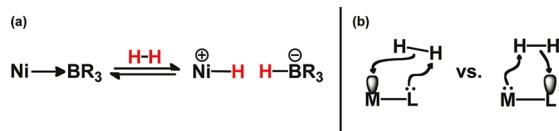


Reversible H₂ Addition across a Nickel–Borane Unit as a Promising Strategy for Catalysis

W. Hill Harman and Jonas C. Peters*

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States


 Supporting Information

ABSTRACT: We report the synthesis and characterization of a series of nickel complexes of the chelating diphosphine-borane ligands $\text{ArB}(\text{o-Ph}_2\text{PC}_6\text{H}_4)_2$ ($[\text{ArDPB}^{\text{Ph}}]$; Ar = Ph, Mes). The $[\text{ArDPB}^{\text{Ph}}]$ framework supports pseudo-tetrahedral nickel complexes featuring η^2 -B,C coordination from the ligand backbone. For the *B*-phenyl derivative, the THF adduct $[\text{PhDPB}^{\text{Ph}}]\text{Ni}(\text{THF})$ has been characterized by X-ray diffraction and features a very short interaction between nickel and the η^2 -B,C ligand. For the *B*-mesityl derivative, the reduced nickel complex $[\text{MesDPB}^{\text{Ph}}]\text{Ni}$ is isolated as a pseudo-three-coordinate “naked” species that undergoes reversible, nearly thermoneutral oxidative addition of dihydrogen to give a borohydrido-hydride complex of nickel(II) which has been characterized in solution by multinuclear NMR. Furthermore, $[\text{MesDPB}^{\text{Ph}}]\text{Ni}$ is an efficient catalyst for the hydrogenation of olefin substrates under mild conditions.

The noble metals are prominent in organometallic catalysis owing to their predisposition for controlled multielectron reactivity (e.g., oxidative addition).¹ Of late, increased focus has been given to developing catalyst systems using more abundant first-row transition metals (TMs).² This task entails special challenges given the propensity of the late 3d metals to undergo single-electron processes. Redox active ligands have emerged as one strategy to overcome this issue.³

We have recently explored the reactivity of first-row TM complexes featuring a silyl⁴ or borane⁵ moiety in the supporting ligand scaffold. In principle, the Lewis acidic functionality can serve to accommodate lower oxidation states via direct interaction with the metal center⁶ and/or to operate in tandem with the TM to activate a small-molecule substrate.⁷ The latter arrangement can be thought of as a minimal heterobimetallic system, wherein the main-group atom mimics a second metal and is preinstalled in the ligand framework.^{7c}

As a prototypical two-electron organometallic reaction, H₂ activation provides a suitable test case for this strategy. Heterolysis of the H₂ bond across a low-valent TM–borane interaction would provide a metal hydride/borohydride pair that could ideally be intercepted by substrate to achieve catalysis (Figure 1). Although H₂ addition across an M–B bond for any TM is rare,^{7a,8} it is conceptually related to H₂ activation by frustrated Lewis pairs (FLPs)^{9,10} and constitutes an attractive approach to extend to the base metals. We herein disclose an organometallic nickel complex supported by a diphosphine-borane ligand that undergoes facile, reversible

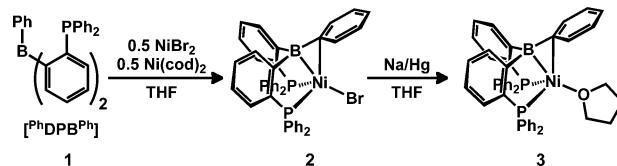
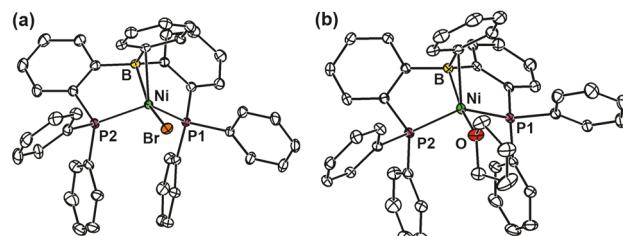


Figure 1. Schematic representation of (a) H₂ activation across a nickel–borane pair and (b) conventional (left) versus polarity-inverted (right) H₂ heterolysis at a TM–ligand pair.


oxidative addition of H₂ and catalyzes the hydrogenation of olefins under mild conditions.

We initially investigated nickel complexes of Bourissou's phenyl-substituted ligand PhB(*o*-PPh₂C₆H₄)₂ ($[\text{PhDPB}^{\text{Ph}}]$, 1).¹¹ Deep red-orange $[\text{PhDPB}^{\text{Ph}}]\text{NiBr}$ (2) was synthesized by the comproportionation of NiBr₂ and Ni(cod)₂ in the presence of 1 in THF (Scheme 1). Reduction of 2 in THF by Na/Hg

Scheme 1

afforded the diamagnetic pseudo-tetrahedral nickel–THF complex $[\text{PhDPB}^{\text{Ph}}]\text{Ni}(\text{THF})$ (3). Complexes 2 and 3 feature short Ni–(η^2 -B,C) interactions, as demonstrated by their solid-state structures (Figure 2).¹²

Figure 2. Thermal ellipsoid representations (50%) of (a) $[\text{PhDPB}^{\text{Ph}}]\text{NiBr}$ (2) and (b) $[\text{PhDPB}^{\text{Ph}}]\text{Ni}(\text{THF})$ (3). Hydrogen atoms are omitted for clarity.

Complexes 2 and 3 were found to be highly stable with respect to cleavage of the Ni–(η^2 -B,C) interaction. In

Received: December 6, 2011

Published: March 1, 2012

particular, **3** fails to react with H_2 after days at 60°C . To facilitate the desired bifunctional reactivity, we therefore installed a bulky mesityl substituent in the place of phenyl at boron to give $\text{MesB}(o\text{-PPh}_2\text{C}_6\text{H}_4)_2$ ($[\text{MesDPB}^{\text{Ph}}]$, **4**, see SI for details).

Deep maroon $[\text{MesDPB}^{\text{Ph}}]\text{NiBr}$ (**5**) was accessed by comproportionation analogously to **2** (Scheme 2). The solid-

Scheme 2

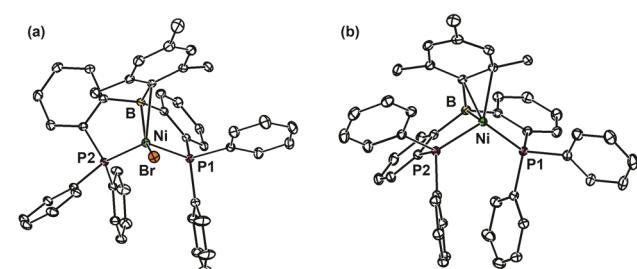
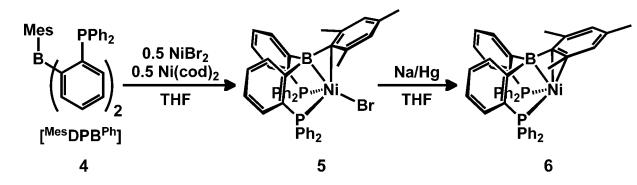



Figure 3. Thermal ellipsoid representations (50%) of (a) $[\text{MesDPB}^{\text{Ph}}]\text{NiBr}$ (**5**) and (b) $[\text{MesDPB}^{\text{Ph}}]\text{Ni}$ (**6**). Hydrogen atoms are omitted for clarity.

state molecular structure of **5** (Figure 3a) is crudely similar to that of the phenyl analogue **2**. The $\text{Ni}-\text{C}_{ipso}$ distance ($2.4329(10)$ Å) is lengthened by ~ 0.2 Å relative to that in **2**, suggesting some steric disruption of the $\eta^2\text{-B,C}$ interaction by the flanking methyl groups of the mesityl substituent. Reduction of **5** with Na/Hg affords the $[\text{MesDPB}^{\text{Ph}}]\text{Ni}$ complex (**6**), as confirmed by single-crystal X-ray diffraction (Figure 3b). Noteworthy is the absence of a solvent ligand. The coordination sphere features a shortened $\text{Ni}-\text{B}$ distance as well as close contacts with both the *ipso* and one of the *ortho* carbons of the mesityl unit ($\text{Ni}-\text{C}_{ipso} = 2.0751(8)$ Å, $\text{Ni}-\text{C}_{ortho} = 2.1616(8)$ Å). The coordinated aryl ring exhibits bond length alternation consistent with partial aromatization from the strongly back-donating nickel center.¹²

In sharp contrast to $[\text{PhDPB}^{\text{Ph}}]$ complex **3**, **6** reacts readily with H_2 in C_6D_6 at room temperature (Scheme 3). The product of this reaction has been characterized by a suite of solution NMR techniques. The ^1H , ^{31}P , and ^{11}B NMR spectra of the solution resulting from the addition of H_2 to **6** indicate the formation of a new diamagnetic product (**7**) in addition to residual **6** and free H_2 (Figure 4). The ^1H NMR spectrum of **7**

Scheme 3

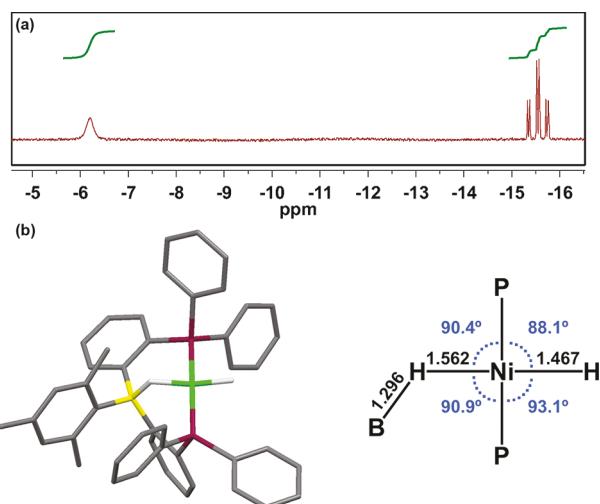
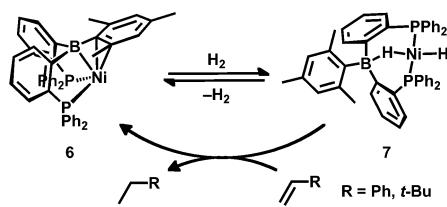



Figure 4. (a) Hydridic region of the ^1H NMR spectrum of **7** in C_6D_6 under 4 atm of H_2 at 298 K . (b) DFT-minimized structure of **7** (B3LYP/6-31G(d)) and selected bond lengths (Å) and angles (°) of the core structure. Hydrogen atoms bound to carbon have been omitted for clarity.

features two signature hydridic resonances that each integrate to one proton: a broad resonance centered at -6.16 ppm and a sharp triplet of doublets at -15.5 ppm ($^2J_{\text{PH}} = 57.8$ Hz, $^2J_{\text{H(H-H)}} = 14.6$ Hz). The proton-coupled ^{31}P NMR spectrum confirms that this most upfield hydride peak is coupled to two equivalent ^{31}P nuclei, and the smaller coupling interaction was assigned via two-dimensional ^1H NMR to the broad ^1H resonance at -6.16 ppm. The ^{11}B resonance of **7** (-5.0 ppm) is shifted upfield versus that of **6** (21.6 ppm), consistent with increased electron density at boron. On the basis of these spectral features, we propose that **7** is the hydrido-borohydrido complex $[\text{MesDPB}^{\text{Ph}}](\mu\text{-H})\text{NiH}$. Due to the symmetry indicated by the solution NMR data as well as DFT optimization of several potential isomers (Figure 4), we favor a square planar geometry for this species with two *trans*-phosphine donors, a terminal $\text{Ni}-\text{H}$, and a hydride ligand that bridges between B and Ni . This assignment is supported by the existence of structural analogues $(\text{R}_3\text{P})_2\text{NiH}(\text{BH}_4^-)$ ($\text{R} = \text{Cy, i-Pr}$)¹³ which have been characterized by IR and NMR^{13a} and X-ray crystallography.^{13b}

Under 1 atm of H_2 in C_6D_6 at 298 K , **6** and **7** exist in an equilibrium ratio of $\sim 1:5$ (6:7). Taking into account the concentration of dissolved H_2 , the equilibrium constant for the addition of H_2 to **6** to give **7** is $K_{\text{obs}} \approx 5$. This process is reversible, and removal of the H_2 by successive freeze-pump-thaw cycles regenerates **6** quantitatively. Under 4 atm of H_2 in C_6D_6 , a solution containing 95% **7** can be obtained. A van't Hoff analysis over a 60 K range (see SI) afforded thermal parameters of $\Delta H = -9.0 \pm 1$ kcal/mol and $\Delta S = -28 \pm 3$ eu.

The equilibrium defined in Scheme 3, whereby reversible oxidative addition occurs at a mononuclear nickel center, is to our knowledge without precedent.¹⁴ Mononuclear dihydrides of nickel are in general not stable and would instead be expected to favor H_2 release by reductive elimination. The presence of the Lewis acidic borane center in the ancillary ligand of **6**, allowing for a $\text{B}-\text{H}-\text{Ni}$ bridge to form in **7** via net H_2 heterolysis (possibly following an OA step at Ni), presumably facilitates the observed equilibrium. H_2 heterolysis reactions are common for $\text{Ni}-\text{H}_2$ chemistry; indeed, only a single thermally stable example of an H_2 adduct of Ni is

presently known.^{15,16} Heterolysis of H₂ at Ni typically involves Ni(II) as a Lewis acid that accepts H⁻ while an exogenous or internal base accepts H⁺.¹⁷ FLPs that incorporate TMs likewise typically exploit the TM as the Lewis acid.¹⁰ The present chemistry invokes an alternative scenario in which a Lewis basic Ni center accepts H⁺ and a Lewis acidic borane accepts H⁻ (Figure 1).

Given the ease with which **6** reversibly activates H₂, we were hopeful that a substrate might intercept **7** to regenerate **6**, providing a turnover step for catalysis (Scheme 3). The addition of 20 equiv of styrene to **6** in C₆D₆ results in a deep maroon solution, the ¹H NMR spectrum of which contains broadened peaks corresponding to free styrene as well as a new diamagnetic nickel complex that we presume to be [MesDPB^{Ph}]⁻Ni(η²-H₂C=CHPh) (**8**) (see SI). After exposure to an atmosphere of H₂ at room temperature, the formation of ethyl benzene was apparent as soon as a ¹H NMR spectrum could be acquired. During the course of catalysis, the solution remained dark maroon, and the ¹H NMR spectrum exhibited peaks corresponding only to free styrene, ethyl benzene, and **8**. Notably, neither **6**, **7**, nor free H₂ was observed by ¹H NMR spectroscopy so long as styrene was present. Provided the reaction was agitated sufficiently so as to replenish dissolved H₂, catalysis proceeded rapidly, with complete conversion after ca. 1 h. Upon full consumption of styrene, the solution lightened, and the ¹H NMR spectrum revealed an equilibrium mixture of **6**, **7**, and H₂ along with quantitative formation of ethylbenzene. Complete hydrogenation of styrene could be achieved at 1% loadings of **6**. The following observations are also noteworthy: An experiment using D₂ and norbornene as the acceptor substrate confirmed *syn* addition to the *exo* positions. Hydrogenation reactions performed in the presence of metallic Hg were uninhibited. Finally, exposure of **6** to a mixture of H₂ and D₂ (1:1, 1 atm) in C₆D₆ at room temperature resulted in very rapid formation of HD as observed by ¹H NMR spectroscopy.

Taken together, these results establish that hydrogenation catalyst **6** operates in an efficiency regime heretofore unknown for molecular Ni species.¹⁸ Heterogeneous nickel-based materials are widely used in the hydrogenation of olefinic substrates,¹⁹ but few homogeneous nickel catalysts have been reported,²⁰ and those that are known require uniformly high pressures (50 atm) of H₂ to realize appreciable activity. Oxidative addition of H₂ is not thought to be relevant in these systems.¹⁸

In conclusion, nickel hydrogenation catalyst **6** mediates the facile activation of H₂ via net oxidative addition across a Ni–B unit. The strategy outlined herein facilitates two-electron reactions at Ni, avoiding one-electron processes that result in thermodynamic traps in other Ni-based systems.^{14b} Given the facile H₂ activation carried out by **6**, the possibility that hydrogenase activity²¹ may be realized is being explored. Future studies will (i) map the substrate scope of hydrogenation catalyst **6** and (ii) explore the outlined approach in the context of related two-electron organometallic reactions catalyzed by noble metals. The efficient olefin hydrogenation catalysis described herein offers a promising lead toward these goals.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, characterization, and crystallographic data. This material is available free of charge via the Internet at <http://pubs.acs.org>.

AUTHOR INFORMATION

Corresponding Author

jpeters@caltech.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the NSF Center for Chemical Innovation: Powering the Planet grant CHE-0802907, and by the Gordon and Betty Moore Foundation. We thank Professor Greg Fu for a helpful suggestion.

REFERENCES

- Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals*, 5th ed.; John Wiley & Sons Inc.: New York, 2009.
- (a) *Catalysis Without Precious Metals*, 1st ed.; Bullock, R. M., Ed.; Wiley-VCH: Weinheim, 2010. (b) Hu, X. *Chem. Sci.* **2011**, *2*, 1867.
- Bart, S. C.; Lobkovsky, E.; Chirik, P. *J. Am. Chem. Soc.* **2004**, *126*, 13794.
- Lee, Y.; Peters, J. C. *J. Am. Chem. Soc.* **2011**, *133*, 4438.
- (a) Moret, M.-E.; Peters, J. C. *J. Am. Chem. Soc.* **2011**, *133*, 18118. (b) Moret, M.-E.; Peters, J. C. *Angew. Chem., Int. Ed.* **2011**, *50*, 2063.
- Amgoune, A.; Bourissou, D. *Chem. Commun.* **2011**, *47*, 859.
- (a) Tsoureas, N.; Kuo, Y.-Y.; Haddow, M. F.; Owen, G. R. *Chem. Commun.* **2011**, *47*, 484. (b) Miller, A. J. M.; Labinger, J.; Bercaw, J. J. *Am. Chem. Soc.* **2008**, *130*, 11874. (c) Krogman, J. P.; Foxman, B. M.; Thomas, C. M. *J. Am. Chem. Soc.* **2011**, *133*, 14582. (d) Figueroa, J. S.; Melnick, J. G.; Parkin, G. *Inorg. Chem.* **2006**, *45*, 7056. (e) Pang, K.; Tanski, J. M.; Parkin, G. *Chem. Commun.* **2008**, 1008.
- Bonanno, J. B.; Henry, T. P.; Wolczanski, P. T.; Pierpont, A. W.; Cundari, T. R. *Inorg. Chem.* **2007**, *46*, 1222.
- Stephan, D. W.; Erker, G. *Angew. Chem., Int. Ed.* **2010**, *49*, 46.
- (a) Chapman, A. M.; Haddow, M. F.; Wass, D. F. *J. Am. Chem. Soc.* **2011**, *133*, 18463. (b) Chapman, A. M.; Haddow, M. F.; Wass, D. F. *J. Am. Chem. Soc.* **2011**, *133*, 8826.
- Bontemps, S.; Gornitzka, H.; Bouhadir, G.; Miqueu, K.; Bourissou, D. *Angew. Chem., Int. Ed.* **2006**, *45*, 1611.
- For a review of η²-B,C and η³-B,C,C π-complexes, see: Emslie, D. J. H.; Cowie, B. E.; Kolpin, K. B. *Dalton Trans.* **2012**, *41*, 1101.
- (a) Green, M. L. H.; Munakata, H.; Saito, T. *J. Chem. Soc. D* **1969**, 1287a. (b) Saito, T.; Nakajima, M.; Kobayashi, A.; Sasaki, Y. *J. Chem. Soc., Dalton Trans.* **1978**, 482.
- The intermediacy of mononuclear nickel dihydrides is proposed in some H₂ activation processes which result in dimeric dinickel dihydride cores: (a) Pfirrmann, S.; Yao, S.; Ziemer, B.; Stöber, R.; Driess, M.; Limberg, C. *Organometallics* **2009**, *28*, 6855. (b) Bach, I.; Goddard, R.; Kopiske, C.; Seevogel, K.; Pörschke, K.-R. *Organometallics* **1999**, *18*, 10.
- (a) Kubas, G. J. *Metal Dihydrogen and σ-Bond Complexes: Structure, Theory, and Reactivity*, 1st ed.; Springer: Berlin, 2001. (b) He, T.; Tsvetkov, N. P.; Andino, J. G.; Gao, X.; Fullmer, B. C.; Caulton, K. G. *J. Am. Chem. Soc.* **2010**, *132*, 910.
- We have recently isolated thermally stable Ni–(H₂) adduct complexes of the type {(SiP^R)₃Ni(H₂)⁺: Tsay, C.; Peters, J. C. *Chem. Sci.* **2012**, *3*, 1313. (17) DuBois, M. R.; DuBois, D. L. *Acc. Chem. Res.* **2009**, *42*, 1974.
- Bouwman, E. In *Handbook of Homogeneous Hydrogenation*, 1st ed.; de Vries, J. G., Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, 2007.
- Keim, W. *Angew. Chem., Int. Ed.* **1990**, *29*, 235.
- (a) Angulo, I. M.; Bouwman, E. *J. Mol. Catal. A* **2001**, *175*, 65. (b) Angulo, I. M.; Kluwer, A. M.; Bouwman, E. *Chem. Commun.* **1998**, 2689.
- Vincent, K. A.; Parkin, A.; Armstrong, J. F. *Chem. Rev.* **2007**, *107*, 4366.