


viewed as solving a problem based on a different
norm, such as `1 or `∞. The gap between these
norms can be addressed through iterative schemes,
leading to algorithms that repeatedly call linear
system solvers.

Laplacian linear solvers can be divided into
primal solvers, which solve for a set of vertex
potentials, and dual solvers, which solve for a set of
edge flows that minimize energy. The theoretically
fastest known solvers are primal solvers which use
recursive preconditioned Chebyshev iterations [9].
On the other hand, the near-linear time algorithm
with the simplest description works in the dual
space [17]. We believe that the fastest solver will
be one that combines both a potential and flow
based approach. The goal of this paper is to
empirically better understand flow based methods
in order to facilitate their integration into primal-
dual algorithmic schemes.

Our main contribution is an experimental in-
vestigation of different cycle-toggling implementa-
tions and an examination of the resulting perfor-
mance implications. To that end we introduce a
class of synthetic, weighted graphs that are both
simple enough to reason about theoretically, and
rich enough to yield interesting behavior for cycle-
toggling implementations. One of the implemen-
tations we use is a novel divide-and-conquer tech-
nique which we describe. We end with a compari-
son of cycle-toggling implementations to conjugate
gradient.

2 Background

2.1 Definitions Symmetric diagonally domi-
nant (SDD) matrices and M matrices can be
reduced to Laplacian matrices asymptotically
quickly, so the fastest SDD solvers rely on Lapla-
cian solvers. Laplacians are equivalent to graphs,
which we define as G = (V,E,w) where V is a
vertex set, E a set of edges, and w a set of edge
weights. The Laplacian is given by

Li,j =

{

deg(i) if i = j

−w ij otherwise
,

where deg(i) is the weighted degree, or sum of
incident edge weights on vertex i. The problem
of interest is to solve Lx = b for x given b.

There is a useful electrical network interpreta-
tion of

xTLx =
∑

uv∈E

wuv (xu − x v)
2

where xu − x v can be viewed as voltages [12],
and wuv represents the inverse of resistance in
terms of energy dissipation. This definition of
resistances gives a corresponding electrical flow
interpretation, which forms the basis of the Kelner
et al.s algorithm [17], which we will call KOSZ. In
this flow interpretation the problem translates to
finding a flow f that meets demands given by b,
and minimizes

∑

e r ef
2
e.

2.2 Existing Methods The underlying alge-
braic operations of theoretically fast graph Lapla-
cian solvers can be viewed as either directly ma-
nipulating the potential vectors, or the dual flows.
To date, empirical studies of these solvers have fo-
cused on the dual flow based algorithms, leading
to mixed results [3, 13, 4], most of which are not
directly competitive with numerical methods such
as conjugate gradient (CG) [25] or multigrid [6],
and instead bound iteration count. In this paper,
we study these dual algorithms with additional in-
sights obtained during the study of vector based
primal algorithms. We show that the dual adjust-
ment stages can be unraveled in ways similar to
recursive steps in vector solvers. This allows us to
both improve the dual adjustment routine, as well
as having it interact with classical iterative meth-
ods such as conjugate gradient. Our main exper-
imental results are on improving the performance
of both data structural and recursive approaches,
and comparing their performance to conjugate gra-
dient.

Crucial to the performance of these dual flow
solvers is the cycle adjustment process: here most
of the cycles are long, thus cost-prohibitive to ad-
just in nearly-linear time. To obtain nearly-linear
performance, these updates are restricted to fun-
damental cycles of a tree. This restriction allows
updates to be processed using tree data structures.
These structures are based on “virtual tree” rep-
resentations of trees that allow each path to be
broken down into O(log n) subtrees. Updating cy-



cles is then done by accessing and modifying the
corresponding labels. Handling these updates effi-
ciently has proven to be directly related to the per-
formance of implementations of this algorithm [17].

2.3 KOSZ overview The KOSZ algorithm [17]
randomly selects cycles and adjusts the flow along
a cycle to bring it to the minimum energy state,
while maintaining a feasible flow. These cycles
are formed by first picking a spanning tree T .
Then each off-tree edge forms a cycle, known as a
fundamental cycle with respect to T . Collectively
these cycles form a fundamental cycle basis which
spans the cycle space of the graph.

Given a cycle of length k with flows f 1 . . . f k

oriented in the forward direction, our goal is to find
a change in flow ∆ that minimizes the updated flow
energy

∑

i

r i (f i +∆)2

=

(

∑

i

r i

)

∆2 + 2

(

∑

i

r if i

)

∆i +
∑

i

r if
2
i .

This is minimized by setting

∆ = −
∑

i r if i
∑

i r i

.

The choice of cycles to update is dictated by
the stretch of the off-tree edges. Conceptually,
the stretch of an edge is the length of the detour
that must be traversed in the tree if the edge is
removed. This removal “stretches” the edge across
the new path. Here length is measured in terms
of resistances, or inverse edge weight 1

we
. For an

edge e, let the (unique) simple path between its
end points in tree be PT (e), then

str(e) = w e

∑

e′∈PT (e)

1

w e′
.

The main result of [17] is:

Theorem 2.1. Given a tree with total stretch
S, repeatedly sampling the edges randomly with
probability proportional to 1 + str(e) and bringing
the corresponding cycle to its minimum energy
state gives an 1+ ε-approximate answer in O((m+
S) log(1/ε)) iterations.

3 Implementing Cycle Toggling

Cycle-toggling methods require many cycle up-
dates for energy minimization, necessitating quick
update operations. We need to support the follow-
ing operations on a tree T , where each edge e is
associated with a fixed resistance r e and a flow f e:

1. Query: Compute sums of r e and r ef e along a
path in T .

2. Update: Increment all the flows on a path in
T by ∆.

Although these updates are not adaptive, the
result of each update does depend on all previous
updates that interact with the path. This creates
fundamental restrictions on cycle-toggling speed.
This is especially true when considering any pos-
sible parallelism of updating multiple cycles simul-
taneously.

In the rest of this section we consider two
different schemes for achieving fast cycle updates.
The first uses data structures similar to the ones
used by the KOSZ algorithm to update each cycles
in O(log(n)) time. The second is a divide-and-
conquer approach we introduce, which contracts
the path based on preselected cycle updates.

3.1 Reduction to Balanced BSTs We hope
to provide the reader with a brief overview of our
data structure approach along with the approach
used by KOSZ [17]. The KOSZ data structures
are based on top-down partitions of trees. Our
implementations are based on a variant of this
that uses binary search trees as building blocks.
To help explain this, we first consider the easier
case in which T is just a path, where we can solve
the problem by building a static balanced binary
search tree (BST) [?]. Any subtree in the BST
corresponds to an interval in the path, which can be
decomposed into a disjoint union of at most 2 log n
subtrees and nodes in the BST. To support our
query and update operations, we add two pieces of
information at every node v:

1. The sum,
∑

i rifi where i ∈ the subtree con-
taining v

2. A lazy tag t, denoting the pending changes
of flow in this subtree, caused by updates to
parents.



The BST can answer the interval queries by adding
up the sum fields of the corresponding subtrees.
Note that this requires the lazy tag fields of all
ancestors of the nodes added to be 0. This can be
handled by ‘pushing down’ such fields as we access
the BST. The updates involve modifying the lazy
tag and sum fields of the subtrees correspondingly.
This gives us a O(log n) per operation algorithm
for the case where T is a path.

1 10

3

22

3

2

3

4

5

6

7

8

(a) Heavy path re-rooted at
separator vertex

1

10

3

22

2

3

4

5

6

7

8

(b) Virtual tree where heavy
path is represented by the

BST that stores it

Figure 2: One step of a heavy-light decomposition.
Triangles are subtrees labeled with size.

A classic way to generalize the path case
to a tree is to use a heavy-light decomposition
(HLD) [?]. Here, one first arbitrarily roots the tree.
Then for every vertex u, we denote v as the child of
u whose subtree has the largest size (i.e. contains
most vertices). We mark every edge (u, v) as heavy
and say that all edges not marked heavy are light.
An unextendable path of heavy edges is called a
heavy chain. This decomposes the tree into heavy
chains and light edges.

The key fact about this decomposition is that
for any vertex v, its path to the root intersects
at most O(log n) heavy chains and O(log n) light
edges. Therefore, to support query and update
operations on a tree, it suffices to handle the
light edges and support these operations on heavy
paths. For the latter, this is exactly the special
path case and we can use BSTs described above.
This leads to a theoretical time bound O(log2 n)
per operation, but a quite good running time
experimentally.

This method is connected to the data struc-
tures used in KOSZ via virtual trees. Such a tree

contains all the BST edges for heavy chains along
with light edges. An example of creating a vir-
tual tree from a HLD is shown in Figure ??. We
can further optimize cycle updates by reducing the
virtual tree height. A path between u and v in
the original tree can be decomposed into the dis-
joint union of left-subtrees of nodes in the path
between u and v in the virtual tree. In HLD, this
virtual tree has height O(log2 n) (since each BST
has height O(log n) and there are at most O(log n)
heavy chains encountered in any path), so the time
bound is O(log2 n).

A better virtual tree can be constructed in
a recursive manner. Consider the heavy chain
starting from the root of T . Using the properties
of heavy chains, one can prove that there exists a
node v in the heavy chain, whose removal splits T
into subtrees which have size at most half of the
original tree size. We use v as the root of the BST
for this heavy chain, and construct recursively. The
virtual tree satisfies the property that any child
has at most half the size of its parent, so it has
height at most log n. This gives us a O(log n) per
operation algorithm. Compared to the recursive-
separator based routine from [17], this scheme fixes
the heavy path in addition to the root of the virtual
tree. While this only changes the constants in the
analysis, in terms of implementation it allows us
to directly use the binary tree routine for paths
mentioned above.

3.2 Recursive Divide-and-Conquer The
other main approach that we explore is a recursive
divide-and-conquer scheme. The KOSZ solver
treats cycle updates as an online process, a cycle
is sampled, then updated, before another cycle is
sampled. We consider the potential of an offline
approach where we preselect N cycles, and use
knowledge of this set to speed up the update of the
set as a whole. This method recursively divides
the N cycles in half until the subsets are each of
size less than n. The cycles in the last level of the
recursion are then updated in their preselected
order.

The speedup of this approach lies in the fact
that we can reduce the problem to only the part of
the graph involved in our preselected updates. We
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Figure 3: Illustration of graph reduction and contrac-
tion in divide-and-conquer. 5 cycles are preselected in
the original graph(a) and divided into two groups, cy-
cles (1,4) and (2,3,5). These cycles induce subgraphs
(b,c) which only include edges and vertices of the rele-
vant cycles. These subgraphs are then path contracted
(d,e) to further reduce size.

can further reduce the size of the graph by path
contraction, condensing two edges if they are only
updated when the other is updated. An example of
this reduction and contraction is shown in Figure 2.
This process results in several smaller graphs,
where the cycles are updated, before pushing the
cycle update information back up the recursive
subgraph hierarchy. As this process resembles the
recursive subgraph hierarchy of multigrid methods,
we borrow the terms restriction and prolongation
to describe the transfer of flow information up and
down the hierarchy. This process is more formally
captured in the following lemma.

Lemma 3.1. Given a tree on n vertices, and N
cycle updates, we can form a tree on 3N vertices,
perform the corresponding cycle updates on them,
and transfer the state back to the original graph.
Furthermore, both the reduction and prolongation
steps take O(n) time.

This procedure is identical to the greedy elimi-
nation, or partial Cholesky factorization steps from

the ultra-sparsification routines [27]. Recursively
dividing the cycle set yields a recurrence of the
form:

T (N) = O(N) + 2T (N/2),

which solves to T (N) = O(N logN). If we
set the size of our preselected cycle set to O(n),
then updating the entire set takes O(n log n) work,
leading to a cost of O(log n) per update.

Unfortunately, the divide-and-conquer scheme
does not parallelize naturally: the second recursive
call still depends on the outcome of the first
one. Furthermore, the bottleneck of this routine’s
performance is the restriction and prolongation
steps, which unlike multigrid can not be reused
when we resample another set. A large part of the
expense is that vertices and edges must be relabeled
as the graph is reduced. Doing this in random order
leads to random access of vertex and edge labels.
We try to optimize this by either compressing the
memory of the graph storage, or by reordering the
updates within each batch. In the case that the tree
is just a path, much of the vertex and edge labeling
can be done implicitly, reducing the overhead.

4 Heavy Path Graphs

Here we introduce a class of model problems that
we will use to test and analyze different cycle-
toggling approaches. These graphs are constructed
by adding edges between vertices on a path graph.
Edge resistances are selected so that the low-stretch
spanning tree of the resulting graph is always the
underlying path. As a consequence the edges on
the path have larger edge weights than the off-path
edges, so we refer to this class of graphs as heavy
path graphs. An example of such a graph is shown
in Figure 3.

Figure 4: An example of a heavy path graph. The
solid path edges are the low-stretch spanning tree of
the graph.

Our interest in these problems does not come
from any real world application. Instead we believe
these are natural models to consider when studying



KOSZ and other cycle-toggling algorithms. We be-
lieve that this model can be tuned to have various
stretch properties along with spectral and graph
separator properties, though we do not explore that
in this paper. Furthermore they allow us to explore
very fundamental questions about data structures
and cycle-toggling implementations.

This model simplifies many of the implemen-
tation issues associated with dynamic trees, as the
paths are easier to handle than more general tree
layouts. Specifically, we can use a static, perfectly
balanced binary tree for the path. This likely has
the least data structure overhead as the optimum
separator of an interval is implicitly the middle.
Furthermore, this allows us to store the tree in heap
order, which means the tree paths can be mapped
to a subinterval using bit operations, and the down-
ward/upward propagations can be performed iter-
atively.

4.1 Example Models There are many possible
subclasses that belong to the heavy path graph
model. We introduce several subclasses here for
experimentation.

(1) Fixed Cycle Length-1k: These graphs are
composed of a tree path with random resis-
tances between 1 and 10,000, combined with
off-tree edges between every pair (i, i+ 1000),
e.g. an edge between vertices 1 and 1000, be-
tween vertices 2 and 1001, and so on.

(2) Fixed Cycle Length-2: These graphs are
composed of a tree path with random resis-
tances between 1 and 10,000, combined with
off-tree edges between every pair (i, i+2), e.g.
an edge between vertices 1 and 3, between ver-
tices 2 and 4, and so on.

(3) Random Cycle Length: These graphs are
composed of a tree path with random resis-
tances between 1 and 1000, combined with n
randomly selected off-tree edges, where n is
the number of vertices.

(4) 2D Mesh: These graphs embed a tree path
in a 2D mesh. The tree path resistances are
chosen randomly between 1 and 1000.

(5) 3D Mesh, Uniform Stretch: These graphs
are similar to (4) but with a 3D mesh.

We then consider two different ways of setting
resistances on the off-tree edges on all of the models
above.

1. Uniform Stretch Resistances of off-tree
edges are chosen so that stretch is 1 for ev-
ery cycle.

2. Exponential Stretch Resistances of off-tree
edges are chosen so that cycles have stretch
sampled from an exponential distribution.

5 Experiments

5.1 Experimental Design We now describe
empirical evaluations of the cycle-toggling imple-
mentations from Section 3 on the class of graphs
described in Section 4. As we only experiment on
these path models, we can use cycle-toggling meth-
ods that will only work on a path, but we also em-
ploy their more general versions that will work on
any graph. The four cycle-toggling implementa-
tions are as follows:

1. BST-based data structure for general graphs

2. Path-only BST decomposition

3. Recursive divide-and-conquer for general
graphs

4. Path-only recursive divide-and-conquer

Additionally we implement a preconditioned con-
jugate gradient with diagonal scaling to compare
against the cycle-toggling methods. We imple-
mented all of these in C++ and also have a
Python/Cython implementation of the general re-
cursive method. All algorithm implementations,
graph generators, and test results for this paper can
be found at https://github.com/sxu/cycleToggling.
We also experimented with Hoske et al.’s [13] im-
plementation of cycle-toggling.

We use all of the generators described in Sec-
tion 4.1 to create different heavy path graphs with a
varying total stretch. We use vertex sizes of 5×104,
105, 5 × 105, and 106. For the fixed cycle length
generators, we set hop = 1000, and for the random
cycle length generators, we set the number of off-
tree edges to 2n. To get an idea for the various
stretch properties of these graphs, we list the total
stretch for size 106 in Table 1.

We also generate right hand side vectors b in
two different ways to obtain both local and global







the problems, indicating that these methods are
competitive with one another.

The weak scaling experiments shown in Fig-
ure 5 do indicate a decrease in cycle-toggle perfor-
mance as graph size increases. However, this plot is
fairly optimistic, the largest performance decrease
is about 2.5× as the graph size increases two orders
of magnitude. The non steady plot for the general
recursive solver probably indicates that the batch
sizes were not scaled appropriately. Again, this
plot is only for one of the graph models, but most
of them looked very similar to this.

Figure 6 helps identify the performance bottle-
necks of the recursive method. The actual time
spent updating cycles is less than the restriction
and prolongation time. The restriction time is by
far the most expensive, as it also includes time for
relabeling edges and vertices. The scaling of this
plot shows a stable update cost, with increasing re-
striction and prolongation costs. This method was
designed to keep the update costs stable while in-
creasing problem size, which seems to be case. Un-
fortunately the restriction and prolongation over-
head costs are large and growing with problem size.
Still, these operations are not highly optimized,
and we wonder if we can borrow techniques from
the multigrid community to speed them up.

The PCG experiments in Figure 7 indicate that
cycle-toggling can outperform PCG on these heavy
path models, using the 0-1 right hand side. This
class of problems had a wider performance gap for
PCG than for the cycle-toggling routines, by about
an order of magnitude. Furthermore, the graph
property that causes difficulty for the solvers is
different in each case; cycle-toggling has trouble
on the graphs with exponential stretch, while PCG
has difficulty with the fixed cycle length problems
(FixedLength-2 with uniform stretch even failed).
These results suggest that heavy path graphs are
a good direction to explore while searching for
problems which could benefit from cycle-toggling
methods.

6 Discussion and Conclusion

We studied two approaches for implementing cycle-
toggling based solvers, data structures and recur-
sive divide-and-conquer. Using the heavy path

model, we experimented on problems that are
are conceptually simple, but provide a range of
solve behavior through varying graph structure and
stretch. The recursive cycle-toggling was not as
fast as the data structure approach, but was still
competitive, being in the same order of magnitude
on most problems. method to general graphs, ex-
hibited competitive behaviors. Also both methods
scaled reasonably with problem size.

While these experiments are a good start, there
are several directions we hope to continue this
work. The recursive update approach is outper-
formed by the BST-based data structure approach
in timing experiments. We hope to complement
these results with floating point operation measure-
ments. We don’t claim to have optimized the graph
contraction, flow restriction/prolongation, or cycle
updates. Measuring the number of operations the
recursive solver spends on these would help indi-
cate fundamental performance.

The heavy path graphs are a great model
problem for seeing the effect path resistances have
on solver behavior. They also allow us set aside
the issue of finding a low stretch spanning tree to
focus instead on the cost per cycle update. We
plan to continue modifying these path resistances
and initial vertex demands to find interesting test
cases. However, for these methods to be useful
in practice we must extend them to more general
classes of graphs.

Dual cycle-toggling Laplacian solvers have until
now been considered mainly in the realm of theory.
Our comparisons of these methods to PCG indicate
that there are problems for which the dual methods
can be useful. In the future, we plan to combine
primal and dual methods, trying to get the best of
both worlds.
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