fitness of initial population
and had little effects on the final optimality, so the initial
population is generated at random.

Selection At the beginning of each iteration step, a portion
of the existing population needs to be selected as parents

to breed a new generation. A fitness function is required to
determine how fit a solution is and a selection strategy is
needed to select the solutions with better fitness. In our case,
the objective function, defined in equation 1 is used as the
fitness function. Since the fitness function contains an indicator
function 𝐼(ℎ𝑖, 𝑠𝑗), and the value of the indicator function
is related to the arrival delay at timepoint 𝑠𝑗 , a simulation
mechanism is needed to evaluate the on-time performance of
the new schedule using historical data. To simulate the bus
arrival and departure activities at timepoints, historical travel
times between two consecutive timepoints and historical dwell
time at timepoints are used.

To estimate the historical dwell time caused by passengers,
we consider the following two scenarios in historical data: (1)
if a bus arrives earlier than scheduled time, the waiting time
between the scheduled time and actual departure time is used,
(2) if a bus arrives later than scheduled time, the waiting time
between the actual arrival time and departure time is used. For
example, for the Timepoint 2 in Figure 1 with scheduled time
of 10:20:

∙ If a historical bus arrived earlier at 10:17 and departed at
10:25, since the bus would always wait there for 3 minutes
(between actual arrival time 10:17 and schedule time 10:20)
regardless of there were passengers or not, we assume the
dwell time caused by passengers is the extra time after the
scheduled time (10:25 - 10:20 = 5 minutes).

∙ If a historical bus arrived later at 10:23 and departed at
10:25, then the dwell time caused by passengers is the extra
time after the actual arrival time (10:25 - 10:23 = 2 minutes).

In the simulation, historical dwell time caused by passengers
is added to the simulated arrival time at a timepoint, if the
sum time is still earlier than the new scheduled time, then the
simulation waits for extra time until the new scheduled time.
The simulated departure time 𝑠𝑡

𝑑𝑒𝑝𝑎𝑟𝑡
ℎ,𝑠𝑗+1

at a timepoint 𝑠𝑗+1 can

be calculated using the simulated departure time 𝑠𝑡
𝑑𝑒𝑝𝑎𝑟𝑡
ℎ,𝑠𝑗

at

previous timepoint 𝑠𝑗 , the actual travel time 𝑡𝑎𝑟𝑟𝑖𝑣𝑒𝑠𝑗+1
− 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑠𝑗

between 𝑠𝑗 and 𝑠𝑗+1, the dwell time 𝑡𝑑𝑤𝑒𝑙𝑙
𝑠𝑗+1

.

Thus the new schedule time 𝑇
𝑑𝑒𝑝𝑎𝑟𝑡
ℎ,𝑠𝑠𝑗+1

at 𝑠𝑗+1 is calculated

using the following equation:

𝑠𝑡
𝑑𝑒𝑝𝑎𝑟𝑡
ℎ,𝑠𝑗+1

= max(𝑇 𝑑𝑒𝑝𝑎𝑟𝑡
ℎ,𝑠𝑠𝑗+1

, 𝑠𝑡
𝑑𝑒𝑝𝑎𝑟𝑡
ℎ,𝑠𝑗

+(𝑡𝑎𝑟𝑟𝑖𝑣𝑒𝑠𝑗+1
−𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑠𝑗

)+𝑡𝑑𝑤𝑒𝑙𝑙
𝑠𝑗+1

)
(6)

For example, if the scheduled time at timepoint 2 in Figure 1
is changed to 10:16, since the bus of Trip 1 took 17 minutes
to arrive at timepoint 2 and the historical dwell time by
passengers is 0, the bus will be simulated to arrive 1 minutes
later than the new schedule time and depart immediately after
arrival.

Our genetic algorithm uses tournament selection [27] to ran-
domly select new solutions. Each time, we select 2 individuals
at random from the current population and pick the one with
better fitness to become a parent. This process is repeated
until the number of parents reaches the population size. The
specifics are:

Crossover Using crossover, sub-solutions on different chro-
mosomes are combined at random. A uniform crossover [28]
technique is used for the crossover operation in gene level.

Unlike one point or multi-point crossover, uniform crossover
treats each gene separately. Two parents are randomly selected
and their genes are exchanged (the scheduled travel time
between two successive timepoints with another on the same
places of the solution vector. The individual travel times
between two parents are swapped with a fixed probability
of 60%. An example illustrating the crossover is shown in
Figure 4.

Fig. 4. Crossover: two genes are swapped between two individuals.

Mutation Mutation generates genetic diversity from one
generation of a population of chromosomes to the next. The
mutation works in two steps: (1) a schedule travel time
between two timepoints in a solution is selected at random,
(2) randomly add or minus 60 seconds to the time with the
requirement that the new time should be within the historical
travel time distribution range. The mutation probability is set as
0.005 and the population size 𝑝𝑠 is 50. Suppose each individual
has 5 genes, 250 genes in total should lead to the result that
one gene will mutate in each iteration.

Termination The termination condition of a genetic algo-
rithm is critical to determine whether the algorithm should
end or not. According to the study of stopping criteria for
genetic algorithm [29], the following three types of conditions
are mostly employed: (1) an upper limit of generation number
is reached, (2) an upper limit of fitness function value is
reached, (3) the change or achieving significant changes in
the next generation is excessively low. Since the best on-time
performance that the GA can achieve for each bus trip varies,
setting the upper limit of the fitness function value does not
work here. So we choose 1,000 as the upper generation number
limit. At the same time, if the difference between the average
fitness value of the solutions in the current generation and
previous generation is below a pre-defined threshold 0.00001,
then the algorithm will also terminate.

The pseudo code of the genetic algorithm is given in
Algorithm 1. We utilize historical timepoint datasets to conduct
the genetic algorithm for this optimization problem. The input
includes on-time range, number of generation limit, number
of solutions in the population, termination threshold, crossover
and mutation probability, bus trip and upper limit of number
of month clusters.

F. Using A Greedy Algorithm to Optimize Bus Schedules

We also used a greedy algorithm to compare the computa-
tion efficiency and optimization performance with the genetic
algorithm. The basic idea of the greedy algorithm to optimize
a bus trip’s timetable is to adjust the scheduled arrival time
greedily from the first timepoint to the last timepoint. Based
on historical data, this algorithm will deal with each timepoint
one by one. The first timepoint will not change. Then for the
second timepoint, newly scheduled time that can maximize the
percentage of on-time arrival delay within range [𝑡𝑒𝑎𝑟𝑙𝑦, 𝑡𝑙𝑎𝑡𝑒]
at the current timepoint will be chosen. The process remains
the same for subsequent timepoints.

Algorithm 1: Genetic algorithm for bus on-time perfor-
mance optimization

Data: 𝐷 ← Historical timepoint datasets
Input : (1) [𝑡𝑒𝑎𝑟𝑙𝑦 ,𝑡𝑙𝑎𝑡𝑒] ← on-time range , (2) 𝑚𝑎𝑥𝐺𝑒𝑛 ←

maximum number of generations 𝑚𝑎𝑥𝐺𝑒𝑛, (3) 𝑝𝑆𝑖𝑧𝑒
← number of solutions in the population 𝑝𝑆𝑖𝑧𝑒, (4) 𝑡𝑡
← termination threshold, (5) 𝑐𝑃 ← crossover
probability, (6) 𝑚𝑃 ← mutation probability, (7) ℎ ←

bus trip for optimization, (8) 𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡 ← upper
limit of the number of clusters

Output: Optimized schedule b at timepoints for bus trip ℎ
GetAllTimepoints(𝐷, ℎ);
GetHistoricalData(𝐷, ℎ);
𝑚𝑜𝑛𝑡ℎ𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← ClusterMonthData(𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡);
for monthCluster ∈ 𝑚𝑜𝑛𝑡ℎ𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do

𝑃 ← [];
for population size 𝑝𝑆𝑖𝑧𝑒 do

𝑃 ← 𝑃 ∪ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙();
end
𝑖𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 0;
while 𝑚𝑎𝑥𝐺𝑒𝑛 is reached or AverageFitness(𝑃𝑖𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

)

- AverageFitness(𝑃𝑖𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛−1
) ≤ 𝑡𝑡 do

𝑃 ← TournamentSelect(𝑃);
𝑃 ← UniformCrossover(𝑃 , 𝑐𝑃);
𝑃 ← Mutation(𝑃 , 𝑚𝑃);

end
end

Initialization The initialization step prepares the data for
following steps. The actual travel time data between any
two consecutive timepoints is aggregated using the historical
dataset.

Optimization In the optimization step, the scheduled arrival
time from the second timepoint to the last timepoint in a trip
is optimized sequentially. Our goal is to pick new schedule
time for two consecutive timepoints that can maximize the
bus arrivals with delay within desired range [𝑡𝑒𝑎𝑟𝑙𝑦, 𝑡𝑙𝑎𝑡𝑒].
It’s a greedy algorithm because when adjusting the schedule
time for a timepoint, only the on-time performance of the
preceding timepoints and the current timepoint is considered.
Figure 5 shows an example of the travel time distribution
between timepoints on a bus trip in May 2016. We can visually
observe that the travel time data distributions do not identically
follow any fixed distribution. Based on the observation, instead
of assuming the data follows any specific distribution (e.g.
Gaussian distribution), we decide to utilize the empirical cu-
mulative distribution function (CDF) to evaluate the percentage
of historical delay in desired range.

An empirical CDF is a non-parametric estimator of the CDF
of a random variable. The empirical CDF of variable 𝑥 is
defined as:

𝐹𝑛(𝑥) = 𝑃𝑛(𝑋 ≤ 𝑥) = 𝑛−1

𝑛
∑

𝑛=1

𝐼(𝑥𝑖 ≤ 𝑥) (7)

where 𝐼() is an indicator function:

𝐼(𝑥𝑖 ≤ 𝑥) =

{

1, if 𝑥𝑖 ≤ 𝑥

0, otherwise
(8)

Then the CDF of 𝑥 in range [𝑥 + 𝑡𝑒𝑎𝑟𝑙𝑦, 𝑥 + 𝑡𝑙𝑎𝑡𝑒] can be

Fig. 5. Travel time distribution between consecutive timepoints on a bus trip
in May 2016.

Fig. 6. Empirical cumulative distribution function (CDF) of historical travel
time between two timepoints (MCC5 5 and WE23) on route 3 in May, June,
July 2016.

calculated using the following equation:

𝐹𝑛(𝑥+ 𝑡𝑙𝑎𝑡𝑒)− 𝐹𝑛(𝑥+ 𝑡𝑒𝑎𝑟𝑙𝑦)

= 𝑛−1

𝑛
∑

𝑛=1

𝐼(𝑥+ 𝑡𝑒𝑎𝑟𝑙𝑦 ≤ 𝑥𝑖 ≤ 𝑥+ 𝑡𝑙𝑎𝑡𝑒)
(9)

Figure 6 illustrates an example of the empirical cumu-
lative distribution function (CDF) of historical travel time
between two timepoints (MCC5 5 and WE23) on route 3
in May, June, July 2016. Choosing a new scheduled travel
time of 720 seconds between these two timepoints could
maximize the percentage of historical data points within range
[720 + 𝑡𝑒𝑎𝑟𝑙𝑦, 720 + 𝑡𝑙𝑎𝑡𝑒].

1) Evaluation: The on-time performance of optimized
schedule is evaluated using simulation. The simulated new
arrival time using the new schedule is calculated using the
simulated travel time equation described in the selection phase
of section IV-E. Algorithm 2 shows the greedy algorithm’s
pseudo code.

V. SIMULATION RESULTS AND DISCUSSION

The data involved are static bus schedule in General Transit
Feed Specification (GTFS) format from Nashville MTA and
recorded timepoint dataset in excel sheet files. The timepoint
datasets contains historical data between April 2016 to August
2016. All data for each month is divided into two subsets at
random: (1) 75% of the data is in the training set for generating
new schedule (2) the rest 25% data is in the validating set for
validating the new schedule.

Algorithm 2: Greedy algorithm for bus on-time perfor-
mance optimization

Data: 𝐷 ← Historical timepoint datasets
Input : (1) [𝑡𝑒𝑎𝑟𝑙𝑦 ,𝑡𝑙𝑎𝑡𝑒] ← on-time range, (2) ℎ ← bus trip

for optimization, (3) 𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡 ← upper limit of
the number of clusters

Output: Optimized schedule b at timepoints for bus trip ℎ
[𝑠1, ..., 𝑠𝑛] ← GetAllTimepoints(𝐷, ℎ);
GetHistoricalData(𝐷, ℎ);
𝑚𝑜𝑛𝑡ℎ𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← ClusterMonthData(𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡);
for monthCluster ∈ 𝑚𝑜𝑛𝑡ℎ𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do

𝑏 ← [];
for 𝑠𝑖 ∈ [𝑠1, ..., 𝑠𝑛] do

𝑚𝑎𝑥𝐶𝐷𝐹 ← 0;
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑇 𝑖𝑚𝑒 ← 0;
for candidate schedule time set x do

if maxCDF ≤

CalculateEmpiricalCDF(𝑥, 𝑡𝑒𝑎𝑟𝑙𝑦, 𝑡𝑙𝑎𝑡𝑒) then
𝑚𝑎𝑥𝐶𝐷𝐹 ←

CalculateEmpiricalCDF(𝑥, 𝑡𝑒𝑎𝑟𝑙𝑦, 𝑡𝑙𝑎𝑡𝑒);
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑇 𝑖𝑚𝑒 ← 𝑥

end
end
𝑏 ← 𝑏+ 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑𝑇 𝑖𝑚𝑒

end
end

Fig. 7. Timepoints on bus route 5 in Nashville

A. Comparing Single Schedule vs Cluster Specific Schedule

For a trip, if its historical travel time patterns is clustered into
2 groups (e.g. [April, May] and [June, July, August]), then two
separate bus schedule will be generated for each month cluster
using the corresponding month data. The on-time performance
using the new schedule is then simulated for each month using
the validation dataset. Route 5, which connects the downtown
and south west communities in the city, is one of the major
bus routes in Nashville. It contains six timepoints (MCC5 5,
WE23, WE31, HRWB, BRCJ, MP&R) and five timepoint
segments along the route (shown in Figure 7). We use route
5 that runs between downtown (Stop: Music City Central 5th
Cir) and southwest (Stop: Coley Davis-Shelter-Park N Ride)
of Nashville to study the two strategies: (1) using clustered
month data to generate separate bus schedules and (2) using all
available data to build a uniform bus schedule. Table III and
Table IV show the original on-time performance, optimized

TABLE III. SIMULATED RESULTS BY USING ALL MONTH DATA TO

GENERATE A SINGLE TIMETABLE.

April May June July August

Original 70.13% 71.41% 69.87% 68.38% 70.52%

Greedy 74.82% 71.12% 76.55% 73.44% 71.87%

Genetic 79.08% 77.87% 79.62% 77.36% 77.56%

TABLE IV. SIMULATED RESULTS BY USING MONTH GROUPED DATA

TO GENERATE CLUSTER SPECIFIC TIMETABLES

April May June July August

Original 70.13% 71.41% 69.87% 68.38% 70.52%

Greedy 74.22% 73.42% 74.86% 73.74% 71.38%

Genetic 79.98% 78.03% 80.79% 79.55% 79.50%

performance using greedy algorithm and optimized perfor-
mance using genetic algorithm using the two strategies. If the
month data is not grouped, the average on-time performance
in these five months improved to 78.29% from 70.06% using
the genetic algorithm. By grouping the months with similar
patterns, the average on-time performance after optimization
is increased further to 79.57%.

Fig. 8. Route heatmap shows the original (left) and optimized (right) on-
time percentages of historical trips between April and August 2016 where bus
arrival delay at timepoints are between 1 mins early and 6 min late

B. Comparing optimization results using genetic algorithm
and greedy algorithm

In the second experiment we apply the proposed unsuper-
vised mechanism to optimize the on-time performance for
all the bus routes in the city of Nashville. For each bus
trip, the trip’s is grouped by using historical timepoint data
in April, May, June, July and August. The original on-time
performance, optimized performance using greedy algorithm
and optimized performance using genetic algorithm are shown
in Figure 9. The results validate our assumption that while both
algorithms can improve the on-time performance, the genetic
algorithm will outperform the greedy algorithm because it
can optimize the schedule for all timepoint segments on each
trip all together. The original on-time performance of all bus
routes in origin is 62.9%. The greedy algorithm improved it to
67.8% and the genetic algorithm improved it further to 74.7%.
Figure 8 visually illustrates the on-time performance on each
route before and after optimization using heatmaps. The color
on the path of each route is from red to green depending on
the percentage of on-time buses at timepoints. We evaluated
the greedy and genetic algorithms on a MacBook laptop (2.0
GHz Intel Core i7 processor and 8 GB 1600MHz DDR3
memory). The computation time of the genetic algorithm is
roughly 4 times than the greedy algorithm (9477.29 seconds

Fig. 9. Actual and simulated on-time performance using data of between
Aprial and August 2016 by (1) original schedule, (2) optimized schedule using
greedy algorithm, (3) optimized schedule using genetic algorithm

v.s. 2406.91 seconds) to optimize all the 57 bus routes. Even
though the genetic algorithm takes much longer time, it is
still worth to choose it because the schedule optimization can
be executed offline and the optimization performance of the
genetic algorithm is better.

VI. CONCLUSION

In this paper, we formulate the bus on-time performance
optimization problem, propose an unsupervised mechanism
that clusters historical data on different months based on
the travel time patterns, and develop a genetic algorithm to
generate new timetables for different month groups. Our goal
is to maximize the probability of bus trips that can reach the
desired on-time range at timepoints. Simulation results show
that the on-time performance on bus routes are improved by
11.8% on average. In the future, we plan to utilize more data
to extend the work so that we can study the seasonal variations
and optimize the algorithms further.

ACKNOWLEDGMENTS

This work is supported by The National Science Foundation
under the award numbers CNS-1528799 and CNS-1647015
and a TIPS grant from Vanderbilt University. We acknowledge
the support provided by our partners from Nashville Metropoli-
tan Transport Authority.

REFERENCES

[1] A. P. T. A. (APTA), “Americans took 10.6 billion trips on public
transportation in 2015,” 2016.

[2] J. Lin, P. Wang, and D. T. Barnum, “A quality control framework for
bus schedule reliability,” Transportation Research Part E: Logistics and
Transportation Review, vol. 44, no. 6, pp. 1086–1098, 2008.

[3] F. Sun, Y. Pan, J. White, and A. Dubey, “Real-time and predictive ana-
lytics for smart public transportation decision support system,” in Smart
Computing (SMARTCOMP), 2016 IEEE International Conference on.
IEEE, 2016, pp. 1–8.

[4] A. Oruganti, F. Sun, H. Baroud, and A. Dubey, “Delayradar: A
multivariate predictive model for transit systems,” in Big Data (Big
Data), 2016 IEEE International Conference on. IEEE, 2016, pp. 1799–
1806.

[5] F. Sun, A. Dubey, J. White, and A. Gokhale, “Transit-hub: A smart
public transportation decision support system with multi-timescale
analytical services,” Cluster Computing, 2017.

[6] H. Benn, “Bus route evaluation standards, transit cooperative research
program, synthesis of transit practice 10,” Transportation Research
Board, Washington, DC, 1995.

[7] S. A. Arhin, E. C. Noel, and O. Dairo, “Bus stop on-time arrival
performance and criteria in a dense urban area,” International Journal
of Traffic and Transportation Engineering, vol. 3, no. 6, pp. 233–238,
2014.

[8] S. Pattnaik, S. Mohan, and V. Tom, “Urban bus transit route network
design using genetic algorithm,” Journal of transportation engineering,
vol. 124, no. 4, pp. 368–375, 1998.

[9] P. Chakroborty, “Genetic algorithms for optimal urban transit network
design,” Computer-Aided Civil and Infrastructure Engineering, vol. 18,
no. 3, pp. 184–200, 2003.

[10] Y. Hairong and L. Dayong, “Optimal regional bus timetables using
improved genetic algorithm,” in Intelligent Computation Technology
and Automation, 2009. ICICTA’09. Second International Conference
on, vol. 3. IEEE, 2009, pp. 213–216.

[11] M. A. Nayeem, M. K. Rahman, and M. S. Rahman, “Transit network
design by genetic algorithm with elitism,” Transportation Research Part
C: Emerging Technologies, vol. 46, pp. 30–45, 2014.

[12] W. Y. Szeto and Y. Wu, “A simultaneous bus route design and frequency
setting problem for tin shui wai, hong kong,” European Journal of
Operational Research, vol. 209, no. 2, pp. 141–155, 2011.

[13] J. Hora, T. G. Dias, and A. Camanho, “Improving the robustness of bus
schedules using an optimization model,” in Operations Research and
Big Data. Springer, 2015, pp. 79–87.

[14] F. Zhao and X. Zeng, “Simulated annealing–genetic algorithm for transit
network optimization,” Journal of Computing in Civil Engineering,
vol. 20, no. 1, pp. 57–68, 2006.

[15] M. Friedman, “A mathematical programming model for optimal
scheduling of buses’ departures under deterministic conditions,” Trans-
portation Research, vol. 10, no. 2, pp. 83–90, 1976.

[16] V. Guihaire and J.-K. Hao, “Transit network design and scheduling: A
global review,” Transportation Research Part A: Policy and Practice,
vol. 42, no. 10, pp. 1251–1273, 2008.

[17] P. Chakroborty, K. Deb, and P. Subrahmanyam, “Optimal scheduling of
urban transit systems using genetic algorithms,” Journal of transporta-
tion Engineering, vol. 121, no. 6, pp. 544–553, 1995.

[18] M. Naumann, L. Suhl, and S. Kramkowski, “A stochastic program-
ming approach for robust vehicle scheduling in public bus transport,”
Procedia-Social and Behavioral Sciences, vol. 20, pp. 826–835, 2011.

[19] S. L. Tilahun and H. C. Ong, “Bus timetabling as a fuzzy multiobjec-
tive optimization problem using preference-based genetic algorithm,”
Promet-Traffic&Transportation, vol. 24, no. 3, pp. 183–191, 2012.

[20] A. Ceder, Public transit planning and operation: Modeling, practice
and behavior. CRC press, 2016.

[21] M. Mandelzys and B. Hellinga, “Identifying causes of performance
issues in bus schedule adherence with automatic vehicle location and
passenger count data,” Transportation Research Record: Journal of the
Transportation Research Board, no. 2143, pp. 9–15, 2010.

[22] F. Sun and A. Dubey, “T-hub timetable optimization project repository,”
https://github.com/visor-vu/thub-timetable-optimization.

[23] “General transit feed specification (gtfs) and gtfs realtime,” https:
//developers.google.com/transit/, 2017, accessed: 2017-02-10.

[24] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers:
Do not use standard deviation around the mean, use absolute devia-
tion around the median,” Journal of Experimental Social Psychology,
vol. 49, no. 4, pp. 764–766, 2013.

[25] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of
clusters in a data set via the gap statistic,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), vol. 63, no. 2,
pp. 411–423, 2001.

[26] J. J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Transactions on systems, man, and cybernetics,
vol. 16, no. 1, pp. 122–128, 1986.

[27] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament
selection, and the effects of noise,” Complex systems, vol. 9, no. 3,
pp. 193–212, 1995.

[28] G. Syswerda, “Uniform crossover in genetic algorithms,” 1989.

[29] M. Safe, J. Carballido, I. Ponzoni, and N. Brignole, “On stopping
criteria for genetic algorithms,” in Brazilian Symposium on Artificial
Intelligence. Springer, 2004, pp. 405–413.

