
BIOINFORMATICS Vol. 00 no. 00 2011
Pages 1–9

AlignGraph: algorithm for secondary de novo genome
assembly guided by closely related references
Ergude Bao 1, Tao Jiang 1 and Thomas Girke 2∗
1Department of Computer Science and Engineering, 2Department of Botany and Plant Sciences,
University of California, Riverside, California 92521
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: De novo assemblies of genomes remain one of the
most challenging applications in next generation sequencing. Usually,
their results are incomplete and fragmented into hundreds of contigs.
Repeats in genome sequences and sequencing errors are the main
reasons for these complications. With the rapidly growing number
of sequenced genomes, it is now feasible to improve genome
assemblies by guiding them with genomes from related species.
Results: Here we introduce AlignGraph, an algorithm for extending
and joining de novo assembled contigs or scaffolds guided by
closely related reference genomes. It aligns paired-end (PE) reads
and pre-assembled contigs or scaffolds to a close reference. From
the obtained alignments, it builds a novel data structure, called
the paired-end multi-positional de Bruijn graph. The incorporated
positional information from the alignments and PE reads allows to
extend the initial assemblies, while avoiding incorrect extensions
and early terminations. In our performance tests, AlignGraph was
able to substantially improve the contigs and scaffolds from several
assemblers. For instance, 26.1-79.4% of the contigs of Arabidopsis
thaliana and human could be extended, resulting in improvements
of common assembly metrics, such as an increase of the N50 of
the extendable contigs by 81.2-172.2% and 1.8-44.6%, respectively.
In another test, AlignGraph was able to improve the assembly of a
published genome (Arabidopsis strain Landsberg) by increasing the
N50 of its extendable scaffolds by 104.4%. These results demonstrate
AlignGraph’s efficiency in improving genome assemblies by taking
advantage of closely related references.
Availability: The AlignGraph software can be downloaded for free
from this site: https://github.com/baoe/AlignGraph.
Contact: thomas.girke@ucr.edu

1 INTRODUCTION
Recent advances in next generation sequencing (NGS) have made

it possible to sequence new genomes at a fraction of the time

and cost required only a few years ago. These improvements

allow now experimental scientists to integrate genome sequencing

approaches into their daily research. In the absence of a close

reference genome, whole-genome shotgun NGS sequencing is the

most common approach where a de novo assembly algorithm is

used to join reads into longer continuous contigs and scaffolds.

∗to whom correspondence should be addressed

Most NGS de novo assemblers create an overlap or de Bruijn

graph representing the connections among the reads and output

the paths in the graph as assembled contigs. Examples of these

algorithms include Edena (Hernandez et al. 2008), Velvet (Zerbino

and Birney 2008), ABySS (Simpson et al. 2009), ALLPATHS-LG

(Gnerre et al. 2011), SOAPdenovo (Li et al. 2010; Luo et al. 2012),

MaSuRCA (Zimin et al. 2013), CABOG (Miller et al. 2008), Euler-

USR (Chaisson et al. 2009), and IDBA (Peng et al. 2010). This

de novo sequencing approach fundamentally differs from genome

resequencing approaches, where the NGS reads are not assembled

but aligned against a very similar reference genome using a variant

tolerant short read alignment algorithm (Ossowski et al. 2008).

The sequence of the target genome can then be inferred from

the mismatches and indels observed in the alignment results. De
novo assemblies tend to be computationally much more challenging

than alignment-based approaches. Additional limitations include:

(i) the assembly results are often fragmented into large numbers

of contigs; (ii) the coverage of the genome by the assembled

contigs/scaffolds is commonly incomplete; and (iii) the frequency

of falsely assembled contigs can be high, due to chimeric joins.

The most important reasons for these complications are usually

sequencing errors, repeat sequences in the target genome, non-

uniform sequencing depth, and limited read length of NGS data.

These error sources result in false positive, incomplete and branched

paths in the assembly graph, and thus greatly limit the lengths

and completeness of the final contigs (Zerbino and Birney 2008;

Chaisson and Pevzner 2008; Peng et al. 2010). Combining both de
novo assembly and alignment-based approaches presents a powerful

alternative when a closely related reference genome sequence is

available, but its genetic differences relative to the target genome

are too pronounced to resolve them with an alignment approach

alone (Schneeberger et al. 2011; Phillippy et al. 2008; Schatz

et al. 2013). In this case, one can first assemble the reads into

contigs and then align them together with the reads to the reference.

The much longer contigs facilitate the identification of complex

rearrangements, while the read alignments are useful for detecting

smaller variations in regions that are not covered by contigs. Due

to the rapidly increasing number of reference genomes becoming

available for most organism groups, this reference-guided assembly

approach will soon become the default option for many genome

sequencing projects. Compared to de novo assemblies, reference-

guided assemblies have many advantages. First, the alignments of

the contigs and reads against the close reference provide valuable

c© Oxford University Press 2011. 1

Bao et al

proximity information that can be used to extend contigs with

additional reads and to join contigs even if they overlap only by a

few nucleotides. Second, the proximity information in the alignment

can also be used to orient and order contigs along the reference to

build a scaffold map of the entire assembly. Third, the alignment

map can be used to evaluate the quality of contigs and pinpoint

potential mis-assemblies.

Previous studies on reference-guided assemblies include the

AMOScmp software (Pop et al. 2004a), an add-on tool for the

ARACHNE assembler (Gnerre et al. 2009), and custom workflows

largely based on existing assembly software (e.g. Schneeberger et al.
2011). The first two were designed primarily for Sanger reads, while

the latter has been used for NGS genome assembly. Downstream

of the primary assembly, scaffolding algorithms, such as RACA

(Kim et al. 2013), can be used that order and orient pre-assembled

contigs to a connection map by incorporating additional sequence

information from mate pair or paired-end (PE) reads and/or from

closely related genomes (Pop et al. 2004b; Boetzer et al. 2011;

Dayarian et al. 2010; Gao et al. 2011; Salmela et al. 2011; Gritsenko

et al. 2012). The resulting scaffolds contain often gaps, which are

unresolved sequence areas between the original contigs. Dedicated

gap filling algorithms can be used to partially fill these gaps (Boetzer

and Pirovano 2012; Luo et al. 2012; Tsai et al. 2010). More

recently, components of reference-based strategies have also been

incorporated into some of the de novo assembly suites themselves

such as the cheat mode option of ALLPATHS-LG (Gnerre et al.
2011) and IDBA-hybrid (unpublished).

This study proposes a novel algorithm, called AlignGraph, for

improving the lengths and completeness of contigs or scaffolds

by reassembling them with help provided by a reference genome

of a closely related organism. In contrast to existing reference-

assisted methods, AlignGraph is a secondary assembly algorithm
that loads the alignment information of PE reads and pre-assembled

contigs/scaffolds against the reference into a novel assembly graph,

called the PE multi-positional de Bruijn graph, that we specifically

designed for facilitating secondary assemblies. By traversing this

graph, the contigs or scaffolds of the primary assembly can be

extended and joined.

AlignGraph’s functionalities are unique by solving several

challenges in improving assembly results. As a de Bruijn graph-

based method it solves limitations typical for many heuristic

extension methods that are often used in the de novo assembly

area (Warren et al. 2007; Jeck et al. 2007; Dohm et al. 2007). For

instance, if there are multiple solutions how to extend a contig,

then finding the correct one can be challenging with most heuristic

methods. Those ambiguous solutions, that correspond to branched

paths in the de Bruijn graph, are usually caused by repetitive

sequences in genomes, and frequently lead to early terminations

of the contig extension process. The de Bruijn graph method is

often more efficient in finding the correct solution here, because the

contextual information, required for resolving these ambiguities, is

maintained in the graph (Zerbino and Birney 2008; Chaisson and

Pevzner 2008). This issue is not as pronounced in assemblies with

much longer Sanger reads, as those are much more likely to span

non-repetitive regions with repetitive regions in between (Gnerre

et al. 2009). Thus, it is particularly important to address this problem

in assemblies with short reads. In comparison to the conventional de

Bruijn graph, our PE multi-positional de Bruijn graph has several

additional advantages. First, many branched paths can be eliminated

directly in the graph with help of the additional PE read and

alignment information. This simplifies the identification of correct

paths. Second, many false positive paths, caused by sequencing

errors, can be eliminated by correcting erroneous reads with correct

reads that align to the same position in the reference genome. Third,

guided by the alignment information to the reference genome, the

PE multi-positional de Bruijn graph is less affected by regionally

low read coverage that often gives rise to incomplete paths in the

conventional de Bruijn graph. As a result, many incorrect extensions

and early terminations can be avoided.

2 METHODS

2.1 AlignGraph Algorithm
This section describes the AlignGraph algorithm. Its workflow can be

divided into the following three major steps. Figure 1B illustrates these steps

with an example.

(i) Alignment maps. The PE reads are aligned against both the pre-assembled

contigs and the close reference genome; and the contigs are aligned

against the reference.

(ii) Contig reassembly. The alignment mapping results are used to construct a

positional variant of the de Bruijn graph, called the PE multi-positional
de Bruijn graph.

(iii) Graph traversal. The resulting graph is edited and traversed to obtain

extended contigs.

Throughout the text, the source genome of the PE reads and the pre-

assembled contigs is referred to as the target genome, whereas the genome

of the closely related species for guiding the contig improvement steps is

referred to as the reference genome. For simplicity, the following description

of AlignGraph refers mostly to contigs, but it also applies to scaffolds

containing a limited amount gaps.

Prerequisites. Prior to the above steps, the user is expected to generate

genomic PE reads for the target genome of interest and to assemble them

with a de novo NGS genome assembler. Since most genome assemblers

perform better with PE than single end data, AlignGraph also depends on this

sequence type. A major advantage of AlignGraph is its design to work with

most genome assemblers, but the quality of the initial de novo assembled

contigs is expected to impact the final results (see 3.2). For optimal results,

it is also important to follow the recommendations of the chosen de novo
assembler with respect to insert length of the sequencing library, minimum

coverage of the target genome with PE reads and other recommendations.

If scaffolds are inputted, it is usually beneficial to fill them with a gap

filling algorithm prior to processing them with AlignGraph (e.g. Boetzer

and Pirovano 2012). Another requirement for AlignGraph is the availability

of a closely related reference genome sequence. Nearly complete reference

genomes of high quality will yield the best results, but partially sequenced

genomes can be used as well. Based on our experience, AlignGraph can

make solid improvements when at least 50% of the PE reads can be aligned

to the reference genome using the alignment protocol outlined below.

(i) Alignment maps. In the initial preprocessing step of AlignGraph, the

PE reads, used for the de novo assembly in the Prerequisite section, are

aligned to the contigs and to the reference genome, and the contigs are also

aligned to the reference genome. Aligning the reads to the contigs simplifies

their alignments to the reference by guiding them with the much longer

contigs as backbone (see below). Generating reliable alignments among the

PE reads and the contigs is relatively straightforward, because both are from

the same genetic background, thus requiring a low level of variant tolerance

in the alignments. Aligning the contigs to the reference genome demands a

higher level of variant tolerance. However, due to the relatively large length

of the contigs, their alignments to the reference can also be done reliably, as

long as the evolutionary distance between the target and reference genome is

2

... ...
...

...

...

...

...
...

c1 c2 c3

c1
c2 c3

e1 e2... ...

c1
c2
c3

e1

Reads Contigs

...

...

...

...

(1) De novo
assembler

e2

(B)

... ...

(2) AlignGraph

Genome-Contigs-
PE Reads

PE multi-positional de
Bruijn graph

Extended/joined
contigs

(i)

(ii)

(iii)

(A)

c1 c2 c3

(2) AlignGraph

Extended/joined contigs

...

...

c1
c2 c3

Fig. 1: Overview of the AlignGraph algorithm. The outline on the top (A) shows AlignGraph in the context of common genome assembly workflows, and the

one on the bottom (B) illustrates its three main processing steps. (A) In step 1, the PE reads from a target genome are assembled by a de novo assembler into

contigs (here c1, c2 and c3). Subsequently (step 2), the contigs can be extended (blue) and joined by AlignGraph (e1 and e2). (B) The workflow of AlignGraph

consists of three main steps. (i) the PE reads are aligned to the reference genome and to the contigs, and the contigs are also aligned to the reference genome.

(ii) the PE multi-positional de Bruijn graph is built from the alignment results, where the red and blue subpaths correspond to the aligned contigs and sequences

from PE reads, respectively. (iii) the extended and/or joined contigs (here e1 and e2) are generated by traversing the graph.

not too large. The current implementation of AlignGraph uses Bowtie2 and

BLAT for these two alignment steps, respectively (Langmead and Salzberg

2012; Kent 2002). In contrast to this, aligning the relatively short PE

reads to the reference genome is a much more challenging task, due to the

difficulty of generating reliable short alignments containing larger numbers

of mismatches and gaps. This problem does not apply to the reads aligning

to the contigs since their alignment positions to the reference genome can be

inferred from the more robust contig alignments. For the PE read to reference

genome alignment, it is important to choose a highly variant tolerant short

read aligner that is able to reliably align most of the short reads to their true
source locations in the reference genome while minimizing the number of

false positive read placements. Clearly, the latter would negatively impact

the precision performance of AlignGraph by leading to chimeric joins in

the downstream contig extension steps. Although a wide range of short read

aligners has been developed over the past years (Li and Homer 2010), none

of them has been specifically designed or optimized for aligning short reads

against reference genomes with sequence differences more pronounced than

those observed among genomes within the same species. To minimize the

above challenges, we have chosen for this critical step the highly tunable

Bowtie2 aligner with parameter settings that we optimized for aligning PE

reads from a target genome to a reference genome sharing variable degrees

of sequence similarity. The use of PE read alignments in this step is also

important, because the additional sequence information, provided by the

second read in a PE, increases the specificity of the alignment process

compared to single end reads, and thus reduces the number of false read

placements. To account for rearrangements among the two genomes, we

use for the alignments of the PE reads against the reference genome more

relaxed insert length variation settings than in the alignments against the

contigs (details are below).

(ii) Contig reassembly with PE multi-positional de Bruijn graph.
The core functionality of AlignGraph is the extension of the contigs by re-

assembling them using the alignment results obtained in the previous step.

To achieve this efficiently, we build from the alignment maps a variant of the

de Bruijn graph, here called the paired-end multi-positional de Bruijn graph.

This method combines the PE de Bruijn graph (Medvedev et al. 2011) and

Table 1. Problems the PE multi-positional de Bruijn graph solves in
comparison to the conventional de Bruijn graph.

Problem Consequence Solution

Repeat sequences Branched paths Distinguishes paths for repetitive

regions by incorporating PE read

and alignment position information

Sequencing errors False positive paths Corrects paths from erroneous

reads with correct reads aligned

to the same position

Low sequencing Incomplete paths Builds paths from reads of low

depth sequencing depth with reference

support

the positional de Bruijn graph (Ronen et al. 2012) where we incorporate

both PE read information and alignment positions into the graph (Pevzner

et al. 2001). The former was designed to generate more complete contigs

in de novo assemblies, and the latter to correct contig errors in secondary

assemblies. Our approach solves several problems in improving assembly

results that we briefly discussed in the Introduction (see also Table 1). The

following describes our modified de Bruijn graph in more details, where

we first introduce important concepts of conventional de Bruijn graph-based

assembly methods.

Background
The most widely used method for genome assemblies from short reads is

the de Bruijn graph method (Pevzner et al. 2001). A de Bruijn graph is

a directed graph: two connected nodes represent k + 1 bases where the

first node represents the first k bases and the second node the second k

bases (called k-mer). To construct a de Bruijn graph, l − k + 1 connected

nodes are constructed from each read of length l and two nodes from

different reads are joined if they share the same k-mers. In theory, this

graph contains all information required to reconstruct the full sequence of the

underlying genome by traversing it properly. However, such an ideal result

3

Bao et al

(CGTG, 112) (GTGT, 113) (TGTT, 114) (GTTA, 115) (TTAT, 116) (TATA, 117) (ATAC, 118) (TACA, -1)
(ACAA, -1) (CAAC, -1) (AACG, -1) (ACGT, -1) (GTGA, -1) (TGAT, -1) (GATA, -1)

CGTG

CGTG ATAC TAGT GACA TAGT

ATAC

CGTG ATAC CGTG TAGT GACA TAGT
A C A E G E

A B E G E

A

C

112 212

(A)
Positional
de Bruijn
graph

Target
genome

Reference
genome

Contig

ATAC
C

GACA
G

ATAC
C

TT
C

AA
D H

H
GG

GG

AA
D

(C)
Multi-

positional
de Bruijn
graph

0

CGT, 6, 112 GTG, 7, 113

TGA, 8, 114 GAT, 9, 115 ATA, 10, 118 TAC, 11, 119

ATA, 0, 118TAC, 1, 119ACA, 2, 120CAA, 3, 121AAC, 4, 912ACG, 5, 913

TT
B

CC
F

CC
F

(CGTG, 6, 112) (GTGT, -1, 113) (TGTT, -1, 114) (GTTA, -1, 115) (TTAT, -1, 116) (TATA, -1, 117)
(ATAC, 0, 118) (TACA, 1, 119) (ACAA, 2, 120) (CAAC, 3, 121) (AACG, 4, 912) (ACGT, 5, 913)

(GTGA, 7, 113) (TGAT, 8, 114) (GATA, 9, 115) (ATAC, 10, 118)

TGT, -1, 114 GTT, -1, 115 TTA, -1, 116 TAT, -1, 117

(D)
PE multi-
positional
de Bruijn
graph

CGT, 112 GTG, 113 TGT, 114 GTT, 115 TTA, 116 TAT, 117

CGT, 6, 112, 212 GTG, 7, 113, 213

TGA, 8, 114, 214

GAT, 9, 115, 215ATA, 10, 118, 218TAC, 11, 119, 219

ATA, 0, 118, 218TAC, 1, 119, 219ACA, 2, 120, 220CAA, 3, 121, 221

AAC, 4, 912, 222 ACG, 5, 913, 223

(CGTG, 6, 112, 212) (GTGT, -1, 113, 213) (TGTT, -1, 114, 214) (GTTA, -1, 115, 215) (TTAT, -1, 116, 216)
(TATA, -1, 117, 217) (ATAC, 0, 118, 218) (TACA, 1, 119, 219) (ACAA, 2, 120, 220) (CAAC, 3, 121, 221)
(AACG, 4, 912, 222) (ACGT, 5, 913, 223) (CGTG, 6, 112, 224) (GTGA, 7, 113, 213) (TGAT, 8, 114, 214)

(GATA, 9, 115, 215) (ATAC, 10, 118, 218)

TGT, -1, 114, 214 GTT, -1, 115, 215 TTA, -1, 116, 216

TAT, -1, 117, 217

CGT, 6, 112, 224 GTG, 7, 113, 213

ATA, 118TAC, 119

(CGTG, 112) (GTGT, 113) (TGTT, 114) (GTTA, 115) (TTAT, 116) (TATA, 117) (ATAC, 118) (TACA, 119)
(ACAA, 120) (CAAC, 121) (AACG, 912) (ACGT, 913) (GTGA, 113) (TGAT, 114) (GATA, 115)

(B)
Positional
de Bruijn
graph using
contig to
guide read
alignment

CGT, 112 GTG, 113 TGT, 114 GTT, 115 TTA, 116 TAT, 117

ATA, 118TAC, 119

912

ACA, 120CAA, 121AAC, 912ACG, 913

TGA, 114 GAT, 115

... ...

... ...

......

... ...

Fig. 2: Advantages of the PE multi-positional de Bruijn graph compared to the positional de Bruijn graph. In the target genome given on the top A and A′, C
and C′, E and E′, G and G′ are repetitive regions. Each PE read of length 2 × 4bp is sequenced with one pair from region ABCDA′C′ and the other from

the corresponding position of region EFGHE′G′ (the pair from EFGHE′G′ is omitted for simplicity). In comparison to the target genome, the reference

genome has a repeat-free region ABC similar to ABCDA′C′ and a region EFGHE′ similar to EFGHE′G′. The reads from region ABCDA′C′ are

assembled with a de novo assembler into a contig starting from CDA′C′, but regions A and B are not assembled due to low sequencing depth, repeats or

other problems. When aligning the contig to the reference genome, the repetitive regions C and C′ are both aligned to C in the reference genome and the

insertion D is assigned to the end of the reference. In (A) reads are aligned directly to the reference genome to build the initial positional de Bruijn graph; and

in (B)-(D) the reads are aligned to the pre-assembled contigs and then aligned to the reference to build first the extended positional de Bruijn graph and then the

PE multi-positional de Bruijn graph. (A) The initial positional de Bruijn graph is built here with 3-mers. Some reads cannot be aligned to the reference genome

due to sequence differences in the target genome as indicated here by 3-mers with -1 as alignment position. The repetitive regions A and A′ (or C and C′) are

collapsed into one path in red in the graph. (B) The initial positional de Bruijn graph is constructed with help from the read-to-contig alignment information.

The read-to-reference genome alignment information yields a more complete positional de Bruijn graph, but the repetitive regions A and A′ (or C and C′)
are still collapsed resulting in branch points. (C) An extended positional de Bruijn graph is built by incorporating into each 3-mer the read alignment position

to the contig. As a result of this operation, the repetitive regions C and C′ can be distinguished into two paths where the 3-mers have different alignment

positions in the contig, but A and A′ are still collapsed. (D) The PE multi-positional de Bruijn graph is constructed by incorporating into each 3-mer their PE

read alignment positions to the reference genome (the right 3 bases and its alignment position to the contig is omitted here). With this information the repeats

A and A′ can be distinguished into two paths as the 3-mers have different PE alignment positions in the reference genome. The final graph contains only one

single path allowing to output an extended contig corresponding to the region ABCDA′C′ in the target genome.

4

is usually hard to obtain, because the de Bruijn graph frequently contains

many false positive, incomplete and branched paths, especially when the

read quality is low or the target genome is repeat rich. The false positive and

incomplete paths are due to false positive k-mers with sequencing errors

and missing k-mers from regions of low sequencing depth, respectively.

The branched paths are caused by joins of k-mers from repetitive regions.

Several variations of the de Bruijn graph have been proposed to solve these

limitations, especially the branched paths, while preserving all of its genome

information (Medvedev et al. 2011; Ronen et al. 2012; Peng et al. 2010). The

paired-end de Bruijn graph (Medvedev et al. 2011) is built from PE reads,

where each k-mer contains k bases from the left pair plus its corresponding

k bases from the right pair. In contrast to this, the positional de Bruijn graph

(Ronen et al. 2012) incorporates read alignment information by including

in each k-mer the k bases plus its alignment position. With the additional

information assigned to the k-mers, k-mers from repetitive regions can often

be distinguished, and thus the number of branches in the graph can be

reduced. In addition, because the positional de Bruijn graph is built from read

alignments, false positive and incomplete paths can be largely avoided. We

emphasize that the PE de Bruijn graph requires the left pair forward-strand

read and the right pair reverse-strand read or vice versa, but it is difficult to

know their orientation. This problem can be resolved, if the PE de Bruijn

graph is built from aligned reads, where their orientation can be obtained

from the alignments.

PE multi-positional de Bruijn graph
We derive the paired-end multi-positional de Bruijn graph as a combination

of the PE de Bruijn graph and the positional de Bruijn graph. Each k-mer

of the PE multi-positional de Bruijn graph is composed of three left/right

element pairs: the k bases of each the left and the right read pair (called

left or right k bases), the alignment position of each the left and the right k

bases to the contigs, and the alignment position of each the left and the right

k bases to the reference genome. Two k-mers can be joined if they have

similar k bases and close alignment positions within the constraints defined

in the formulas below. Formally, let s be the k bases from the left read pair

and s′ the corresponding k bases from the right read pair, then the k-mer of

PE multi-positional de Bruijn graph is a 6-tuple (s, s′, c, g, c′, g′), where c

is the alignment position of s to the contigs, g is the alignment position of

s to the reference genome, c′ is the alignment position of s′ to the contigs,

and g′ is the alignment position of s′ to the reference genome. Two k-mers

(si, s
′
i, ci, gi, c

′
i, g

′
i) and (sj , s′i, cj , gj , c′j , g′j) can be joined if constrains

(1)-(6) are met:

mismatch(si, sj) < δ (1)

mismatch(s′i, s
′
j) < δ (2)

|ci − cj | < ε or ci = −1 or cj = −1 (3)

|gi − gj | < ε (4)

|c′i − c′j | < ε+ 2D or c′i = −1 or c′j = −1 (5)

|g′i − g′j | < ε+ 2D (6)

where δ and ε are small numbers with the default values 5 and 25,

respectively, and D is the variability of the insert length I of the PE reads.

The variability D is equal to max{Iu − I, I − Il} where Iu and Il are the

upper and lower limits of I , respectively. The variables in the above formulas

are explained below.

δ: To join two k-mers and tolerate sequencing errors, we allow a small

number of mismatches δ between si and sj and between s′i and s′j in

(1) and (2), respectively.

ε: We allow a small shift ε between each pair of alignment positions in (3)-

(6), because the same k bases si and sj (or s′i and s′j) from different

reads may align to different but close positions in the contigs or genome

as discussed in Ronen et al. (2012).

2D: We allow a shift 2D of s′i and s′j ’s alignment positions to the contigs

in (5) and to the reference genome in (6). The maximum and minimum

alignment distances between a read pair are I − l+D and I − l−D,

respectively, where l is the read length, assuming the same read length

for both members in a pair. Thus, the maximum alignment distance of

two right reads with left reads aligned at the same position is (I − l +

D)−(I−l−D) = 2D. This distance is equal to the distance between

any two k-mers from the same position in the right read pairs, so the

maximum distance between s′i and s′j will be 2D.

−1: si and sj (or s′i and s′j) can be joined if one or both of them are

aligned directly to the reference genome rather than guided by the de
novo contigs. In those cases, we assign -1 as alignment position to the

contigs. This is important because we allow contig extensions only if

the alignable and unalignable bases to contigs can be joined.

It is important to guarantee that each k-mer corresponding to an insertion

of a read alignment has a position in the reference genome. To achieve this,

we append the inserted k-mer to the end of the genome sequence. In our

implementation of the PE multi-positional de Bruijn graph, we first load

iteratively sections of the reference genome into memory. Then we perform

the following operation. We test for each k-mer in each aligned read at

genome position g, if there is already a k-mer at g and whether the new k-mer

can be joined with it. If so then we join the two k-mers; otherwise we attach

the new k-mer to position g. The connection between two k-mers is recorded

by using pointers and the read coverage for each k-mer is stored along with it.

Figure 2 illustrates the main advantages of the PE multi-positional de Bruijn

graph compared to the positional de Bruijn graph with several examples (see

also Table 1). This includes the contig-guided PE read alignment against the

reference genome resulting in a larger number of alignable reads, and thus

a more complete de Bruijn graph (Figure 2B); as well as the reduction of

branched paths in the graph by distinguishing reads from different repetitive

regions (Figures 2C and 2D). For space reasons, the advantages over the

conventional de Bruijn graph in reducing false positive and incomplete paths

are not shown.

(iii) Graph traversal returns extended contigs. To remove errors, the

de Bruijn graph needs to be edited prior to its traversal. The three major

types of errors are tips, bubbles and erroneous connections (Zerbino and

Birney 2008; Chaisson and Pevzner 2008; Peng et al. 2010). Most of them

are caused by errors in the reads. A tip is a short path with a dead end,

while a bubble consists of two short paths sharing the same start and end

nodes. The formation of tips and bubbles is relatively rare, mainly because k-

mers with < δ mismatches are joined. The remaining errors can be removed

by applying a coverage cut-off filter similar to the strategies employed by

most de novo assemblers. Due to the additional information encoded in

the modified de Bruijn graph, one can use here a relatively small coverage

threshold. After these error removal steps, the PE multi-positional de Bruijn

graph is traversed, using a broad-first strategy, to generate the final contigs.

Each traversal stops at a branch position and an extended contig is returned.

After returning the extended contigs, the remaining unextended contigs

(identical with initial de novo contigs) are provided to the user in a separate

file. Finally, contigs with sufficient PE read connections and a path between

them can be joined. Occasionally, those connections can be missed by the

above filtering step because of too low read coverage in local areas of the

connecting path.

2.2 Software implementation
AlignGraph is implemented in C++ for Linux operating systems. Its

expected input includes the PE reads, the pre-assembled de novo contigs, and

the reference genome. Its output includes the extended contigs as well as the

remaining non-extended contigs. AlignGraph runs the alignment steps with

BLAT and Bowtie2 automatically, but both need to be installed on a system.

AlignGraph’s run time is currently 23-48 minutes per million aligned reads

and its memory usage stays below 34-45 GB even for very large read sets

5

Bao et al

and genomes. These requirements are much more moderate than those of

most de novo assemblers (Luo et al. 2012).

3 EVALUATION
3.1 Experimental design
Background. To evaluate AlignGraph’s efficiency in improving

genome assemblies, we performed a series of systematic

performance tests. For this, we assembled publicly available

genomic PE read sets from two organisms of variable genome

complexity with six widely used de novo assemblers, extended

the resulting contigs with AlignGraph, and then evaluated the

improvements with a set of standard metrics for comparing

assembly results (Table 2). In these tests it was important to choose

the NGS read samples from organisms where the genome sequence

of both the target genome and a close reference genome are known.

This way one can evaluate the completeness and correctness of

the results against a true result rather than one that is unknown or

only partially known. To also assure the improvements obtained by

AlignGraph, are not simply the result of insufficient optimizations

of the upstream de novo assembly, we included in some cases

pre-assembled contig and scaffold sets that are widely accepted

by the community as benchmark data sets for evaluating assembly

software. Today’s requirements for assembling genomes from NGS

were met by choosing read samples with ≥75bp and paired-end read

information. In total we performed assembly tests on the following

three sample sets.

3.1.1 A. thaliana sample. The first sample set was from the

model organism A. thaliana, which is a flowering plant with a

compact genome of 130Mb in size. The PE read set, chosen

for this test, is from a genomic Illumina NGS library with a

read length of 2x 75 bp. As de novo assemblers, we included

in this test Velvet and ABySS, which we chose here as software

representatives performing well on single library data, and because

of their good sensitivity and precision performance (Lin et al.
2011). The VelvetOptimiser tool was used to optimize the parameter

settings for the Velvet assembly. ABySS was run with the same k-

mer length as Velvet, while the remaining parameters were set to

their defaults. To extend the preassembled contigs with AlignGraph,

we used in one test the A. thaliana target genome as ideal reference,

and in another test we used the publicly available genome sequence

from the related A. lyrata species as reference (Table 12a). The latter

was chosen, because it constitutes a more challenging reference

genome for testing AlignGraph’s performance in improving genome

assemblies than the references used in the other tests below. This is

the case for the following reasons (Hu et al. 2011): A. lyrata and A.
thaliana diverged over 10 million years ago; their genomes differ

by many regional rearrangements; the sequence similarity in the

common regions of their genomes is only 80%; and the A. lyrata
genome sequence is still incomplete and fragmented into many

scaffolds.

3.1.2 Human sample from GAGE. The second sample set is from

the community project GAGE (Genome Assembly Gold-Standard

Evaluations), from which we selected the human chromosome

14 sample (Salzberg et al. 2012). Its Illumina sequences consists

of PE reads with a length of 76-101 bp from three different

libraries. To assure in this test a high quality of the initial de novo

contigs, we did not assemble them ourself. Instead, we downloaded

the pre-assembled contig sets provided by the GAGE project for

the four assemblers that ranked highest in the benchmark tests

by Salzberg et al. (2012) in assemblies from multiple genome

libraries with variable insert lengths. Those included ALLPATHS-

LG, SOAPdenovo, MaSuRCA and CABOG. As reference sequence

for guiding AlignGraph, we used in these tests the chimpanzee

genome. Only for ALLPATH-LG in its cheat mode, we reassembled

the contigs ourselves, because this assembler exhibits a better

sensitivity and precision performance when providing a closely

related reference genome. Here it was important to compare the

performance of ALLPATHS-LG with AlignGraph when both are

guided by the same reference genome.

In addition to contigs, we evaluated AlignGraph’s performance in

improving the scaffold sets provided by the GAGE project for the

same human sample set. Prior to their reassembly with AlignGraph,

we reduced the number of unresolved sequence regions (gaps filled

with ambiguous N bases) in the scaffolds by applying the GapFiller

algorithm, which is currently one of the most efficient gap filling

methods (Boetzer and Pirovano 2012).

3.1.3 Published genome. In addition to the tests above, we were

interested in evaluating to what extent AlignGraph can improve

the genome sequence generated with another reference assisted

assembly approach. For this test, we chose the published genome

sequence from Landsberg erecta (Ler-1; Schneeberger et al. 2011).

The latter is a strain of A. thaliana with too severe differences in its

genome to resolve its sequence with a simple resequencing approach

alone where the A. thaliana genome could serve as reference.

Thus, Schneeberger et al. (2011) assembled its genome with a

reference assisted pipeline approach that included ALLPATHS-LG

and several refinement steps.

3.1.4 Data sources. The genome sequences used in the above

tests were downloaded from the following community sites: A.
thaliana from TAIR, A. lyrata from JGI, Landsberg erecta from

1001 Genomes, and human and chimpanzee from Ensembl. From

the GAGE site, we downloaded the PE read sets, and the pre-

assembled contigs and scaffolds for the human chromosome 14

sample (Salzberg et al. 2012). The PE read sets from A. thaliana
and Landsberg erecta were downloaded from NCBI’s Sequence

Read Archive (SRA) and the 1001 Genome site, respectively. The

A. thaliana read set contained 32 million 2 × 75 bp PE reads

(accession: SRR073127), the human read set contained 61 million 2

× 75-101 bp PE reads, and the Ler-1 read set contained 65 million

2 × 101 bp PE reads.

3.1.5 Performance Measurements. Most of the performance

measures used by this study are adapted from the GAGE project

(Salzberg et al. 2012). To evaluate the completeness of the contigs,

we aligned them to the target genome with BLAT. If a contig

could not be aligned as a single global alignment, then it was

split according to the local alignment results into the smallest

possible number of sub-contigs. The resulting contigs are called

true contigs. The precision measures include the number of

misassemblies per million base pairs (MPMB) and the average

identity between contigs and target genome. There are two types

of misassemblies: misjoin errors and unjoin errors. Misjoin errors

result in chimeric contigs. Their number can be calculated as the

6

Table 2. Performance Evaluation of AlignGraph. (a) Genomic PE reads from A. thaliana were assembled with Velvet and ABySS. The resulting contigs were

extended with AlignGraph using as reference the genome sequence from A. lyrata, and as ideal reference genome the one from A. thaliana (A.th.). (b-d) The

subsequent panels contain assembly results for the human chromosome 14 sample from the GAGE project where the chimpanzee genome served as reference.

(b) Contig assembly results are given for the de novo assemblers ALLPATHS-LG, ALLPATHS-LGc (in cheat mode), SOAPdenovo, MaSuRCA and CABOG.

(c) Scaffolded assembly results are given for SOAPdenovo, MaSuRCA and CABOG. The results are organized row-wise as follows: the number of initial

contigs obtained by each de novo assembler1, the ‘extendable’ subset of the initial contigs that AlignGraph was able to improve2, and the extension results

obtained with AlignGraph3. The additional columns give the number of contigs4, N50 values5, the length coverage of the genome by contigs6, the average7

and maximum8 length of the contigs, the number of misassemblies per million base pairs (MPMB)9, and the average identity among the true contigs and the

target genome10. More details on these performance criteria are provided in the Performance Measurements section.

Upstream Contig set N Contigs4 N505 Coverage6 Average Maximum MPMB9 Average

assembler length7 length8 identity10

(a) Contigs of A. thaliana genome
Velvet All1 30,037 3,536 82,399,610 2,817 27,792 383.1 95.4%

Extendable2 7,839 4,138 25,356,693 3,247 27,398 310.0 97.6%

Extendable + AlignGraph3 5,319 7,720 29,673,314 5,474 49,623 186.5 91.7%

Extendable (A.th.) 23,852 3,608 68,367,186 2,888 27,792 350.2 96.8%

Extendable + AlignGraph (A.th.) 15,227 9,820 88,043,266 5,869 89,056 177.8 91.5%

ABySS All 30,972 2,567 69,337,135 2,263 29,760 463.5 97.3%

Extendable 10,643 2,794 26,082,265 2,435 16,343 412.6 98.8%

Extendable + AlignGraph 7,823 5,369 32,905,260 4,094 25,353 247.6 92.2%

Extendable (A.th.) 24,410 2,608 56,371,241 2,299 29,760 438.1 98.4%

Extendable + AlignGraph (A.th.) 18,559 6,466 81,540,651 4,389 77,823 236.5 91.7%

(b) Contigs of Human chromosome 14
ALLPATHS-LG All 4,383 38,590 83,847,514 19,249 240,764 53.1 98.9%

Extendable 1,636 38,699 33,993,990 20,216 200,495 50.3 98.8%

Extendable + AlignGraph 778 73,858 34,604,800 43,510 304,548 23.6 96.6%

ALLPATHS-LGc All 3,856 43,856 83,858,469 21,857 275,446 46.5 99.3%

Extendable 1,318 45,288 30,605,770 23,319 275,446 43.4 99.5%

Extendable + AlignGraph 640 82,046 33,514,214 50,484 391,100 20.2 96.2%

SOAPdenovo All 10,865 16,867 80,114,725 7,823 147,494 135.1 94.9%

Extendable 5,592 17,581 45,725,655 8,263 141,981 124.3 96.3%

Extendable + AlignGraph 3,442 33,311 53,069,539 15,415 221,608 66.8 93.9%

MaSuRCA All 19,034 5,768 75,491,835 3,869 53,837 280.7 98.9%

Extendable 9,479 6,096 39,836,321 4,171 51,249 255.4 99.2%

Extendable + AlignGraph 5,661 11,704 44,821,180 7,787 69,327 130.8 96.7%

CABOG All 3,118 46,523 84,988,860 27,472 296,888 37.1 97.3%

Extendable 1,665 45,669 46,089,218 27,301 296,888 36.9 98.7%

Extendable + AlignGraph 684 104,171 49,215,105 71,466 344,910 14.5 96.6%

(c) Scaffolds of Human chromosome 14
SOAPdenovo All 3,902 391,693 85,414,648 24,839 1,852,152 40.8 82.9%

Extendable 881 379,370 32,599,249 38,800 1,019,659 26.0 84.2%

Extendable + AlignGraph 748 528,039 39,195,931 53,744 1,907,306 19.2 80.6%

MaSuRCA All 721 584,807 65,429,147 68,083 2,943,966 11.1 57.2%

Extendable 122 255,926 4,865,797 40,830 520,370 27.5 89.4%

Extendable + AlignGraph 90 303,139 7,060,400 77,917 1,263,099 14.0 87.5%

CABOG All 471 387,876 81,163,384 176,980 1,944,475 5.8 91.9%

Extendable 131 327,656 24,909,270 189,898 1,905,529 5.3 98.0%

Extendable + AlignGraph 62 840,450 30,407,969 464,475 2,043,930 2.3 90.7%

number of splits necessary to obtain the true contigs. Unjoin errors

result in incomplete contigs that can be approximated by the number

of contigs before the splits. Thus, MPMB = em+eu
L

× 106, where

em and eu are the numbers of misjoin errros and unjoin errors,

respectively, and L is the accumulative length of the contigs. The

average identity between true contigs and the target genome is

calculated as
∑

n ti×li∑
n li

where ti is the identity for contig i and li

is the length of contig i (0 < i ≤ n). In this formula, the identity

ti of the true contigs i is calculated as the number of aligned bases

over the length of the alignment. The sensitivity measures include

the N50 value and the coverage of the true contigs. The former is the

contig size at 50% of the total number of contig bases, and the latter

is the total number of genome bases covered by the contigs. Two

additional measures are the average length and maximum length of

the true contigs.

3.2 Results
3.2.1 Extension of A. thaliana contigs. The performance test

results for the A. thaliana data set are given in Table 2a. In

comparison to the initial contig sets assembled by Velvet or ABySS,

AlignGraph extends 26.1-34.4% of them when it is guided with

the A. lyrata genome as reference. The resulting set of extended

contigs contains 26.5-32.1% less sequences, because AlignGraph

has joined many of the initial contigs. This leads to improvements of

the N50, coverage, average contig length, maximum contig length

and MPMB values for the extendable contig set by 86.6-92.2%,

17.0-26.2%, 68.1-68.6%, 55.1-81.1% and 39.8-40.0%, respectively.

As expected the average identity drops slightly (5.9-6.6%), because

with increased length of the assembled sequences, internal sequence

variations accumulate and complicate the alignment of the extended

contigs against the target genome. A similar trend can be seen

7

Bao et al

in the below results for the much longer scaffolds where the

average identity is always lower for all of the tested assemblers

(Table 2c). Overall the assembly results of AlignGraph contain

for all three sample sets (3.2.1-3.2.3) a comparable number of

sequence variations to the target genomes as the results of de
novo assemblers (data not shown). This indicates a high sequence

quality of the reassembled contigs. When guiding AlignGraph

with the ideal reference genome (A. thaliana), 78.8-79.4% of the

initial contigs can be extended and the extension results contain

24.0-36.2% less contigs. The corresponding improvements of the

N50, coverage, average contig length, maximum contig length

and MPMB values are 147.9-172.2%, 28.8-44.6%, 90.9-103.2%,

161.5-220.4% and 46.0-49.2%, respectively. These results indicate

that AlignGraph is able to substantially improve the assemblies

for the de novo assemblers Velvet and ABySS. The usage of a

perfect reference genome improves the results in a more pronounced

manner. However, even when a suboptimal and evolutionary distinct

reference genome is used, as the one from A. lyrata (see 3.1.1),

AlignGraph can lead to considerable improvements.

3.2.2 Extension of human contigs and scaffolds from GAGE. The

test results for the human chromosome 14 contigs are given in Table

2b. Of the contigs assembled by ALLPATHS-LG, 37.3% of them

can be extended and the extension result contains 52.4% less contigs

due to the joins generated by AlignGraph. These improvements

are more pronounced than in the above experiment with A. lyrata
as reference, because the genomes of human and chimpanzee

share a much higher sequence similarity than the genomes of A.
thaliana and A. lyrata. The N50, coverage, average contig length,

maximum contig length and MPMB values for the extendable contig

set consistently improve by 90.9%, 1.8%, 115.2%, 51.9% and

53.1%, respectively. Similar results could be obtained with the

other de novo assemblers SOAPdenovo, MaSuRCA and CABOG.

After AlignGraph processing their extendable contigs improved

for the same five evaluation metrics by 89.5-128.1%, 6.8-16.1%,

86.6-161.8%, 16.2-56.1% and 46.3-60.7%, respectively. If the

ALLPATHS-LG is run in its cheat mode by guiding it with the

same reference genome as AlignGraph, then both the sensitivity

and precision measures of the ALLPATHS-LGc contigs improve

compared to the assembly without a reference. Nevertheless,

AlignGraph is still able to extend 34.2% of the ALLPATHS-LGc

contigs and the extension results contain 51.4% less contigs, while

the five evaluation metrics improve by 81.2%, 9.5%, 116.5%, 42.0%

and 53.5%, respectively. These improvements indicate that the

reference-assisted improvements provided by AlignGraph are more

efficient than the ones used by ALLPATHS-LG’s in its cheat mode

at the contig assembly stage.

AlignGraph’s performance results on the scaffolds from the same

human chromosome 14 dataset are given in Table 2c. The scaffold

sets from SOAPdenovo, MaSuRCA and CABOG contain much

smaller numbers of sequences than their corresponding contig sets.

Nevertheless, AlignGraph is able to extend 16.9-27.8% of them and

the extended sets contain 15.1-52.7% fewer but longer and more

complete scaffolds. This results in improvements of the above five

evaluation metrics by 18.4-156.5%, 20.2-45.1%, 38.5-144.6%, 7.3-

142.7% and 26.2-49.1%, respectively. The MPMB values for the

scaffolds are generally smaller than for the contigs, because the

scaffolds are much longer and have much fewer unjoin errors than

the corresponding contigs. The scaffolds results of ALLPATHS-LG

Table 3. Improvements to Published Genome. The published scaffolds from

Landsberg erecta were extended with AlignGraph using the A. thaliana
genome as reference. The rows and columns are arranged the same way as

in Table 2, but several columns are missing here, because it is not possible to

compute the corresponding performance measures in a meaningful manner

without having access to a ‘true’ target genome sequence. In addition, we

report here the total number of bases in the contigs1.

Contig set N N50 N total Average Maximum

Contigs bases1 length length

All 1676 341625 112,581,547 67,172 2,930,102

Extendable 549 388,367 55,611,539 101,296 1,716,958

Extendable+AlignGraph 552 793,894 64,015,527 115,970 2,103,349

(not shown in Table 2) are more complete than those of the other de
novo assemblers, and AlignGraph was not able to further improve

them.

3.2.3 Improvements to published genome. The test results for

the published Landsberg erecta genome are shown in Table 3.

The initial scaffold set used in this test consisted of 1,676

sequences. AlignGraph extended 32.8% of these scaffolds. The

extension results contain in this case a slightly larger number of

sequences, because the reference-assisted assembly pipeline, used

by Schneeberger et al. (2011) to generated the initial genome

sequence, has already established most of the possible joins. Thus,

the remaining room for improvements is restricted to scaffold

extensions where AlignGraph improves the N50, number of total

bases, average contig length and maximum length values for

the extendable scaffolds by 104.4%, 15.1%, 14.5% and 22.5%,

respectively. These improvements demonstrate AlignGraph’s

usefulness in improving published genome sequences, even for

those that have been carefully curated by their authors.

In summary, the above performance tests demonstrate AlignGraph’s

efficiency in improving the results of a variety of de novo assemblers

and species with variable genome complexity by taking advantage

of closely related reference genomes.

4 CONCLUSIONS AND FUTURE WORK
This study introduces a novel de Bruijn graph-based algorithm

for improving de novo genome assemblies guided by sequence

information from a closely related species. The chosen PE

multi-positional de Bruijn graph approach provides an elegant

and efficient solution to this problem. Our performance results

demonstrate that the implemented AlignGraph software is

able to improve the results of a wide range of de novo
assemblers for complex genomes even with relatively diverse and

suboptimal guide sequences as reference. Moreover, our results

demonstrate AlignGraph’s usefulness for improving unfinished

genome assemblies. Another advantage is that AlignGraph can be

used in combination with most existing de novo assemblers. In the

future, we will expand AlignGraph in the following areas: (i) we

will provide support for additional variant-aware alignment tools

for both PE read and contig data, such as GSNAP and GMAP,

respectively; (ii) de novo assembly functionality will be added to

8

AlignGraph to further optimize assemblies at many stages of the

reference-assisted workflow; (iii) utilities will be incorporated for

detecting and resolving misassemblies, and (iv) the processing of

scaffolds with very large gaps will be improved.

ACKNOWLEDGEMENT
We acknowledge the support of the core facilities at the Institute for

Integrative Genome Biology (IIGB) at UC Riverside.

Funding: This work was supported by grants from the USDA

National Institute for Food and Agriculture [NIFA-2010-65106-

20675 to T.G.] and the National Science Foundation [ABI-0957099

to T.G., IOB-0420152 to T.G., MCB-1021969 to T.G., IIS-0711129

to T.J.].

REFERENCES
Boetzer, M. and Pirovano, W. (2012). Toward almost closed genomes with gapfiller.

Genome biology, 13(6), R56.

Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D., and Pirovano, W. (2011).

Scaffolding pre-assembled contigs using sspace. Bioinformatics, 27(4), 578–579.

Chaisson, M. J. and Pevzner, P. A. (2008). Short read fragment assembly of bacterial

genomes. Genome research, 18(2), 324–330.

Chaisson, M. J., Brinza, D., and Pevzner, P. A. (2009). De novo fragment assembly

with short mate-paired reads: Does the read length matter? Genome research, 19(2),

336–346.

Dayarian, A., Michael, T. P., and Sengupta, A. M. (2010). Sopra: Scaffolding algorithm

for paired reads via statistical optimization. BMC bioinformatics, 11(1), 345.

Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2007). Sharcgs, a fast and

highly accurate short-read assembly algorithm for de novo genomic sequencing.

Genome research, 17(11), 1697–1706.

Gao, S., Sung, W.-K., and Nagarajan, N. (2011). Opera: reconstructing optimal

genomic scaffolds with high-throughput paired-end sequences. Journal of
Computational Biology, 18(11), 1681–1691.

Gnerre, S., Lander, E. S., Lindblad-Toh, K., Jaffe, D. B., et al. (2009). Assisted

assembly: how to improve a de novo genome assembly by using related species.

Genome Biol, 10(8), R88.

Gnerre, S., MacCallum, I., Przybylski, D., Ribeiro, F. J., Burton, J. N., Walker,

B. J., Sharpe, T., Hall, G., Shea, T. P., Sykes, S., et al. (2011). High-quality

draft assemblies of mammalian genomes from massively parallel sequence data.

Proceedings of the National Academy of Sciences, 108(4), 1513–1518.

Gritsenko, A. A., Nijkamp, J. F., Reinders, M. J., and de Ridder, D. (2012).

Grass: a generic algorithm for scaffolding next-generation sequencing assemblies.

Bioinformatics, 28(11), 1429–1437.

Hernandez, D., François, P., Farinelli, L., Østerås, M., and Schrenzel, J. (2008). De

novo bacterial genome sequencing: millions of very short reads assembled on a

desktop computer. Genome research, 18(5), 802–809.

Hu, T. T., Pattyn, P., Bakker, E. G., Cao, J., Cheng, J. F., Clark, R. M., Fahlgren, N.,

Fawcett, J. A., Grimwood, J., Gundlach, H., Haberer, G., Hollister, J. D., Ossowski,

S., Ottilar, R. P., Salamov, A. A., Schneeberger, K., Spannagl, M., Wang, X., Yang,

L., Nasrallah, M. E., Bergelson, J., Carrington, J. C., Gaut, B. S., Schmutz, J.,

Mayer, K. F., Van de Peer, Y., Grigoriev, I. V., Nordborg, M., Weigel, D., and Guo,

Y. L. (2011). The arabidopsis lyrata genome sequence and the basis of rapid genome

size change. Nat Genet, 43(5), 476–481.

Jeck, W. R., Reinhardt, J. A., Baltrus, D. A., Hickenbotham, M. T., Magrini, V., Mardis,

E. R., Dangl, J. L., and Jones, C. D. (2007). Extending assembly of short dna

sequences to handle error. Bioinformatics, 23(21), 2942–2944.

Kent, W. (2002). Blatthe blast-like alignment tool. Genome research, 12(4), 656–664.

Kim, J., Larkin, D. M., Cai, Q., Zhang, Y., Ge, R.-L., Auvil, L., Capitanu, B., Zhang,

G., Lewin, H. A., Ma, J., et al. (2013). Reference-assisted chromosome assembly.

Proceedings of the National Academy of Sciences, 110(5), 1785–1790.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2.

Nature methods, 9(4), 357–359.

Li, H. and Homer, N. (2010). A survey of sequence alignment algorithms for next-

generation sequencing. Briefings in bioinformatics, 11(5), 473–483.

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G.,

Kristiansen, K., et al. (2010). De novo assembly of human genomes with massively

parallel short read sequencing. Genome research, 20(2), 265–272.

Lin, Y., Li, J., Shen, H., Zhang, L., Papasian, C. J., et al. (2011). Comparative

studies of de novo assembly tools for next-generation sequencing technologies.

Bioinformatics, 27(15), 2031–2037.

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y.,

et al. (2012). Soapdenovo2: an empirically improved memory-efficient short-read

de novo assembler. GigaScience, 1(1), 18.

Medvedev, P., Pham, S., Chaisson, M., Tesler, G., and Pevzner, P. (2011). Paired de

bruijn graphs: a novel approach for incorporating mate pair information into genome

assemblers. Journal of Computational Biology, 18(11), 1625–1634.

Miller, J. R., Delcher, A. L., Koren, S., Venter, E., Walenz, B. P., Brownley, A.,

Johnson, J., Li, K., Mobarry, C., and Sutton, G. (2008). Aggressive assembly of

pyrosequencing reads with mates. Bioinformatics, 24(24), 2818–2824.

Ossowski, S., Schneeberger, K., Clark, R. M., Lanz, C., Warthmann, N., and Weigel,

D. (2008). Sequencing of natural strains of Arabidopsis thaliana with short reads.

Genome Res, 18(12), 2024–2033.

Peng, Y., Leung, H., Yiu, S., and Chin, F. (2010). Idba–a practical iterative de bruijn

graph de novo assembler. In Research in Computational Molecular Biology, pages

426–440. Springer.

Pevzner, P., Tang, H., and Waterman, M. (2001). An eulerian path approach to dna

fragment assembly. Proceedings of the National Academy of Sciences, 98(17), 9748.

Phillippy, A. M., Schatz, M. C., and Pop, M. (2008). Genome assembly forensics:

finding the elusive mis-assembly. Genome Biol, 9(3).

Pop, M., Phillippy, A., Delcher, A. L., and Salzberg, S. L. (2004a). Comparative

genome assembly. Briefings in bioinformatics, 5(3), 237–248.

Pop, M., Kosack, D. S., and Salzberg, S. L. (2004b). Hierarchical scaffolding with

bambus. Genome research, 14(1), 149–159.

Ronen, R., Boucher, C., Chitsaz, H., and Pevzner, P. (2012). Sequel: improving the

accuracy of genome assemblies. Bioinformatics, 28(12), i188–i196.

Salmela, L., Mäkinen, V., Välimäki, N., Ylinen, J., and Ukkonen, E. (2011). Fast

scaffolding with small independent mixed integer programs. Bioinformatics, 27(23),

3259–3265.

Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen,

T. J., Schatz, M. C., Delcher, A. L., Roberts, M., et al. (2012). Gage: A critical

evaluation of genome assemblies and assembly algorithms. Genome Research,

22(3), 557–567.

Schatz, M. C., Phillippy, A. M., Sommer, D. D., Delcher, A. L., Puiu, D., Narzisi, G.,

Salzberg, S. L., and Pop, M. (2013). Hawkeye and AMOS: visualizing and assessing

the quality of genome assemblies. Brief Bioinform, 14(2), 213–224.

Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz, C., Smith,

L. M., Cao, J., Fitz, J., Warthmann, N., et al. (2011). Reference-guided assembly of

four diverse arabidopsis thaliana genomes. Proceedings of the National Academy of
Sciences, 108(25), 10249–10254.

Simpson, J., Wong, K., Jackman, S., Schein, J., Jones, S., and Birol, İ. (2009). Abyss:

a parallel assembler for short read sequence data. Genome research, 19(6), 1117–

1123.

Tsai, I. J., Otto, T. D., and Berriman, M. (2010). Method improving draft assemblies

by iterative mapping and assembly of short reads to eliminate gaps.

Warren, R. L., Sutton, G. G., Jones, S. J., and Holt, R. A. (2007). Assembling millions

of short dna sequences using ssake. Bioinformatics, 23(4), 500–501.

Zerbino, D. and Birney, E. (2008). Velvet: algorithms for de novo short read assembly

using de bruijn graphs. Genome research, 18(5), 821–829.

Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., and Yorke, J. A.

(2013). The masurca genome assembler. Bioinformatics, 29(21), 2669–2677.

9

