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ABSTRACT

Recommender system data presents unique challenges to the
data mining, machine learning, and algorithms communities.
The high missing data rate, in combination with the large
scale and high dimensionality typical of recommender sys-
tems data, requires new tools and methods for efficient data
analysis. Here, we address the challenge of evaluating sim-
ilarity between users in a recommender system, where for
each user only a small set of ratings is available. We present
a new similarity score, that we call LiRa, based on a statis-
tical model of user similarity for large-scale, discrete valued
data with many missing values. We show that this likelihood
ratio-based score is more effective at identifying similar users
than traditional similarity scores in user-based collaborative
filtering, such as the Pearson correlation coefficient. We ar-
gue that our approach has significant potential to improve
both accuracy and scalability in collaborative filtering.

CCS Concepts

•Information systems→Collaborative filtering; Sim-
ilarity measures; Novelty in information retrieval; Nearest-
neighbor search;

Keywords

similarity score; kNN; collaborative filtering; likelihood ra-
tio; missing data

1. INTRODUCTION
Recommender systems arose as a way to provide person-

alized recommendations, in a setting where the number of
available items, products, or options to a user is too large
to sift through manually. Collaborative filtering has proven
to be an effective approach for recommendation, relying on
the similarity of users or items in a system to predict future
user preferences. The premise underlying user-based collab-
orative filtering is that similar users tend to rate items sim-
ilarly, therefore to predict how a user u will rate an item i,
we should look at the ratings given to i by users similar to u.
In item-based collaborative filtering, the assumption is that
similar items tend to be rated similarly by the users, there-
fore the rating prediction should be based on the ratings
given by user u to items similar to i. A central component
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Figure 1: Prediction accuracy of the kNN method
using several similarity scores on the 1M Movie-
Lens dataset. The LiRa similarity attains the lowest
MAE across tested values of k. The greater differ-
ence between LiRa and other scores at lower values
of k indicate its better ability to find similar users.

of any collaborative filtering algorithm is the choice of sim-
ilarity score that is used to evaluate user-user or item-item
similarity.

Despite many improvements and successes of modern model-
based collaborative filtering, the k-Nearest-Neighbor (kNN)
method remains a popular and widely used approach, in
large part due to its simplicity and scalability.[8] To per-
form user-based collaborative filtering, the kNNmethod pre-
dicts the rating pui for an item i by a user u by selecting
the k most similar users to user u who have rated item i.
The prediction pui is then computed by averaging the rat-
ings given to item i by these k similar users. Similarly, in
item-based kNN, the ratings of the k items most similar to
item i and rated by user u are used to compute pui. Many
variants of kNN have been proposed and investigated in or-
der to provide guidelines for optimal parameter settings and



implementation choices. The choice of similarity score has
consistently been shown to be highly influential on rating
prediction accuracy. [8, 11, 16, 1]

In this work, we present a new similarity score, called
LiRa, for large-scale, discrete-valued and high-dimensional
data with many missing values. We use an empirical evalu-
ation on real data to show its effectiveness in finding similar
users in user-based collaborative filtering.We also present an
evaluation of several similarity scores’ ability to detect clus-
tered points in synthetic data sets, revealing fundamental
properties of these scores that are important in their appli-
cation to recommender system data.

2. MOTIVATION AND BACKGROUND
Our work stems from a well-known problem in collabora-

tive filtering: RS data is often very sparse, meaning that in
a system with m users and n items, the number of ratings
observed is typically much less than the mn user-item pairs.
Thus in approaches that seek to predict future ratings based
on user-user or item-item similarity, it is important to con-
sider how the sparsity of ratings affects the similarity score.

Popular choices of similarity scores for user-based collab-
orative filtering include the Pearson correlation coefficient
and the cosine similarity, which are “commonly accepted
as the best choice.”[17] We review these traditional scores
briefly to highlight the core issue that will be addressed with
our new similarity score, presented in Section 3.

For two users u and v, let Iuv be the set of co-rated items,
i.e. those items that were rated by both u and v. Let rui
be the rating given to item i by user u. Then, the Pearson
correlation between users u and v, PC(u, v), is defined as
follows [17]:

PC(u, v) =

∑

i∈Iuv
(rui − r̄u)(rvi − r̄v)

√

∑

i∈Iuv
(rui − r̄u)2

∑

i∈Iuv
(rvi − r̄v)2

(1)

where r̄u is the average rating given by user u to the items
in Iuv, and similarly for r̄v. The Pearson correlation is a
measure of linear correlation between user u and v’s ratings,
and takes on values between -1 and 1.

The Cosine Vector similarity between users u and v, or
CV (u, v), is a measure of the angle between theN-dimensional
vectors defined by user u and v’s ratings. More specifically,
if we let yu ∈ RN be the vector with yui = rui for rated item
i, and yui = 0 otherwise, then:

CV (u, v) =
yT
u yv

||yu||||yv ||
=

∑

i∈Iuv
ruirvi

√

∑

i∈Iu
r2ui

∑

j∈Iv
r2vj

(2)

where Iu, Iv are the sets of items rated by u and v, respec-
tively. The cosine of the angle between two vectors ranges
from -1 to 1, with 1 indicating perfectly matching entries
in both vectors. A CV similarity of 1, therefore, indicates
perfectly matching entries. However, although a cosine of
0 indicates orthogonal vectors in an N-dimensional vector
space, the cosine of two rating vectors will only be 0 if the
there are no co-rated items in raw (unnormalized) data.

A major issue with both of these scores is their lack of
consideration for missing data. Although the PC similarity,
which is equivalently the sample Pearson correlation coeffi-
cient, is a consistent estimator of the population correlation
coefficient for large sample sizes, the number of co-rated

items between u and v, or |Iuv|, is often so small that the
PC similarity is not reliable.

Similarly, we can think of the Cosine Vector similarity as
the cosine of the angle between two vectors that represent
the projection of user ratings onto the space spanned by the
|Iu∪Iv | dimensions in which data is observed, but the value
of this angle in higher dimensions has is treated the same as
its value in lower dimensions.

We conclude this explanation of the drawbacks of popular
similarity scores used on RS data with the following exam-
ple. Suppose we want to compute the similarity between
two users represented by the following identical rating vec-
tors, constructed by following the definition of vectors used
by the CV similarity:

yu =
[

1 1 0 0 0 2
]

, yv =
[

1 1 0 0 0 2
]

(3)

Both CV and Pearson will yield a score of 1 between u and
v. If we increase the amount of data observed, leaving the
vectors identical:

xu =
[

1 1 5 4 4 2
]

xv =
[

1 1 5 4 4 2
]

(4)

the CV and Pearson similarities will remain the same.
However, we have observed twice as much data in the

second case – shouldn’t our similarity score reflect more
confidence in the similarity computation as we increase the
amount of data we have available for input? This question
motivated us to derive a new similarity score, which we refer
to as the Likelihood Ratio, or LiRa, similarity.

3. THE LIKELIHOOD RATIO SIMILARITY
The idea to use a likelihood-based score for similarity com-

putations in RS data was inspired in part by the LOD score
popular in genetic mapping [5] and the concept of modular-
ity in community detection [14]. In both cases, the concept
of similarity is based on comparing the likelihood of the ob-
served data, under some assumptions on the underlying data
structure, to the likelihood of observing the data by chance.
In genetic mapping, the LOD score relates the likelihood of
observing genetic marker data, assuming genetic linkage, to
the likelihood of observing the same genotypes by chance.
Newman [14] introduced the idea that a community struc-
ture contains many more edges than expected if the edges
among social network vertices were generated at random.
Extending these ideas to the RS domain, we present the
Likelihood Ratio Similarity.

3.1 Definition of the LiRa Similarity
For two discrete-valued vectors xu and xv, we define the

Likelihood Ratio (LiRa) Similarity as follows:

LiRa(xu, xv) = log10
p(differences in xu and xv| same cluster )

p(differences in xu and xv| pure chance)
(5)

where the numerator in the ratio is the probability of ob-
serving the values in xu and xv, assuming xu and xv belong
to the same cluster in our cluster model, and the probability
in the denominator is set by assuming that the entries in xu

and xv were generated uniformly at random.
Suppose that the entries in each vector can take on only

a finite number d of discrete values V = {1, 2, . . . , d}. Then,
we can easily compute the probability that we observe the
values xui and xvi for co-observed entry i by chance, assum-
ing that the values are generated uniformly and indepen-



dently at random. This is probability is simply 1

d2
. There-

fore, the probability that the two vectors match exactly in a
particular entry i is p(|xui − xvi| = 0) = d

d2
= 1

d
. Similarly,

we can easily derive p(|xui − xvi| = δ) for δ = 1, ..., d − 1.
The denominator in the ratio in LiRa is thus defined as:

p(differences in xu and xv| pure chance) =
d−1
∏

δ=0

b#δ
δ (6)

where bδ = p(|xui − xvi| = δ), assuming that xui and xvi

were generated by a uniform distribution over the values V,
and #δ is the number of times that we observe a difference
of δ in the co-observed entries.

The challenge is to define the probability of observing a
difference of δ in the values xui and xvi, under the assump-
tion that xu and xv belong to the same cluster. This is not a
trivial task, and we argue that this model will be dependent
on the application of interest. For RS data, we make two
assumptions that we believe lead to one plausible model: (1)
An underlying cluster structure exists in RS data: There ex-
ist a set of clusters C1, ..., Cκ such that each user u belongs
to at least one Cc, and (2) The probability distribution on
differences in user ratings is fixed within a cluster, with a
greater probability of observing matching than mismatched
ratings. These assumptions encapsulate the intuition that
similar users tend to rate items similarly.

With these assumptions, we define the following probabil-
ity distribution over the differences |xui − xvi|:

cδ = p(|xui − xvi| = δ| same cluster) =

(

1

2

)δ+1

(7)

with the exception that

cd−1 = p(|xui − xvi| = d− 1) = 1−

d−2
∑

δ=0

cδ =
1

2d−1
(8)

to ensure a proper probability distribution. Therefore the
numerator in the ratio in LiRa becomes:

p(differences in xu and xv| same cluster ) =
d−1
∏

δ=0

c#δ
δ (9)

where cδ and #δ are defined above, and xui = rui if user u
rated item i, and − otherwise, where − indicates a missing
value.

We emphasize that both xu and xv may have many miss-
ing values, which are not taken into account when evaluating
these probabilities. In particular, the values are not simply
treated as 0’s as in the Cosine Vector similarity score. On
the other hand, as long as 1

2
> 1

d
, the LiRa score increases

with a greater number of matching co-observed entries, and
in general the contribution to the LiRa score of the rating
difference for a co-observed item i will depend on the num-
ber of discrete values d. For example, with d = 5, b1 > c1,
but at d = 10, b1 < c1, thus a difference of 1 in a rating scale
of 1 to 5 will decrease the LiRa score, whereas on a rating
scale of 1 to 10, a difference of 1 in user ratings will increase
it. To see this, notice we can re-write the LiRa score as:

δ
∑

d=1

(#δ) log10

(

cδ
bδ

)

(10)

and thus log10 (cδ/bδ) is the amount that a pair of co-observed
ratings xui and xvi with a rating difference of δ will con-
tribute to the similarity score.

In future work, we plan to explore other, perhaps more
plausible, multinomial probability distributions over the dif-
ferences in user ratings that capture the intuition that users
in the same cluster should rate items with very close rating
values. However, we claim that this simple model captures
enough of the intuition that users with similar preferences
are more likely to agree than disagree in their ratings of the
same item. We will show in Section 4 that these assumptions
lead to a useful similarity score for RS data.

We conclude with an example using the same the vectors
yu and yv from Equation 3. The corresponding vectors xu

and xv are:

xu =
[

1 1 − − − 2
]

, xv =
[

1 1 − − − 2
]

Suppose that there are d = 5 discrete rating values in the
data set. We get the LiRa similarity:

LiRa(xu, xv) = log10
( 1
2
)3

( 1
5
)3

= 1.19 (11)

Now consider LiRa(xu, xv) when we observe the full vectors:

xu =
[

1 1 5 4 4 2
]

, xv =
[

1 1 5 4 4 2
]

Now, we have:

LiRa(xu, xv) = log10
( 1
2
)6

( 1
5
)6

= 2.39 (12)

With twice as much data, the LiRa similarity is twice as
high. Note that, in particular, the maximum LiRa score for
any two vectors is always attained when the two vectors are
equal, but that the similarity grows as O(n log10 d), where
n is the dimensionality of the input vectors and d is again
the number of discrete rating values. Contrast this with the
Pearson or Cosine similarities, which will attain a maximum
of 1, regardless of the amount of data observed.

Like modularity in community detection and the LOD
score in genetic mapping, the LiRA similarity makes as-
sumptions on the underlying data structure in order to bet-
ter evaluate similarity among entities in the data.

4. EMPIRICAL EVALUATION
We evaluate the effectiveness of the LiRa similarity in

comparison to other similarity scores in RS data in two
ways: (1) We compare the prediction accuracy of a simple
kNNmethod using various similarity scores on real data sets,
and (2) We evaluate the ability of several similarity scores to
distinguish points within the same cluster from points in dif-
ferent clusters in synthetic data. Experiments on real data
sets show that the LiRa similarity can detect similar users
in a realistic setting with better accuracy than other scores.
The synthetic data allows us to observe the effect of missing
entries and dimensionality on similarity computations, and
to verify that the LiRa score detects users from the same
cluster when a known clustering exists within the data.

4.1 Data
As Herlocker et al. note in their overview of methods for

evaluating recommender systems [12], there are few publicly
available data sets that can be used to test hypotheses about
RS data, forcing most research in this field to experiment on
the few available data sources. Our source of real data are
the publicly available MovieLens data sets, which are among
the most often referenced data sets in RS literature [3]. Here,



we report results on the 100K and 1M MovieLens data sets1.
For the 100K dataset, we used the u1-u5 .base and .test sets
when evaluating prediction accuracy. For the 1M dataset,
we randomly split the original rating data into five sets of
80%/20% training/test pairs.

In addition to our empirical evaluation on real data, we
generated a small set of synthetic data sets. The publicly
available data sets we are aware of are not rich enough to
examine the effects we are intersted in evaluating – most
already contain very high missing rates, thus simply deleting
existing entries to simulate more missing data would result
in a very limited range of test cases for experimentation.
Our experiments on synthetic data give us an in-depth view
of the effects of missing entries in RS data.

4.2 Experiments on Real Data
We first give the pertinent details of our implementation

of the kNN algorithm, which is used to evaluate the effec-
tivenes of a similarity score in detecting users with similar
preferences. For each rating rui that user u gave to item i in
the test set, we first find at most k nearest neighbors of user
u in the training set, among those who rated item i. Each
neighbor v of u has the property that the similarity S(u, v)
is greater than or equal to S(u, z) for any other user z in the
training set, where S(u, v) is the similarity score between u
and v in the training set. The number of neighbors is less
than k if less than k users rated item i in the training set.
Next, the prediction pui of the rating that user u gives item i
is computed by taking an unweighted average of the ratings
that the neighbors of u have item i.

The Root Mean Squared Error (RMSE) “is perhaps the
most popular metric used in evaluating accuracy of predicted
ratings” [10]. Another popular measure of prediction accu-
racy is the Mean Absolute Error (MAE). The RMSE and
MAE are defined as follows:

RMSE =

√

∑

rui∈T

(rui − pui)2 , MAE =
∑

rui∈T

|rui − pui|

where T is the test set of ground truth ratings. We report
both the RMSE and MAE for ratings predicted by the kNN
method for various values of k and several similarity scores.

In addition to the Pearson, Cosine and LiRa scores, we
evaluate the kNN prediction accuracy using Patra et al.’s
recently proposed BCF score [16]. The Bhattacharyya co-
efficient for collaborative filtering (BCF) attempts to use
global item similarities as weights in local user rating sim-
ilarity computations, and was reported to perform well on
extremely sparse data sets. It is defined as follows:

BCF(xi, xj) = Jacc(xi, xj) +
∑

i∈Iu

∑

j∈Iv
BC(i, j)loc(xui, xvj)

(13)

where

BC(i, j) =
d

∑

ρ=1

√

#ρi
#i

#ρj
#j

where d is the number of rating values, #i is the number of
users that rated item i, and #ρi is the number of users that
rated item i with value ρ. Iu, Iv, and Iuv are defined as in
Section 2. Thus BC gives more weight to the local similarity
loc(xui, xvj) if items i and j have similar rating distributions
across users in the entire training set. loc(xui, xvj) is a local

1http://grouplens.org/datasets/movielens/

similarity measure of the ratings that user u gave to item i
and user v gave to item j. Of the two loc similarity scores
defined by Patra et al., we chose to use loccorr, defined as:

loccorr(xu, xv) =
(xui − x̄u) (xvj − x̄v)

σuσv

where σu is the standard deviation of ratings made by user
u and x̄u is the mean of ratings made by user u. In the
experimental evaluation of Patra et al., loccorr achieved lower
rating prediction error than their other loc similarity score.
Jacc(xu, xv) is the Jaccard similarity:

Jacc(xu, xv) =
|Iuv|

|Iu|+ |Iv|

4.3 kNN Results
The MAE and RMSE for kNN prediction on the Movie-

Lens 100K data sets are shown in Figure 2, with the Movie-
Lens 1M MAE results in Figure 1. Note that the LiRa sim-
ilarity outperforms other similarity scores in prediction ac-
curacy and for a wide range of choices for the number of
neighbors k. We include both the MAE and RMSE results
for the 100K data sets, but omit the RMSE for the 1M data
sets due to space constraints. However, the RMSE results
for the 1M data sets show the same trend as is seen in the
MAE results – that is, LiRa dominates the other similarity
scores in accuracy, and the gap between LiRa and other sim-
ilarity scores’ prediction error widens both when we increase
the size of the data set, and when we decrease k.

The kNN curves have the expected shape – at low values
of k, the data is being under-utilized, because there are on
average more than k users who rated item i and are truly
similar to u in the data, but they are being left out of the
computation of the prediction pui. At the other extreme,
at very high values of k, there are on average less than k
truly similar users to u in the data who rated item i, and
the additional users in the neighbor set are not useful in
predicting u’s rating of item i.

However, the best value of k for LiRa tends to be lower
than the best value of k using other similarity scores, and
the LiRa score outperforms other similarity scores for all
values of k where the neighbor set is not so large that it is
virtually the same for each similarity score (at k = 160, the
number of neighbors is 17% of the 100K training set size,
meaning that for most users, the prediction pui is based on
all users in the training set who rated item i). In addition,
as k decreases, the gap between LiRa and the other scores’
error widens. From these observations, we conclude that
LiRa is better able to distinguish between truly similar and
truly dissimilar users; for a given k, it finds a better set of
k neighbors than the other scores, and as k decreases, it
keeps more of the neighbors that are the better predictors
of the rating in the neighbor set than the other scores. We
postulate that these results demonstrate LiRa’s ability to
take into account the amount of data that is being used to
evaluate a similarity score for two users in the data set in
order to make a better determination of similarity. To test
this hypothesis, we next present experiments on synthetic
data, where we can control the missing data rate and the
“true” similarity among users.

4.4 Experiments on Synthetic Data
Our goal in generating synthetic data was to evaluate

LiRa’s behavior for increasing missing data rates in a setting
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Figure 2: Comparison of prediction accuracy using various similarity scores in kNN show LiRa’s better ability
to choose relevant neighbors.

that resembles RS data, but where we can control and un-
derstand the underlying similarities of users in the data set.
Therefore we use a very simple generative model to produce
two clusters C1, C2 of m/2 users each, where each cluster
contains users with similar rating patterns on n items and
d discrete rating values. For all experiments in Section 4.5,
we set m to 40, d to 5, and varied n to examine the effects of
increasing dimensionality and user-to-item ratio. We used
the following procedure to generate the two clusters:

1. For each of the two clusters C1, C2, and for each of the
n items i, randomly choose a d-dimensional parameter
µki ∈ Rd, which defines the multinomial distribution
fki(x = ρ|µki) over the d rating values as:

fki(x = ρ|µki) = µki(ρ)

2. For each user u and item i in each cluster Cκ, generate
rating xui from fki(xui = ρ|µki)

Thus users from the same cluster will tend to have similar
rating patterns. To illustrate our simple model we provide
the following example: suppose we set m = 40, n = 2, and
d = 5. Our simulation produces the following 5-dimensional
parameters µki ∈ R5:

µ11 = [0.55, 0.09, 0.25, 0.01, 0.10] , µ12 = [0.34, 0.33, 0.29, 0.03, 0.01]

µ21 = [0.17, 0.08, 0.12, 0.33, 0.30] , µ22 = [0.04, 0.25, 0.47, 0.07, 0.18]

Therefore users in cluster C1 tend to rate item 1 about half
the time with a value of 1 (since µ11(1) = 0.55) about a
quarter of the time with a value of 3 (µ11(3) = 0.25), and
much less often with a value of 2, 4, or 5. The same users
in cluster 1 tend to rate item 2 with a value of either 1,2,
or 3, and much less often with a value of 4 or 5. Therefore,
one likely user u from C1 can be represented by the vector
xu = [1, 2], whereas a likely user from C2 is xv = [4, 2].

Note that the parameters µki are generated at random,
but sum to one and are consistent within a cluster, ensur-
ing that users from the same cluster rate items with the
same patterns. Therefore, we expect that the similarity be-
tween two users within the same cluster should be high when

compared to the similarity of two users in different clusters.
However, we did not explicitly generate the idealized clus-
ters that make up the model used in our LiRa score, to show
that the oversimplified model used by LiRa is nevertheless
enough to capture much of the intra-cluster similarity and
inter-cluster dissimilarity.

We quantify a similarity score’s ability to resolve two users
in the same cluster from two users in different clusters with
a quantity we call the score’s resolution. The resolution of a
score S is defined as the mean of S(xu, xv) for all points xu

and xv within the same cluster minus the mean of S(xu, xw)
for all points xu and xw in different clusters. In experiments
we set S to the LiRa, Pearson, Cosine, and Bhattacharyya
similarity scores, for increasing values of the dimensional-
ity n. A positive resolution value indicates greater average
intra- than inter- cluster similarity, meaning that a score
S is greater for points in the same cluster than points in
different clusters on average. To additionally observe the
effect of missing data on the similarity scores, we randomly
deleted an increasing fraction of the ratings xui. Thus the
expected number of co-observed entries decreases with the
missing rate.

4.5 Results on Synthetic Data
The scaled resolution is plotted in Figure 3 for the LiRa

(red), Pearson (blue), Cosine (green) and Bhattacharrya
(black) similarities. Each marker in each plot corresponds
to a different dimensionality n, where n increases from 5 to
80, doubling each time, and the missing rate increases from
0.1 to 0.9 in increments of 0.1, with an additional point
at 0.95. We scaled each score’s resolution by dividing by
the maximum-magnitude resolution achieved by that score
in the experiments.Therefore, a scaled resolution of 1 indi-
cates the missing rate and dimensionality with the highest-
magnitude resolution over all missing rates and dimensional-
ities, and a magnitude less than one tells us what fraction of
the maximum-magnitude resolution was achieved at a par-
ticular dimensionality and missing rate.

We observe that the resolution of the LiRa score is greater
as we decrease missing data and increase the dimensional-



0.0 0.2 0.4 0.6 0.8 1.0
Missing rate

0.0

0.2

0.4

0.6

0.8

1.0
S
ca
le
d
 R
e
so
lu
ti
o
n

LiRa Similarity

n=5
n=10
n=20
n=40
n=80

0.0 0.2 0.4 0.6 0.8 1.0
Missing rate

0.0

0.2

0.4

0.6

0.8

1.0

S
ca
le
d
 R
e
so
lu
ti
o
n

Pearson Similarity

n=5
n=10
n=20
n=40
n=80

0.0 0.2 0.4 0.6 0.8 1.0
Missing rate

0.0

0.2

0.4

0.6

0.8

1.0

S
ca
le
d
 R
e
so
lu
ti
o
n

Cosine Vector Similarity

n=5
n=10
n=20
n=40
n=80

0.0 0.2 0.4 0.6 0.8 1.0
Missing rate

0.0

0.2

0.4

0.6

0.8

1.0

S
ca
le
d
 R
e
so
lu
ti
o
n

Bhattacharyya Similarity

n=5
n=10
n=20
n=40
n=80

Figure 3: Similarity resolution (higher is better) as a function of missing data rate plotted for four similarity
scores: LiRa (upper left), Pearson (upper right), Cosine (lower left), and Bhattacharyya (lower right). Res-
olution indicates a score’s ability to differentiate a pair of points in the same cluster from a pair of points in
different clusters. Cosine and Pearson scores do not improve in resolution with more data availability.

ity. In addition, the LiRa resolution is positive for all values
of the missing rate and all dimensionalities (the minimum
of LiRa resolutions was 0.051), indicating greater average
intra- than inter-cluster LiRa similarity. The greater mag-
nitude of the resolution in the presence of more data shows
the ability of LiRa to make stronger claims about similarity
as the number of co-observed entries in two discrete-valued
vectors increases. More data comes in the form of a lower
missing data rate, but also increased dimensionality, because
there will be more expected co-observed entries between two
vectors when the dimensionality is higher.

Contrast this with the Pearson and Cosine similarity scores,
where dimensionality and missing data have virtually no ef-
fect on the resolution, except that high values of missing
rates tend to lower the Pearson resolution dramatically. The
resolution is positive for most values of the dimensionality
and missing rates for Cosine, and all values of dimensional-
ity and missing rates for Pearson, but increasing the amount
available data does not improve the ability of Cosine or Pear-
son to resolve similar from dissimilar users. The fact that
low dimensionalities and higher missing rates often yield
a higher resolution than higher dimensionalities and lower
missing rates shows theses scores’ inability to make use of
more data for more accurate similarity judgments. For the

most part, the Bhattacharyya resolution tends to increase
with increasing dimensionality and decreasing missing rates,
also indicating a greater difference between intra- and inter-
cluster scores, but there are instances when this is not the
case.

We conclude this section with a discussion of Figure 4,
which plots the scaled average inter-cluster similarity score
across missing rates for the four tested scores, with a fixed
dimension of n = 80. Scaling was again done by dividing
each average inter-cluster similarity by the magnitude of the
greatest-magnitude average inter-cluster similarity that oc-
curred over all missing rates. This way, we can see how
inter-cluster similarity changes with the missing rate, for all
scores on the same scale.

Recall that a negative Pearson or LiRa value indicates
dissimilarity in some way. A negative Pearson score indi-
cates anti-correlated co-observed entries. A negative LiRa
score indicates a greater chance that the data in co-observed
entries was generated by chance, rather than that the data
comes from two vectors in the same cluster. In Bhattacharyya,
a negative score also indicates anti-correlation in the co-
observed entries, but weighted by item similarity and shifted
by the Jaccard similarity, making it harder to interpret. Co-
sine is restricted to positive values in this setting, because
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Figure 4: The inter-cluster similarity of various sim-
ilarity scores on synthetic data. LiRa is the only
score which decreases with decreasing missing rate,
indicating greater ability to differentiate points from
different clusters when more data is available.

all vector entries were positive.
We observe that LiRa and Pearson appear to be bet-

ter able to indicate dissimilarity, as their scaled average
inter-cluster values are negative for most and all missing
rates, respectively. However, LiRa again makes use of more
data to make a stronger claim about dissimilarity, giving
greater-magnitude negative values when more data is ob-
served. Both Cosine and Bhattacharyya remain positive, in-
dicating some similarity between points from different clus-
ters, and actually increase in magnitude as more data be-
comes available, scoring two points from different clusters
higher at lower missing rates. Based on the MovieLens re-
sults, this may also mean that the real data contains user
clusters, and the Bhattacharyya score is too high for users
from different clusters. Thus it may choose sub-optimal
neighbors in the kNN method in this case.

Based on our results from these synthetic data experi-
ments, we make two concluding remarks about the results
on real data in Section 4.3. First, the high performance of
LiRa on the MovieLens data can be explained by its depen-
dence on not only the rating patterns in co-observed entries
of user rating vectors, but also on the amount of data that is
available to make the similarity computation. Second, based
on the Bhattacharyya results, we believe a promising future
research direction is to further investigate what type of un-
derlying cluster structure exists in RS data. The intuition
behind the Bhattacharyya similarity is that a higher similar-
ity between two items in the set Iuv, defined by the difference
between their rating distributions across the entire data set,
should contribute a higher weight to the difference in these
item ratings. Each of the |Iuv|

2 pairs of co-rated items (i, j)
contributes to the similarity score. By contrast, LiRa does
not consider item similarity in the computation of user sim-
ilarity, and only examines the differences in user ratings of
the |Iuv| co-rated items. A clustering structure such as that
assumed by LiRa may indeed exist in real-world data, and
perhaps the Bhattacharyya score is not well suited to this

setting, where it can be high for users from different clus-
ters, despite its ability to give greater scores to users from
the same cluster with more data.

5. RELATED WORK
Early studies [18, 11, 8] consistently rate the Pearson,

Cosine Vector, or slight variants as the superior similarity
scores for RS data. Several recent studies [1, 16] focus on
the cold start problem, in which extremely few ratings are
available for a new user, making it difficult to determine her
similarity to other users with traditional similarity scores.

The PIP heurisitic was introduced by Ahn [1] to address
the cold-start problem, but was shown to perform compara-
bly to traditional similarity scores such as Pearson’s corre-
lation coefficient in non-cold start settings, and was outper-
formed in terms of rating prediction accuracy by the Bhat-
tacharyya coefficient for collaborative filtering in cold start
settings with extremely few ratings. Patra et al.’s Bhat-
tacharyya coefficient for collaborative filtering, defined in
Section 4, takes into account item similarity as a weight-
ing scheme for user similarity. It was developed for the ex-
tremely sparse setting, thus Patra et al.’s empirical evalua-
tion of its use in rating prediction accuracy is restricted to
data sets where the missing rate is much higher than even
the already sparse MovieLens datasets, and is better suited
for the cold-start setting. The Bhattacharyya coefficient also
is more computationally expensive than our LiRa score, as
it requires all-to-all user-to-user as well as all-to-all item-to-
item similarity computations.

In the context of statistical text analysis, Dunning [9]
makes a strong case for the use of a log-likelihood ratio to
examine the statistical significance of word or bigram fre-
quencies in sparse data. The hypotheses in the LiRa ratio
express whether users are or are not similar, based on the
assumption that user similarity is reflected by the probabil-
ity of two users’ ratings being distributed according to the
clustering model presented in Section 3. These are different
from the hypotheses of the dimensionality of the underlying
parameter space as defined by Dunning. Dunning’s work
has been adapted to RS data in several ways and has been
shown to enhance the performance of recommender systems
in an industrial setting [4, 15]. However, we emphasize that
in the applied versions of Dunning’s likelihood ratio to RS
data, the ratio is used either as a filter for finding relevant
items to use in similarity computations, or a weighting term
in the rating prediction phase, and has not been developed
into a similarity score. Our method also slightly resembles
Jojic et al.’s [13] item similarity score, where similarity is
determined by comparing the number of users that like two
items to the number expected by chance. However, their
method is limited to binary like/dislike data, treats dislikes
the same as missing entries in the item similarity computa-
tion, and was used in combination with additional heuristics
to determine whether a user will like a particular item.

The intuition that inherent clusters of users exist in RS
data has been explored by several clustering methods which
were developed to improve prediction accuracy in RS data.
Sarwar et al. [19] used clustering to improve scalability by
first partitioning the users into clusters, then making a pre-
diction based on averaging ratings from members of the
same cluster, allowing for less computation time than a
kNN method on the MoveLens 100K data set. Similarly,
Xue et al. introduce a k-means clustering phase prior to



prediction [20], and predict a rating for a user u by choos-
ing k neighbors out of the clusters with representatives that
score highly with u. Rashid et al. [2] incorporate bisect-
ing k-means clustering “to increase efficiency and scalability
while maintaining good recommendation quality” in their
ClustKNN algorithm. Das et al. [7, 6] use a DBSCAN-based
algorithm to improve kNN prediction accuracy. An exten-
sive experimental study of the effectiveness of various cen-
troid selection methods for the k-means algorithm when used
as a pre-processing step in recommendation systems is pre-
sented by Zahra et al. [21], who conclude that although many
approaches improve prediction accuracy and efficiency, no
algorithm is “a panacea” across all data sets. Nonetheless,
the results of clustering-based approaches in rating predic-
tion are encouraging, as they show promise in improving
both accuracy and scalability of recommender systems.

6. CONCLUSION
We have introduced the LiRa similarity score for discrete-

valued, sparse, and high-dimensional data, typical of the RS
domain. We have shown through empirical evaluations on
both real and synthetic data that LiRa’s assumptions about
a clustering model of users makes it a good indicator of user
similarity, and that it outperforms other measures in this
capacity. An exciting area to focus our future research is
exploring how to devise a better model of clustering struc-
ture within RS data in order to improve prediction accuracy
of collaborative filtering methods. Another possible research
direction is to develop fast clustering methods that use LiRa
as a similarity score to improve the scalability of user-based
collaborative filtering.
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