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An approach recently developed to solve the Bethe-Salpeter equation within density matrix perturbation theory
is extended to the calculation of optical spectra of periodic systems. This generalization requires numerical
integrations within the first Brillouin zone that are efficiently performed by exploiting point group symmetries.
The technique is applied to the calculation of the optical spectra of bulk Si, diamond C, and cubic SiC. Numerical
convergence and the accuracy of the Tamm-Dancoff approximation are discussed in detail.
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I. INTRODUCTION

The ability to compute optical absorption spectra from first
principles is of fundamental importance both to complement
and help interpret experiments and to predict the properties
of new materials."> For example, calculations of absorption
spectra may be instrumental in the search of photoelectrodes
with optimal sunlight absorption for solar cell applications.**
It is thus desirable to develop theoretical methods and
computational techniques to obtain absorption spectra that are
both accurate and scalable to systems with a large number of
atoms.

Two widely used approaches to compute ab initio op-
tical absorption spectra are time-dependent density func-
tional theory® (TDDFT) and many-body perturbation theory
(MBPT).! When local or semilocal exchange-correlation
functionals are used, time-dependent density functional theory
may be applied to relatively large systems (up to thousands of
electrons) and it has been proven to be accurate for several
molecules. However, the most commonly used local approx-
imations for the TDDFT kernel poorly describe the optical
properties of extended periodic solids and nanostructures.’
Within MBPT, the GW approximation (where G indicates the
single-particle Green’s function and W the screened Coulomb
potential) has been used to compute quasiparticle energies
and the Bethe-Salpeter equation (BSE) solved to compute
optical spectra. The GW/BSE approach is computationally
more expensive than TDDFT, but it overcomes some of the
limitations of local TDDFT, e.g., in the description of excitons
in periodic systems'®® and of charge-transfer excitations in
molecules.” Standard techniques to solve the BSE make use
of an electron-hole basis set,’” which requires the explicit
calculation of a large number of unoccupied electronic states
and the evaluation of a large number of exchange integrals
between valence and conduction states.

Recently, we have proposed a method to solve the BSE
that does not require the explicit calculation of empty
states.” This approach combines ideas proposed in the context
of TDDFT!®!! and techniques to represent the dielectric
matrix'>!? based on density functional perturbation theory.'*
The evaluation of the BSE kernel involves a number of orbitals
equal to the number of occupied states (&), and numerically it
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scales as ground-state Hartree-Fock calculations (see Sec. II).
The approach developed in Ref. 9 makes efficient use of
iterative solvers, and matrix by vector multiplications are
performed by using fast Fourier transform techniques, without
building and storing explicitly either the BSE Hamiltonian or
dielectric matrices.

In this work, we generalize the formalism of Ref. 9 to
periodic systems, and thus we include proper integrations
over the first Brillouin zone. The method is then applied to
the study of the optical properties of bulk silicon, carbon
diamond, and cubic silicon carbide. The convergence with
respect to several numerical parameters and the comparison
with previous results®® are extensively discussed.

The rest of the paper is organized as follows. In Sec. II,
the BSE formalism for periodic systems is presented within a
density matrix framework, and the techniques used to avoid the
explicit inclusion of empty states are illustrated. In Sec. III,
we show how the symmetry of the system can be used to
accelerate the solution of the BSE. In Sec. IV, we present
the application of the method to the calculation of the optical
absorption spectra of bulk silicon, carbon diamond, and cubic
silicon carbide, and we compare our results with previous
calculations. Section V contains our conclusions, and in the
Appendix, we give some details of the implementation of time-
reversal-symmetry operations.

II. THEORY

The density matrix perturbation theory formulation of the
BSE has been introduced in Ref. 9. Here, we present in
detail its extension to periodic systems. Because of several
formal analogies, the derivation given below can be easily
extended to the TDDFT formulation presented in Refs. 10, 11,
and 15, including not only (semi-)local exchange-correlation
functionals, but also hybrid functionals.

The starting point of our derivation is the quantum-Liouville
equation for density matrices written in the Coulomb-hole plus
screened-exchange (COHSEX) approximation'®:

d px(t)
dt

i = [Aconsex (1), px(t)], ey
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where the square brackets indicate commutators and a hat
denotes quantum-mechanical operators; within a real-space
representation, px(r,r',1) = ) ¢uk(r,1)¢’ (r',1) and the den-
sity matrix is given by

p(r,x 1) = Z wi ok (1,1, 1)

keBZ

= > @D, Q)

v keBZ

k denotes a point in the Brillouin zone (BZ), and ¢k(r,?) are
single-particle occupied Bloch orbitals. In the following, we
will adopt the notation p(r,?) to indicate p(r,r,?). In Eq. (2),
we have substituted the integral over the BZ with a summation
over a discrete set of k points:

1

Qpz Jau,

dk — Z Wk, 3

ke BZ

where wy weighs the contribution of each k point k and Qg
is the BZ volume.

The time-dependent quasiparticle Hamiltonian operator
applied to a valence state, in Hartree atomic units and within
the COHSEX approximation, is

/ Heonsex (1,1, 1) (x 1) dr’
1
= <—§V2 +vg(r,t) + Uex[(l',l)> ¢vk(rat)

+ / Sconsex(E.F a1, @)

where vy 1S an external time-dependent periodic potential,

vH(r,t)zfp(r’,t)v(r,r’)dr’ 5)

is the Hartree potential, and ¥cousex = Xcon + Xsgx is the
self-energy in the COHSEX approximation:

/ECOH(P,I")%k(l",t)dr’

- %/8(1’ — )W, (' r; K)gu(r',1)dr’, (©6)

/ Ssex (..o 1)

= _ Z Z / Goe (r,HW (', r;k — K)

v K'eBZ
X e (€ Do D). 7

In Egs. (5)—(7), v(r,r’) is the Coulomb potential, W(r',r; k —
K)=[ e 1(r',r";k — K)v(x”,r)dr” is the statically screened
Coulomb interaction, and W, = W — v. We note that, since
the Hamiltonian [Eq. (4)] depends on the density matrix g,
the set of equations (1) for different k points are coupled; this
would be so also for DFT Hamiltonians in the (semi-)local
approximation, which depend only on the charge density.
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Linearization of Eq. (1) with respect to vex leads to

ds
i%(t) = L+ P(t) + [Dey (), A1, ®)

L - pr(®) = [Aonsexs P + [0415'1(2), pg]
+ [Z1010). 5] 9)

(e

where variables with superscript represent unperturbed
quantities, and those with prime denote linear variations.
Within a real-space representation, the charge response p' =
p — p° is given by

P ) =Y wipprr. ) =Y Y wilp(r)¢ (1)

keBZ v keBZ
+ ¢ (. DB (X)]. (10)

Equation (10) denotes the linear variation of the density matrix
and gy = Pk — Py, is the contribution to 4’ of the k point k. We
note that 9, and > depend on the perturbed density matrix
0’ In Eq. (9), a non-Hermitian operator £ acting on p; has
been defined, which is known as Liouvillian superoperator,9‘1 1
as its action is defined on a space of operators. By Fourier
transforming Eq. (8) into the frequency domain, one obtains

(0 — L) pr(w) =[O (@), il an

This equation, derived here in the context of the BSE, is
formally the same within the density functional perturbation
theory (DFPT) formulation of TDDFT [see, e.g., Eq. (14) in
Ref. 11], but a different definition of the Liouvillian £ is used
in the two cases.

The solution of Eq. (11) yields the perturbed density matrix
in the frequency domain:

p'(r,r w) = Z Wk P (1,1, @)
keBZ

- Z Z Wk [P (N5 (X, —w)

v KeBZ
+ ¢ (@) ()] (12)

Equation (12) shows that p'(w) is fully determined by the
set of the N, unperturbed occupied states ¢, and by the
two sets of N, perturbed orbitals ¢%, (r',—w) and ¢/, (r,w),
orthogonal to the occupied state subspace. We note that p'(w),
unlike p’(¢) in Eq. (10), is a non-Hermitian operator. In order
to simplify the numerical implementation, we assume time-
reversal symmetry holds by imposing v.,,(r,t) = v, (r,—¢) in
Eq. (9). As a consequence, v.,,(r,®) is a real function and
¢,y (r,t) = ¢ (r,—1), implying ¢, _, (r,w) = ¢'%} (r,w) and
¢, _(r,—w) = ¢"% (r,—w). Therefore, assuming v (r,t) =
vl (r,—1) yields a real p’(w). This assumption does not limit
the generality of our approach since we are interested in
computing the macroscopic dielectric function of bulk systems
[see Eqgs. (13)—(16) below]; the latter is an intrinsic property
of the system and does not depend on the specific time or w
dependence of the applied electric field. Furthermore, since
we can perform the k <> —k transformation by a complex-
conjugate operation, the total number of k points included in
Egs. (11) and (12) can be significantly reduced. Details on the
time-reversal-symmetry operations are given in the Appendix.
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The absorption spectrum of a solid is related to the
imaginary part of the macroscopic dielectric function ey
defined by the equation (see also Ref. 14)

Eyi(0) = E(0) + 47 Pi(0) = B (@)E;(@),  (13)

where the indexes i and j indicate Cartesian components, Eg
is the applied external electric field, E is the screened field,
and P is the electronic polarization induced by E. In order to
compute €, it is convenient to start by setting the value of the
screened electric field E.'* By introducing the potential

v =—E)-r (14)

in Eq. (11), and expressing the polarization in terms of the
density operator

1 o 1 o
Pi(w) = -V kéjz wiTr(7 py) = —VTr(ri,o’) (15)

from Eq. (13), one has
ij 4 R Lo ~ Ao
() =8y — - 3wl — L+im~" 17, 41),
keBZ
(16)

where V is the crystal volume, 5 is a positive infinitesimal,
and we have written the scalar product of two operators A and
B as (A|B) = Tr(A'B). As already discussed in the Appendix
of Ref. 9, the definition of €, in Eq. (16) is equivalent to the
definition of the BSE macroscopic dielectric function given in
Ref. 1 [Egs. (2.23) and (B26)]. However the formulation of
Ref. 9 was so far applicable only to molecules. In addition, the
position operator in Eq. (14) is ill defined in periodic boundary
conditions; this problem can be overcome within perturbation
theory, following Refs. 14 and 17.
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The numerical solution of Egs. (11) and (16) requires a basis
set for p’. From Eq. (12), it follows that only the elements of 5’
between unperturbed occupied and empty orbitals are different
from zero. The use of those orbitals as a basis set leads to the
so-called electron-hole (e-h) representation, widely used in
the literature to solve the BSE.®® This approach requires the
explicit calculation of empty electronic states and convergence
with respect to their number has to be carefully checked.
By using the projector operators Qy onto the unperturbed
empty-state subspace, explicit calculations of empty states
may be avoided’: Ov=I1-P=1- Do, 100 ) (@0 ], where
Py is the projector onto the occupied state subspace for a fixed
Kk in the first BZ and [ is the identity operator. The evaluation
of Oy does not require the explicit calculation of empty states.
Since Bloch states corresponding to different k points are
orthogonal, the projection can be preformed independently
for each k point. Within this formalism, a generic operator A
can be represented by a set of 2 x N, x N orbitals that are
defined in the following way:

law) = Ok A 163, a7
(bl = (#3] A Ok, (18)

where the index v runs from 1 to the number of occupied
bands N,, while k is a point of the discrete mesh used to
perform the integral in the first BZ. If A = p’, we have a,i (r) =
¢, (r,w) and b, (r) = ¢, (r,—w). Within this representation,
the operator L takes the form

Ix _ yld
L:(D+2K K

_2lc2x + ICZd -D— Q,ICIX + ]Cld

2]c2x _ ’C2d )
19

where D, the exchange terms K and K%*, and the direct terms
K and K24 are defined as

D) Dk lavie) =Y Y (Heousex — €vie) Sur Suawlavie), (20)

v K'eBZ v kK'eBZ

A 1 / / / o
DY K lavk) =Y > wiOx ( / o Pk >dr> |Bo)- @1

v K'eBZ v KeBZ

A l / o / / o
S Kl = 3 wie O ( / ARt )dr) 165)- 22)

v kK'eBZ v k'eBZ

YN KM e laned =YY wie O ( / W(r,r';k - k/)ass/"‘k/(rw;k(r’)dr’) lavic). 23)

v kK'eBZ v K'eBZ

S Y K b = 3 wie O ( [woerik- k’)b:,kmr’)«zss.((r/)dr/) B 24)

v k'eBZ v k'eBZ
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The operator D describes bare single-particle ground-state
excitations, the K™ and KX terms include so-called local
field effects, and the ! and K2“ terms describe electron-hole
interactions. The integrals entering the definition of !¢
and C?¢ include divergent terms in reciprocal space; in our
implementation, these divergences are integrated by using the
method proposed in Refs. 18 and 19.

The formalism described here to solve the BSE is equivalent
to a time-dependent COHSEX within linear response; the
COHSEX self-energy enters both in the definition of the
bare independent quasiparticle (QP) ground-state excitations
in D and in the K'Y and K> components of the kernel.
In the linearization procedure used in Egs. (8) and (9), the
dependence of W (which enters Xcopsgx) on the density
matrix is neglected;” this implies that only the linearized Ysgx
contributes to K'Y and K>, The COHSEX approximation is
known to overestimate quasiparticle gaps,”' and single-particle
states and eigenvalues obtained within the G W approximation
are usually preferred as starting points for BSE calculations.
Within our current implementation, I-Alép (I:ICOOHSEX) is ap-
proximated either by the Kohn-Sham (KS) Hamiltonian, the
gap of which is corrected by the use of a scissor shift A
(ﬁép = I:IED AT A O, or by including several GW corrected
eigenvalues using Eqgs. (24) and (25) in Ref. 9; the scissor
approximation is accurate for the s- p bonded solids considered
in this work.?? The introduction of a more general scheme to
include quasiparticle corrections within our formulation of the
BSE will be the subject of future work. For example, the use in
Eq. (20) of the enhanced COHSEX approximation presented in
Ref. 23 may yield quasiparticle corrections of accuracy similar
to that of the G W approximation, in a way fully consistent with
our formulation.

The evaluation of the integrals defined by Eqgs. (23) and
(24) is the most expensive part in a BSE calculation. We note
that the number of orbitals involved in the definition of !¢
and K?? is equal to the number of occupied states. Hence, the
scalability of our approach is the same as that of a ground-state
Hartree-Fock calculation (assuming W = v for simplicity;
the scalability of the calculation of the dielectric matrix is
discussed in detail in Ref. 12). Specifically, in a plane-wave
(PW) implementation, the evaluation of K and 1C?¢ scales as
a[Nf X le X Npw x In Npw], where Npw is the size of the
plane-wave basis set and « is constant with respect to system
size; this is exactly the same scaling as that of calculations of
the Hartree-Fock exact exchange. As shown in the next section,
the computational complexity can be further decreased to
a[N2 x Ng x Nk, X Npw x In Npw], where N, is the num-
ber of k points in the irreducible Brillouin zone, by exploiting
the symmetry operations of the system point group. In general,
the constant (or prefactor) o of a BSE calculation is much
larger than that of a ground-state Hartree-Fock calculation.
For example, for the systems studied in this work, a number
of Lanczos iterations between 1000 and 2000 is necessary to
achieve convergence, and for each iteration, four operations
are performed, with the same complexity of Hartree-Fock
exact-exchange calculations (only one of such operations is
required within the Tamm-Dancoff approximation). Within a
electron-hole approach, the evaluation of !¢ and K% scales
as [N, x N. x N} x Npw x In Npw]. Since in general N, is
much larger than N,, the approach presented in this work is
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more efficient than an electron-hole approach and increasingly
so for large systems. Within a matrix representation, the
dimension of £ [Eq. (19)] is 2 x N, X N, X Nk in an e-h
approach. Only in cases where N, and N can be chosen
small enough, the matrix £ can be built explicitly and kept in
memory for subsequent use (such as, i.e., the calculation of
the dielectric tensor using the Lanczos algorithm). Storing £
clearly allows for a large decrease in the prefactor « of e-h BSE
calculations, with respect to those presented here. However,
explicit calculation and storage of £ are possible only for
relatively small systems, as the required memory becomes
rapidly unaffordable for large values of N, and Ng. Within
the density matrix perturbation theory approach of this work,
the dimension of £is 2 x N, X Npw X Ni; if one chooses N,
to be the total number of conduction states, since N, > N,
and Npw = N, + N, & N, the matrices representing £ in the
density matrix perturbation theory approach and in the e-h
approach have similar dimensions.'> Npy is usually a large
number, and thus within our method, the matrix £ is never
built explicitly. Our approach is instead based on iterative
calculations, where the application of £ to a generic vector
is performed by taking advantage of procedures analogous to
those used in applying the Hamiltonian to wave functions in
ground-state calculations.

In the evaluation of K¢ and K¢, one needs to eval-
uate the inverse dielectric matrix e~! entering the defi-
nition of the screened Coulomb interaction W(r',r;q) =
f e~ (' ,x”; Qu(x”,r)dr” (where q is a generic wave vector).
Also, in this case the explicit calculation of empty electronic
states can be avoided by using DFPT. In particular, following
Refs. 12 and 13, we use an eigenvalue decomposition of
the symmetrized dielectric matrix>* € in the random-phase
approximation (RPA) and an iterative algorithm to obtain
eigenvalues and eigenvectors: such algorithm involves the
evaluation of the action of € on trial potentials. Finally, no
inversion of the dielectric matrix is necessary as a spectral
decomposition of €' is easily obtained from the eigenvalues
(A;) and eigenvectors (V;) of €:

N
Sl =1+Y M@ @-1]F@. @5

i=1

As shown in Ref. 9 and in Sec. IV below, convergence of
computed spectra can be achieved with a small number N of
eigenpairs included in Eq. (25). Indeed, it has been shown
that the eigenvalues A; are always greater than or equal to 1
(Ref. 24) and that for a variety of systems, (){' — 1) decays
rapidly to zero as the eigenvalue index increases.'>!?

III. USE OF SYMMETRIES IN THE SOLUTION OF THE
BETHE-SALPETER EQUATION

As shown in the previous section, the solution of the BSE
for crystalline materials (and in general for periodic systems)
involves the evaluation of integrals over a grid in the first
Brillouin zone. Our implementation exploits the symmetry of
the system to reduce the computational time and the memory
requirements of the calculations. In a crystal, the most general
symmetry operation is given by a combination of a rotation
R and a fractional translation f (denoted by {R|f}). The set of
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symmetry operations {R|f} constitutes the space group of the
crystal. By using rotations R, we can express a generic point
in the BZ as k = Rk;, where k; belongs to the irreducible
BZ (IBZ). The unperturbed Bloch wave functions satisfy the
following equation®:

Po(®) = Gy, (1) = By (R™'r — 1), (26)

The perturbed orbitals implicitly depend on the direction of
the electric field [Eq. (14)]. For this reason, they satisfy the
relationship
¢ r.w) = ¢ g rw) = Y Ry (Rt —fw),  (27)
J

where i and j indicate Cartesian coordinates; the same
relationship holds for the ¢'%, (r, —w) perturbed orbitals. These
properties can be used to improve the efficiency of the
numerical solution of the equations described in the previous
section. We first consider the calculation of P; in Eq. (15).
From the definition of p’(w) in Eq. (12), we have

Pij(w) = —— Z wkTr r,pk ——/r,pf(r w)dr,
keBZ

(28)

where we have emphasized the dependence of P; and p; on
the direction of the electric field, corresponding to the jth
Cartesian coordinate. By defining

> W (r.0) (29)
kielBZ

from Eqs. (26) and (27) and (12), we have

1 g
FSZZR,-,QI(R r—fo),  (30)
R 1

where N indicates the number of symmetry operations of the
space group of the system; finally, one has

Pij = —VN—SZZRJZ/riQ/Z(R_Ir—f,w)dr
= —VN—SZZR,mRﬂ/er’l(r,a))dr. (31)

R Im

The set of Egs. (29)—-(31) shows that the perturbed density
matrix ¢’ (and consequently the macroscopic dielectric func-
tion) can be computed by solving Eq. (11) only for the k
points in the irreducible Brillouin zone instead of the full
Brillouin zone. Symmetry operations can be further exploited
in the calculation of the ¥ and X** components of the kernel
defined in Egs. (21) and (22). To this end, in Eq. (21) we define

W) =) Y wedi®aly () = ) wien (@),

v k'eBZ k'eBZ

0" (r,w) =

o (r,w) =

(32)

where the orbitals al{k(r) satisfy Eq. (27) (where for simplicity
we have omitted the implicit dependence on the jth Cartesian
coordinate). Likewise, in Eq. (29), we define

Ay = ) wn’y, () (33)

ki€IBZ
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and, finally, we have
1 ~
N ZZRﬂn”(R*Ir/ —1). (34)
R I

Equation (33) implies that, in order to evaluate the term in
parentheses in Eq. (21) [and in Eq. (22)], it is necessary to
consider only the orbitals corresponding to kK’ points inside the
irreducible BZ. Such simplification can not be exploited in a
straightforward manner for the calculation of X' and K% as
defined in Egs. (23) and (24), where one needs to sum k’ over
the full BZ.

In order to calculate o'/ (r,), the linear system of Eq. (11) is
iteratively solved using the non-Hermitian Lanczos algorithm
introduced in Ref. 11. To apply the required symmetrization
operations [i.e., Eq. (34)], three simultaneous iterative chains
are performed at the same time, corresponding to the three
directions of the perturbing electric field.

n/j(r/) —

IV. APPLICATIONS TO BULK SILICON, CARBON
DIAMOND, AND SILICON CARBIDE

The formalism presented in the previous sections has been
implemented in the framework of the QUANTUM ESPRESSO
(QE) package, which uses plane waves as a basis set and
pseudopotentials.?® The quasiparticle Hamiltonian H° in
Eq. (20) is approximated by ﬁKs + AQk, where I:IKS is the
Kohn-Sham (KS) Hamiltonian and A is the difference between
the quasiparticle gap and the KS gap (scissor approximation).
From quasiparticle (QP) calculations at the GW level of
theory,'¢ it is known that the scissor approximation is accurate
for the description of the band structure of several sp-bonded
bulk systems.?

We computed the absorption spectra of solids as the
imaginary part of the macroscopic dielectric function &y,
[Eqg. (16)]. In general, ¢), is a tensor, but in the specific cases
studied here, this tensor is diagonal and the diagonal elements
all have the same value.

We first discuss the absorption spectrum of bulk silicon.
The ground-state calculation has been performed using the
local density approximation (LDA) in the Perdew-Zunger?®’
parametrization and the pseudopotential was taken from the
QUANTUM ESPRESSO liblrary.28 We used a lattice constant
optimized at the LDA level of theory (10.20 ay), as given
in Ref. 29. The value of the scissor shift A is determined as the
difference of the experimental value of the minimum direct
QP gap at the I" point (3.4 eV) (Ref. 30) and the LDA gap
at the same point (2.57 eV). The use of a computed GoWy
quasiparticle gap would not significantly affect our results,
since the GoW approximation reproduces the experimental
value within 0.1 eV.??> A cutoff of 18 Ry was used to expand
the ground-state wave functions as well as the dielectric matrix
in Eq. (25); all the empty bands described by this cutoff
are implicitly included in our calculation, corresponding to
at least 328 empty bands per k point. In Refs. 6 and 7, as
few as four conduction states were considered sufficient to
reasonably converge the spectrum of bulk silicon. However,
even in this case, our approach has a few advantages over
the traditional e-h approach: the convergence with respect to
the number of empty states does not need to be tested; the
number of perturbed orbitals included in our calculations is
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equal to N, (=4); due to the large amount of e-/ pairs included
implicitly in our approach, the spectrum can be computed up
to high energy and the validity of the f-sum rule can be easily
verified (see below).

As shown in Ref. 31, the convergence of the static
macroscopic dielectric constant (head of the dielectric matrix)
is rather slow with respect to the k points included in the first
BZ. In order to integrate the BSE, we use Monkhorst-Pack
(M-P) grids of special k points as implemented in QE.*>33 As
shown in the early work of Benedict et al.® in order to improve
the convergence of computed spectra, it is useful to shift the
grid from the origin (I point). In the QE implementation,
automatically generated k-point grids centered at I may
be shifted by (5-bi + 5-by + 3-b3), where n is the grid
dimension and by, b,, and b; are reciprocal lattice primitive
vectors. Since in the face-centered-cubic lattice after such shift
the k-point grid does not have the full symmetry of the crystal,
additional points are generated, leading to a mesh with four
times the number of k points as in the original grid. This
fact can be understood in the simple case of a single £ point
1 x 1 x 1 mesh shifted in (1b; + 1b, + 1b3). By applying
all the symmetry operations (48 for the systems considered
in this work), we can generate additional k points %bl, %bg,

%b3 equivalent by symmetry. This leads to a mesh with four
times the k points as the original 1 x 1 x 1 mesh. Of course,
only the k point (%bl + %bz + %b3) is included in the IBZ
and this property is exploited to accelerate the calculations, as
discussed in Sec. III. If the single k point is shifted by a random
vector in the BZ, the application of the symmetry operations
may lead up to 48 different k£ points in the full BZ (this is
the number of symmetry operations of the point group of the
diamond lattice). Similar arguments can be applied to the case
of a k-point mesh of larger dimensions. The convergence with
respect to the dimension of the grid is discussed below.

In order to test the computational parameters and approx-
imations entering the solution of the BSE, we have first
performed calculations for Si with a 4 x 4 x 4 mesh with
the origin shifted by (%bl + %bz + %b3). This grid is then
symmetrized, leading to 256 k points in the full BZ and 10 in
the IBZ. This mesh is sufficient to obtain accurate ground-state
properties, but does not yield converged results for absorption
spectra; nevertheless, it is sufficiently accurate for the purpose
of testing additional numerical parameters and approximations
involved in the solution of the BSE. In Fig. 1, we show the
convergence of the absorption spectrum of bulk silicon as a
function of the number of eigenvalues and eigenvectors used in
Eq. (25). The convergence is rapid and no difference is present
between the spectra obtained using 16 and 48 eigenvalues. We
note that the dimension of the full matrix is 2733, which is
much bigger than the small number of eigenpotentials used
here for its representation. In Fig. 2, we compare results
obtained with and without the Tamm-Dancoff approximation
(TDA). Minor differences are observed only in the high-energy
part of the spectrum. We have also computed the f-sum rule
for these spectra and found that the full BSE fulfills 97% of the
f-sum rule, while the TDA spectrum yields 107%. The TDA
appears to be reliable for the optical properties of bulk systems,
as widely accepted since the early use of the BSE.” However,
the TDA may break down for the optical spectra of molecules
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FIG. 1. (Color online) Absorption spectrum of bulk silicon
computed as a function of the number of eigenvalues and eigenvectors
used in the spectral decomposition of the dielectric matrix [Eq. (25)].
A mesh of 256 k points in the BZ corresponding to 10 & points in the
IBZ has been used. A Lorentzian broadening of 0.24 eV was added
to the curves.
and nanostructures’* and for the electron energy-loss spectra
of bulk systems.® In the following, calculations on larger
k-point grids are carried out within the TDA approximation.

‘We now consider the convergence of the spectrum of bulk
silicon as a function of the dimension of the k-point grid used
in the calculations. In Fig. 3, we show the results for three
different Monkhorst-Pack grids®? of dimensionn x n x n with
n = 8,10, and 12, respectively, and we compare them with the
experimental spectrum.>® In order to improve the convergence,
the origin of those grids is shifted by (3-b; + 5-bs + 3-b3).
After symmetrization, the total number of k points in the grid
is 4 x n x n x n. Our calculations give accurate results for
the position and intensity of the two main peaks, compared to
experiment, with an error of at most 0.12 eV for the first (E£;)

60

— TDA BSE
50F — full BSE

401

30

Im[€p (w)]

=)
T

1 1
02 3 4 S 6

o [eV]

FIG. 2. (Color online) Absorption spectrum of bulk silicon com-
puted with and without the Tamm-Dancoff approximation (TDA). A
mesh of 256 k points in the BZ corresponding to 10 k points in the
IBZ has been used. A Lorentzian broadening of 0.24 eV was added
to the curves. We used 16 eigenvalues in Eq. (25) (see Fig. 1).
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FIG. 3. (Color online) Absorption spectrum of bulk silicon
computed with different Monkhorst-Pack k-point grids, compared
to the experimental results (Ref. 36). A Lorentzian broadening of
0.11 eV has been added to the computed curves.

transition. However, in the computed spectra, we obtain a weak
additional peak between the two main transitions that has a
strong dependence on the k-point mesh used in the calculation.
This extra peak was already present in some of the earlier
BSE calculations of the optical spectrum of bulk silicon®’ and
in recent publications,’” as shown in Fig. 4. When the same
k-point mesh is used, our approach reproduces the same result
of a well-converged electron-hole calculation [see Fig. 4(b)].
Since the early applications of the BSE to the calculation of
spectra of bulk systems, it was suggested that the use of M-P
grids was likely responsible for the appearance of spurious
peaks in the spectra.®® It was also suggested that the use of
grids shifted off the high-symmetry directions® or randomly
distributed k points may help avoid the appearance of spurious
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spectral features. For example, in Ref. 38, the example of an
independent particle spectrum computed with 400 000 k points
was presented, showing improved accuracy. However, such a
large mesh is not affordable in the solution of the BSE for
realistic solids. For the sake of completeness, in this work we
have also considered the use of a k-point grid off symmetry,
obtained by shifting the origin of a regular grid at ébl +
%bz + 6—34b3, as suggested in Refs. 8 and 38; in this case, the
grid is not symmetrized and the formalism described in Sec. 11T
to accelerate the calculations can not be applied (only the time-
reversal symmetry is used, as explained in the Appendix). The
results are shown in Fig. 5 for some of the components of the
dielectric tensor. Since the grid does not have the full symmetry
of the crystal, the diagonal components of ¢, are different from
each other, and the off-diagonal components of the tensor are
different from zero. In Ref. 8, the perturbation was applied
along the (1,1,1) direction, amounting to an average of all the
components of the tensor. This average eliminates the spurious
peaks, which, however, are still present on the xx and yy
diagonal components of the tensor (see Fig. 5). In this work,
we have not considered random k points in the integration
of the BSE. In the literature, the BSE spectrum of silicon
has already been computed using 1000 k points randomly
distributed over the BZ, finding a shoulder instead of a peak
between the two main transitions (see Fig. 2 of Ref. 39). Since
a random distribution of k points does not have the lattice
symmetry, an effect analogous to the one shown in Fig. 5 might
occur also in this case, especially for a small set of k points.
We note that a systematic test of the convergence of random
distributions of k points or grids shifted off-symmetry can not
take advantage of the symmetry to simplify the calculations
and would become rapidly impractical when increasing the
size of the sampling.

As a further application of our technique, we have computed
the absorption spectrum of carbon diamond. Also, in this
case, the ground-state calculation was performed using the

60 60
— IZ?ngIZ — 8x8x8
— Ref. B F
sop — Rek: 6 ol Ref. 37
=40 — 40F
g g
."'E. 30 F‘_E, 30
g E
20 = 20}
10 10
(b)
0 1 1 1 | 0 1 1 |
2.5 3 3.5 4 4.5 2.5 3 3.5 4 4.5 5
o [eV] o [eV]

FIG. 4. (Color online) (a) Comparison of the bulk silicon spectrum (computed with a 12 x 12 x 12 shifted k grid) with some of the early
BSE calculations (Refs. 6 and 7). In Ref. 6, a grid containing 2048 k points in the BZ was used, while in Ref. 7, a 32 k-point grid was
extrapolated up to 500 & points. (b) Comparison of the bulk silicon spectrum computed using an 8 x 8 x 8 shifted k grid using our method
and the electron-hole implementation of the Yambo code (Ref. 37); in this case, an energy-dependent broadening was used in order to compare
with Ref. 37 (in the energy range shown in the figure, the broadening increases linearly from 0.02 to 0.15 eV as a function of w).
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FIG. 5. (Color online) Absorption spectrum of bulk silicon
computed with the nonsymmetric k-point mesh proposed in Ref. 8.
A Lorentzian broadening of 0.11 eV has been added to the curves.
The different components of &), are represented by different colors.

local density approximation and the pseudopotentials were
taken from the QUANTUM ESPRESSO library.?® The lattice
parameter was set to the experimental value of 6.74 ao.*
A cutoff of 40 Ry was used to expand the wave functions,
and more than 300 empty bands are implicitly included in
our calculation. The value of the scissor shift A is obtained as
the difference between the value of the experimental minimum
direct gap (7.3 eV) (Ref. 41) and the LDA minimum direct gap
(5.66 eV). As shown in Ref. 22, the Gy W quasiparticle and
the experimental gap differ by 0.2 eV. As suggested in Ref. 8, a
6.4% stretch of the valence band was applied to correct for the
underestimate of the valence-band width given by the LDA.
We tested the convergence of our results with respect to the
number of eigenpairs included in Eq. (25) and the accuracy of
the Tamm-Dancoff approximation. The conclusions are similar
to the case of bulk silicon. In Fig. 6, we show the results

20
— 8x8x8
— 10x10x10
—— Experiment
15F

Im(gn (@)]
-

1 1
4 6 8 10 12 14 16 18
o [eV]

FIG. 6. (Color online) Absorption spectrum of carbon diamond
as computed with different Monkhorst-Pack k-point grids, compared
to the experimental results from Ref. 42. We used 16 eigenvalues in
Eq. (25). A Lorentzian broadening of 0.57 eV has been added to the
computed curves.
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FIG. 7. (Color online) Absorption spectrum of silicon carbide as
computed with an 8 x 8 x 8 shifted Monkhorst-Pack k-point grid
compared to the experimental results from Ref. 44. The results are
shown for two different values of the Lorentzian broadening.

for the calculated absorption spectrum of carbon diamond
for two different k-point grids and we compare them with
the experimental curve (from Ref. 42). In this, case the
convergence with respect to the dimension of the k-point grid
is faster than for bulk silicon; however, following Ref. 43, a
larger Lorentzian broadening than in bulk Si was used for the
computed spectrum (0.57 eV), which overall has less features
than that of Si. The comparison with the experimental data is
satisfactory, with a shift in the main peak of about 0.1 eV.

As a final example, we consider the absorption spectrum
of silicon carbide in the zinc-blende structure. The calculation
was performed in the local density approximation with the
lattice parameter set to the experimental value of 8.24 ay.*
A cutoff of 40 Ry was used to expand the wave functions,
corresponding to the implicit inclusion of more than 580
empty states. The value of the scissor shift is obtained as
the difference between the experimental gap of 2.39 eV
(Ref. 40) and the LDA gap of 1.30 eV. In Fig. 7, we show
the BSE spectrum computed for a 8 x 8 x 8 shifted k-point
mesh and the experimental curve from Ref. 44. Overall, the
agreement between theory and experiment is good, and the
main peak position is reproduced with an error of about
0.15 eV. If a Lorentzian broadening of 0.57 is used, as in
the case of diamond, a good agreement between the computed
and experimental intensities is found, but the first shoulder
of the experimental spectrum is not visible. This shoulder
becomes detectable in the spectrum computed using a 0.27 eV
broadening. In this case, the intensity of the main peak is
overestimated; overall, our computed spectra are similar to
previous results in the literature.?*

V. CONCLUSIONS

In this work, we have presented the extension to periodic
systems of the density matrix perturbation theory formalism’
for the calculation of optical absorption spectra. Within this
approach, the explicit calculation of empty electronic states
and the storage and inversion of the dielectric matrix for the
calculation of the screened Coulomb interaction are avoided.
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The use of both spatial and time-reversal symmetries leads
to a significant reduction of the computational workload. As
a proof of principle, we have applied our approach to the
calculation of the optical absorption spectra of bulk silicon,
carbon diamond, and silicon carbide. The convergence of
numerical parameters, such as the dimension of the k-point
grid and the number of eigenpairs used to expand the dielectric
screening, have been carefully discussed. The accuracy of
the Tamm-Dancoff approximation for bulk systems has been
confirmed by the explicit calculation of absorption spectra and
sum rules. Our results exhibit good agreement with previously
published data®® and with experimental spectra.’¢#?
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APPENDIX: TIME-REVERSAL SYMMETRY

In order to simplify the implementation described in Sec. II,
itis useful to exploit the time-reversal symmetry in the solution
of the Bethe-Salpeter equation, which consists in assuming
Vext(T,1) = vex(r,—1) in Eq. (4). The use of this symmetry
yields a real perturbed density matrix in the frequency domain
[Eq. (12)], and the actual number of k points needed in
Egs. (11) and (12) is decreased by about 50%. For the sake of
simplicity, we will first illustrate the time-reversal-symmetry
result for a generic real nonlocal Hamiltonian, which satisfies
the property H(r,r',t) = H(r,r',—t). We consider the corre-
sponding time-dependent Schrodinger equation

M /H(rr Do (X, Hdr’. (A1)
By time inversion, one has
M / A, ¥, Dpu(r,—dr,  (A2)
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and the complex conjugate of this equation is
dd)vk(r
dt

By comparing Eq. (A3) with the time-dependent Schrédinger
equation corresponding to —Kk,

/H(rr NP (r,—1)dr’. (A3)

M / Hr.x Dy_i(r,0)dr, (A4)
we have that
Gu—k(r,t) = ¢y (r,—1); (A5)
by Fourier transforming Eq. (A5), one has
$—k(r,0) = ¢\ (r, o). (A6)

It is important to note that I:ICOHSEX in Eq. (4) is a self-
consistent Hamiltonian, namely, it depends on the solu-
tion of the time-dependent Schrodinger equation. Under
the assumption of Eq. (AS5), it is easy to see that the
COHSEX Hamiltonian under time-reversal symmetry trans-
forms as HCOHSEX(r r',t) = COHSEX(r r',—t). This prop-
erty is consistent with the derivation of this appendix.
Indeed, for the COHSEX Hamiltonian, Eq. (A2) would

become
Ay (r,—1) A ,
_lkd—t = /HCOHSEX(I‘,I',—t)¢vk(l',—l)dl‘/

= /I:IéOHSEX(rfr/st)¢vk(r,_f)dl’/ (A7)

and Eq. (A3) remains unchanged when a complex-conjugate
operation is applied. Since @k(r,t) = ¢, (r) + ¢, (r,1), the
properties in Eqs. (A5) and (A6) are still valid for perturbed
orbitals, namely, ¢, _,(r,t) = ¢"% (r,—1) and ¢, ,(r,w)=

" (r,w). For this reason, assuming the time-reversal sym-
metry in the external time-dependent potential, the perturbed
density matrix in Eq. (12) can be considered as real. Fur-
thermore, since for every perturbed orbital at k we can
obtain the corresponding —k by a simple complex-conjugate
operation, the total cost of the calculation is significantly
decreased (except of the I' point and the k points at the
boundaries).
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