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Abstract—Data generated by GPS-equipped probe vehicles,
especially public transit vehicles can be a reliable source for traffic
speed estimation. Traditionally, this estimation is done by learning
the parameters of a model that describes the relationship between
the speed of the probe vehicle and the actual traffic speed.
However, such approaches typically suffer from data sparsity
issues. Furthermore, most state of the art approaches does not
consider the effect of weather and the driver of the probe vehicle
on the parameters of the learned model. In this paper, we describe
a multivariate predictive multi-model approach called SpeedPro
that (a) first identifies similar clusters of operation from the
historic data that includes the real-time position of the probe
vehicle, the weather data, and anonymized driver identifier, and
then (b) uses these different models to estimate the traffic speed
in real-time as a function of current weather, driver and probe
vehicle speed. When the real-time information is not available our
approach uses a different model that uses the historical weather
and traffic information for estimation. Qur results show that the
purely historical data is less accurate than the model that uses
the real-time information.

Keywords—Transit vehicles; Traffic speed; Cluster

I. INTRODUCTION

Emerging trends and challenges. In recent years, almost
every city in the United States has an increase in traffic
congestion [1], which has a great impact on commuter’s daily
life. A report [2] in 2015 revealed that on average, urban
commuters in the U.S. spent about 6.9 billion hours a year
stuck in traffic jams and spent $160 billion on the extra cost
of gas. Leveraging the recent advances in technology and
research to create traffic monitor systems is important for both
commuters and city planners. Commuters can use the traffic
congestion information in real-time and change their travel
plan to avoid the traffic jams. City planners can optimize
the public transportation schedules, and road networks by
analyzing the collected traffic data and identify patterns.

The state of the art in estimating traffic uses static sensors
such as loop detectors [3], traffic cameras [4], microwave [5].
Such technologies are mostly managed by city transportation
agencies and it is infeasible to install these sensors to cover
the entire road network for traffic state estimation due to the
cost and technical constraints [3]. Cell Phones can be used to
estimate traffic state [6]. Almost everyone is equipped with cell
phones, but due to privacy concerns, this data is not readily
available. Data from private sources such as HERE API [7] can
be used for travel time estimation on urban streets. However,
resolution, the frequency of update and cost limit collection
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and purchase of such data for the entire transportation network
every hour/day/year.

Therefore, public transportation like buses when equipped
with GPS can be used as an alternate source of travel time
information, especially where no traffic detector is installed
[8], [9]. The use of buses as probe vehicles adds little or
no financial burden to a transit agency because most buses
operating on urban streets are equipped with GPS units for
tracking and predicting bus arrival times. Further, a large
number of buses run on the most used arterial streets and
generally have higher frequencies during peak periods [10].

However, bus speeds do not entirely represent average traffic
speeds. Buses must stop to pick up and drop off passen-
gers, must follow a schedule, and have different acceleration
and deceleration profiles [11]. For major road segments, the
estimation gets more complicated due to traffic signals and
interruption from traffic as well as other influential factors
such as weather conditions, accidents, etc. Most of the road
segments in a city are not covered by bus routes or frequency
of the bus is low in some route segments, so there is huge data
sparsity issue.

Contributions. In this paper, we explore the feasibility of
using weather and historical traffic data that is often available
from planning organizations to solve the data sparsity issue.
We also improve the prediction accuracy when the probe GPS
information is available by first classifying available training
data into different clusters and then learning a separate model
per cluster. Our results indicate that using this multi-model
approach improves the prediction accuracy. These results are
codified in the SpeedPro [12] toolchain.

Paper outline. Section II is an overview of the current
literature on traffic speed estimation. Section III describes
the data used by our models. Section IV-A describes the
motivations. Section IV-B presents the details of our modeling
approach. Section IV-C shows our cluster-based prediction
approach. Section IV-D presents an empirical validation of our
prediction model. In Section V, we discuss our approach and
future work. Concluding remarks are present in Section VI.

II. RELATED WORK

Numerous studies have been conducted to develop models
and algorithms to estimate traffic speed from dynamic sensors
such as Global Positioning System (GPS). Cathey et al. [13]
presented a framework that uses Kalman filter to estimate
transit vehicle state and determine traffic speeds and times
along freeways. Dailey et al. [14] also used Kalman filters to



estimate the vehicle dynamical state and used AVL-equipped
vehicles as traffic probe sensors. Aslam et al. [15] used taxi
probes and followed logistic regression model for estimating
traffic volumes or speeds for regular drivers. Hofleitner et al.
[16] used Dynamic Bayes Network to learn the dynamics of
arterial traffic from probe data.

A bus can be used instead of taxis as traffic probe. However,
bus speeds do not entirely represent general traffic speeds
([10], [11]) and there are studies which measure the accuracy
of using a bus as probe vehicle instead of taxi ([8], [9]). Carli
et al. [17] used a bus as a probe and presented an algorithm
for the automated analysis and evaluation of traffic congestion
in urban areas. Denaxas et al. [18] estimated traffic speed on
the urban road network by solving a linear system of equations
that associates the successive GPS position data for each probe
vehicle with the distances traveled on the road network. Weng
et al. [19] estimated the bus travel speed by making use of the
real-time GPS data of bus with bus route data and matching
GPS points with the Geographic Information System (GIS)
map.

Widhalm et al. [20] presented a method for faulty traffic
sensor detection using Floating-Car Data (FCD). A nonlinear
regression model was trained using the flow data from traffic
sensors and estimated speed from FCD. However, they rely
on data from regular cars, not transit vehicles. Since the
distribution of probe vehicles over space and time is uneven,
there are some studies ([21], [22]) about solving the problem
of missing data from probe vehicles. Shan et al. [23] used an
online method based on multiple linear regression models, in
which the information from both time and space domain is
obtained to estimate missing data.

A consistent thread in these studies is that they only use
probe vehicles to estimate traffic speed. For example, when
they analyze a particular road segment or street, they only
consider the probe vehicles and external factors such as
weather, driver is not taken into account. Weather conditions
have an impact on the travel time of bus [24] and speed of a
vehicle varies with different drivers. Also, there is huge data
sparsity issue when we use GPS-equipped vehicles. Since the
number of taxis and buses in an area is limited many road
segments/times have low-frequency data or no data at all.
This missing or sparse data leads to inaccurate or even no
measurements for these roads [25].

Our approach as discussed earlier first identifies similar
clusters of operation from the historic data that includes the
real-time position of the probe vehicle, the weather data, and
anonymized driver identifier, and then uses these different
models to estimate the traffic speed in real-time as a function of
current weather, driver and probe vehicle speed. Using clusters
to group bus and weather data with similar characteristics, gave
a better prediction as shown in our results in Figure 3. When
the real-time information is not available our approach uses
a different model that uses the historical weather and traffic
information for estimation.

III. SYSTEM MODEL AND DATA SPECIFICATION

In our model, we divide the transit network of Nashville
into multiple routes. Each route can be further divided into

TABLE I: Real-time and Static Datasets Collected in the
System.

Bus Schedules Real-time Transit
Format Static GTFS | Format Real-time GTFS
Source Nashville MTA | Source Nashville MTA
Update Every public release | Update Every minute
Size 78.4 MB (09/15/2016) | Size 451 GB
Weather Shared Route Segments
Format JSON | Format JSON
Source Dark Sky API | Source Transit-Hub [26]
Update Every 5 minute | Update  Every GTFS version
Size 409 MB | Size 37.3 MB
Traffic
Format JSON
Source TDOT
Update Every public release
Size 6.03 GB
Weatherbata "
Find
Historical Preproce Feature Optjmal SEWT Model
Traffic Data ssing Selection | | Nur:fber
Clusters
Historical Bus
Data € clusters
SE-WTB Model

Route Segment

Fig. 1: Framework for SpeedPro Model Construction.

multiple route segments and each segment can be shared by
multiple transit bus having unique Trip ID. For getting a shared
segment on a road we are using shared route segment network
generation algorithm [26]. All the buses are GPS-enabled, so
it records its location with a certain frequency.

We have been collaborating with Nashville Metropolitan
Transit Authority (MTA) to access the bus schedules, driver
information and real-time bus data feed in Nashville. We are
also integrating data from other sources, such as Dark Sky API
for weather data and Tennessee Department of Transportation
(TDOT) for getting historical traffic data in the city. It should
be noted that we need historical traffic data for all road
segments to label each data point while training the models.
But for testing and prediction, we only rely on bus and
weather data. For getting a shared segment on a road we are
using shared route segment network generation algorithm [26],
which uses static GTFS data [27] from Nashville MTA. Table 1
shows details about our data sources.

It is important to point out the key challenges that we
encountered while processing the data. The most important
challenge was to combine data from different sources which
have different sample rates and location. Since sample rate and
location of bus data, traffic data and weather data varies, we
had to put certain thresholds on time and distance till which
the data is acceptable. For example, if there are no weather or
traffic data at a certain time stamp or location, then we consider
the data available within last 5 minutes or within a radius of
0.3 miles. So, we assume that the data remains constant until



Feature Acronym Description

Weekday WD Day of the week

Hour H Hour of the day

Driver ID D Driver who was driving the bus
Maximum MS Maximum speed of buses on
Speed the segment in last 5 minutes
Wind Speed WS Wind speed

Nearby NSD Nearby Storm Distance

Storm

Distance

Visibility \ Visibility

TABLE II: Features considered in our model

a certain threshold time or distance.

Each route segment can be shared with multiple routes. So,
it’s difficult to merge the high volume of data needed to be
handled carefully in order to match the route segments with
their corresponding trips. We collected and processed data
from December 12, 2016, to January 8, 2017, for multiple route
segments in Nashville, which is then used by our prediction
models to estimate traffic speeds for any route segment.

IV. OUR APPROACH

In this section we present our toolchain SpeedPro [12], to
estimate traffic speed. First, we describe our motivation for
building SpeedPro. Then, we specify data used for building
SpeedPro and the process used for building predictive models
for SpeedPro. Finally, we validate SpeedPro and analyze its
prediction results. Figure 1 shows our framework for SpeedPro
and acronyms for the features used in the framework are
described in Table II.

A. Motivation

To show our motivation we build two traffic speed estimation
models used in SpeedPro, based on large-scale empirical data
we collected in Nashville. The first model is called SE-WT
(Speed Estimator-Weather with Traffic data), which consists
of historical traffic data and weather data, which we collected
with the help of Dark Sky API [28]. The second model is
called SE-WTB (Speed Estimator-Weather with Traffic and
Bus data) which consists of real-time GTFS bus data, historical
traffic data along with weather conditions when the real-time
bus data is recorded. Both these models are based on simple
Random forests [29] and are used to infer real-time traffic
speeds. In Figure 2, we compared these two models to the
real-time traffic speed, from 4:30 a.m. to 11:00 p.m. on one
day on West End Avenue which is a major road segment in
Nashville. We chose this road segment because it’s among the
busiest roads in Nashville and has a high frequency of bus data
available.

In general, the SE-WTB model has data sparsity issues. As
shown in Figure 2, from 4:30 a.m. to 11:00 p.m, there was
a total of 1251 readings, among which SE-WT have 1204
readings and SE-WTB have 47 readings, that is 96.25% and
3.75% respectively. (i) SE-WTB has a major data sparsity issue
during the early morning and late night when there are no
buses available. It underestimates the speed during the daytime
because transit buses stop frequently at bus stops to pick up

passengers which sometimes involve long wait times. As per
our analysis, we get an RMSE error in the range of 4.0 to 4.5
miles/hr when we use SE-WTB model (ii) SE-WT has frequent
data available, but it’s not a direct model to estimate speed,
because we only label historical traffic speed with weather data
point at a particular time, place and hence, using only weather
data to infer traffic speeds is not accurate. As per our analysis,
we get an RMSE error in the range of 5.2 to 5.8 miles/hr when
we use only SE-WT model.

A seemingly promising solution is to integrate these two
models so that SE-WT model can complement the data sparsity
issue arising from SE-WTB model. In this work, we combine
both models and propose a cluster-based prediction model for
traffic speed estimation.

B. Modeling Approach

In this section, we show how the model is clustered using
k-means algorithm [30]. Each cluster is trained using Random
Forests, which fall under the regression and tree-based family
of models and finally, we provide the results of the model in
terms of predictive accuracy. We provide a brief description
of the features considered and their corresponding acronyms
used to present the predictors in our models in Table II.

1) Preprocessing: After getting data from various feeds, we
preprocessed it, so that it can be used in our model. Since we
are using Random forests for training our model, we didn’t
need scaling, because the nature of Random Forests is such that
convergence and numerical precision issues, which normally
affects the algorithms used in logistic and linear regression,
as well as neural networks, aren’t so important. Because of
this, we didn’t need to transform variables to a common scale
like we do in SVM [31], Neural Networks [32]. However,
we scaled the features because if there are some features,
with a large size or great variability, these kinds of features
will strongly affect the clustering result of k-means. So we
standardized features of datasets used for building SE-WT and
SE-WTB models, by removing the mean and scaling to unit
variance.

After scaling features for each model, we label the data
points with the historical traffic speed. For SE-WTB model we
use the bus, weather data and label them with historical traffic
speed. While for SE-WT model we only use weather data and
label them with historical traffic speed at that particular time
of the day and location. It should be noted that we only need to
label each data point with historical traffic speed while training
the models. But for testing and prediction, we only rely on bus
and weather data.

However, not all features are important for building clusters.
So in next step, we identify the important features needed
for building clusters for SE-WT and SE-WTB models of
SpeedPro.

2) Feature Selection: To identify the important features of
SE-WT and SE-WTB dataset for clustering, we used Recursive
feature elimination (RFE) [33] using Random Forest Regres-
sion as a model. The underlying principle is that the algorithm
first fits the model to all predictors. Then, each predictor is
ranked using its importance to the model. Let S be a sequence
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TABLE III: Features considered in SE-WTB model (left) and
SE-WT model (right)

of ordered numbers which are candidate values for the number
of predictors to retain (57>955,...). At each iteration of feature
selection, the S; top-ranked predictors are retained, the model
is refit and performance are assessed. The value of \S; with the
best performance is determined and the top .S; predictors are
used to fit the final model.

Table III shows the important features and ranks selected
by RFE for the datasets used to build SE-WTB and SE-
WT models. For SE-WTB model, Hour, Driver ID, Maximum
Speed, Wind Speed and Nearby Storm Distance are considered,
while for SE-WT model, Hour, Wind Speed and Nearby Storm
Distance are considered by RFE. So, only these features will
be used for building clusters. It should be noted that we
only considered the features which have a rank of 1. Hence,
Visibility and Weekday are not selected.

3) Finding Optimal number of clusters: After identifying the
features needed to build clusters, we need to find the optimal
number of clusters for each model. We used a weighted sil-
houette value to score each possible model. Silhouette analysis
compares each data’s similarity with its assigned cluster to its
similarity to the next most similar cluster [34]. Formally, for
each object i, let a(i) be the average dissimilarity of ¢ with
all data within the same cluster, and b(z) the lowest average
dissimilarity of ¢ to any cluster of which ¢ isn't a member. The
silhouette value of 7 is:

) @) —al)
s(i) = max{a(i),b(i)}

which produces silhouette values in the range —1 < s(i) <

)]

Feature Selected Rank

geekday ;alse i Feature Selected | Rank 1, where a h'igh Va}lue indicates thgt the incident. is. well
our rue Weekda False 3 matched with its assigned cluster, while a low value indicates

y g

Driver ID True 1 o T i L. .. . .. . . . .

Maximom Troe 1 our rue it is more similar to objects in its neighboring cluster. Finding

Speed Wind Speed | True 1 the average silhouette score across all objects shows how well

Wind Speed | True I I;Zaxy True ! the objects are clustered in general:

Nearby True 1 Di

Storm ‘1s.ta‘n§e 1 .

Distance Visibility False 2 -~ X Z S(Z) 2)

Visibility False 2 i€dataObjects

where n is the total number of objects being clustered. After
finding a set of silhouette scores for a different number of
clusters for each model, we select the number of clusters with
maximum silhouette score as an optimal number of clusters.

For SE-WTB model, we found the optimal number of
clusters to be 5 and for SE-WT model the optimal number of
clusters is 3. Then we used k-means algorithm [30] to create
the optimal number of clusters for each model based on the
features identified in the previous step for each model.

C. Prediction Approach

The next step is to create predictive models for each cluster
and use both for traffic speed estimation. We used Random
Forests [29] for our regression problem to train each cluster
in each model and learn their predictive model.

Random forests [29] is an ensemble learning method for
classification and regression. It is an approach where a number
of decision trees are constructed and voting is done to define
the best classifier. The underlying principle is that a group of
weak learners can be combined to form a strong learner. In a
decision tree for regression, the outcome variable is fitted for
a regression model using each predictor.

Prediction: Figure 4 shows prediction approach used in
SpeedPro. Given a particular route segment, for each data in
real-time feed, SpeedPro server first checks if real-time probe
data is available for that route segment. If true, then we proceed
with SE-WTB model, or else we proceed with SE-WT model
to predict using only weather data. Then, we calculate distance
of data to each cluster centers of either SE-WTB or SE-WT
model as found by k-means algorithm in previous step. Using
the distance, we calculate the probability of data to each cluster
centers such that, the greater the distance of data to a cluster
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Fig. 3: Traffic Speed Estimation by cluster based model for a segment on January 9, Monday.
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Fig. 4: SpeedPro Prediction approach.

center, the smaller is the probability. Then, using the test
data we predict speed from prediction model of each cluster.
For example, if pi, p2, p3 are the probabilities that the data
belongs to center of clustery, clusters, clusters respectively
and s1, So, s3 are the predicted speed from clustery, clusters,
clusters respectively, then the final predicted speed § is
calculated as follows:

S§=p1-81+p2-S2+Dp3-83 (3)

Performance: To assess the performance of the model, we
consider the Root Mean Squared Error (RMSE) to assess the
predictive accuracy. RMSE calculates the square root of the
average of the squared differences between the predicted traffic
speed (7;) and observed traffic speed (y;) for new data points,
this metric is in miles/hr, which is the unit of the estimated
traffic speed.

1 A
RMSE =\[ =3 (yi = §:)? “

D. Validation

To determine the accuracy of our cluster-based prediction
model at estimating the traffic speed, we compared its result
to validation set. The validation set consists of bus data and
historical traffic data collected on January 9, Monday. We
averaged the results over a 30-minute interval. It should be
noted that we have weather information for all road segments
used in our study, so even if we don’t have bus data for
a road segment, we use SE-WT model which was trained
using historical weather and traffic data. We ran the clustering
analysis for the given day and the result is shown in Figure 3.
We got an RMSE error in the range of 2.9 to 3.3 miles/hr. Note,
that we still experience RMSE error in range of 4 miles/hr
on average during early morning, from 4 a.m to 8 a.m and
during late night, from 8 pm to 11 p.m. This inaccuracy is
expected because there is no bus and driver data available
during those times, so the model relies only on SE-WT model.
However, it should be noted that our model has better accuracy
than what we would have got if we would have used simple
Random forest model as mentioned in Section- IV-A. Our
model predicted better in the daytime because there were more
bus data available then.

V. DISCUSSION

Predictive models used in SpeedPro is based on bus data
from Nashville MTA and historical traffic data collected by
Tennessee Department of Transportation (TDOT). However,
SpeedPro is location-agnostic. If bus data, driver information
of the buses, weather data and historical traffic data are
available, then it can be used in any city to estimate traffic
speed. Real-time traffic speed can be accessed by using HERE
API and other private data sources, but time, manpower, and
cost deter or limit collection and purchase of such data for
the entire transportation network every hour/day/year. Our
motivation for building SpeedPro was to estimate real-time
traffic speed accurately for the entire transportation network
without inflicting any huge cost by using private data sources.

Even though SpeedPro is built for estimating traffic speed,
it can be extended for analysis of traffic state such as latency,
congestion of any road segment. This can help city planners
in optimizing the public transportation schedules, and road



networks by analyzing the collected traffic data and identify
patterns. We can also integrate population density information
to understand it’s effect on the traffic speed and increase the
accuracy of prediction in case of missing data, where we are
currently using only weather data now.

VI. CONCLUSION

We have demonstrated that by considering external factors
such as weather, driver information and using cluster-based
approach to building predictive models, a toolchain like Speed-
Pro can be created that accurately predicts traffic speed in
both space and time. As part of our future work, we will use
SpeedPro for (a) computing latencies for any road segment and
(b) understand problems in multi-modal routing games using
the latency functions.
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