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a  b  s  t  r  a  c  t

Biological  redox  machines  require  efficient  transfer  of  electrons  and  holes  for  function.  Reactions  involv-
ing  multiple  tunneling  steps,  termed  “hopping,”  often  promote  charge  separation  within  and  between
proteins  that  is  essential  for energy  storage  and  conversion.  Here  we  show  how  semiclassical  electron
transfer  theory  can  be extended  to  include  hopping  reactions:  graphical  representations  (called  hopping
maps)  of the  dependence  of  calculated  two-step  reaction  rate constants  on  driving  force  are  employed
nsfer
nneling

aps
ins azurin

tide reductase
yase

to  account  for  flow  in a  rhenium-labeled  azurin  mutant  as well  as in two  structurally  characterized
redox  enzymes,  DNA  photolyase  and  MauG.  Analysis  of  the  35 Å radical  propagation  in  ribonucleotide
reductases  using  hopping  maps  shows  that  all  tyrosines  and  tryptophans  on  the  radical  pathway  likely
are  involved  in function.  We  suggest  that  hopping  maps  can  facilitate  the  design  and  construction  of
artificial  photosynthetic  systems  for  the  production  of fuels  and  other  chemicals.

© 2012 Elsevier B.V. All rights reserved.
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biological redox reactions rely on charge transport over
ances. Examples include the photosynthetic systems of
] and the respiratory machinery in bacteria, yeast and
karyotic cells [2]. The emergence of macromolecular X-ray
raphy and ultrafast spectroscopic techniques as key bio-
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 tools has opened the way for investigation of ET pathways
molecules that function in photosynthesis and respiration.
ion of the X-ray structures of complexes I–IV [3] and ATP
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 [4] in the mitochondrial respiratory chain [5] illustrates
lexity of the multi-step electron transfer (ET) cascade that
2 reduction and ATP synthesis. In both redox machines,

n 10 single ET steps take place during their catalytic cycles.
nding the factors that control the flow of electrons and
these and other biomolecular systems is one of the holy
1st century chemistry [6].

on/hole separation in biological redox machines often
ed through multiple ET steps (hopping) with minimal
free energy. Hopping is especially important in the func-
ght harvesting biomolecules, which efficiently separate

/holes on millisecond or longer timescales. Our research
g protein scaffolds modified with metal-based photooxi-
hotoreductants has greatly enhanced the understanding

step ET in proteins [7,8]. We  have recently extended our
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ations of Y and Z are zero and use Mathematica software
lve the equations. We  are interested in the overall ET rate
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ion  from the 3CS state.

m [9].
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Fig. 2. Hopping map  for ReI(His124)(Trp122)AzCuI azurin (*Re = His124*Re(4,7-
Me2-phenanthroline)(CO) +). The parameters used to generate the map  are given
in  the text.
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 of hopping. Indeed, DFT calculations indicate that elec-
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ch ET-promoting specific interactions can, in principle,
ed in the hopping maps by increasing HDI(r0) or using

 effective rDI distance. Time-resolved IR spectra of the
e chromophore also have revealed that ET from Trp122

 a timescale similar to that of the structural and solvation
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ess is not observed in ReI(His124)(Tyr122)AzCuI, even
+/e− oxidation of Tyr at pH 7 is more favorable (by

) than that for 1e− oxidation of Trp. The lack of activity
r122 protein likely is due the absence of a suitable pro-
tor near the phenolic proton [20]. Hopping also does not
sine or phenylalanine is at position 122.

ts of ET distances

ng  ET distances is problematic when aromatic amino acids
ved, because upon oxidation the electron does not neces-

e from a single atom. Also, a specific ET pathway may be
 with an “effective” ET distance [14,15]. In our treatment
eled azurin, we  used the average distance between the

in the Trp indole and ReI or CuI in the X-ray structure
, r2 = 12.8 Å, rT = 19.4 Å). As an alternative formulation,
dge or “closest” distances could be used. In this case

 r2 = 10.8 Å and rT = 19.4 Å (the hopping map for these dis-
 shown in Fig. 4). The calculated time constant for CuII

n in the modified azurin is 5 ns, which is near the observed
 ns) and a factor of 10 smaller than that from the original
. 2).
lations of ET distances different from the above exam-
an be tested. We  could take the 6 indole atoms closest

 calculate r1, and the 5 indole atoms closest to CuI for
that r1 = 7.4 Å, r2 = 11.8 Å and rT = 19.4 Å. These distances

 consistent with the calculated HOMO of indole, as well
ted and experimental values for the spin density on the

n radical [21], and with the proposed Re-Trp122 coupling
b]. In this case the calculated time constant for CuII pro-

s 24 ns. Instead, picking a single atom like C3 (the carbon
hes indole to the peptide backbone) gives a time constant

[9], not far from that using average distances. We  have
at changes of less than ±1 Å in ET distance give hopping
tants that vary at most by a factor of 10. The basic shape of
ing region in the map  changes very little with such small
n ET distance.

ing in natural systems
ctions in two  proteins, DNA photolyase and MauG, have
roughly investigated. Both proteins have also been struc-
haracterized. In the case of DNA photolyase, reaction



2482 J.J. Warren et al. / Coordination Chemistry Reviews 256 (2012) 2478– 2487

Fig. 5. Stru
that  may be

driving fo
ping map
that hopp
known. O
forces tha
ping map
reductase
critical fo

4.1.  DNA

Cyclob
repair of 

typically 

to be com
cancer in
photogen
plished v
reductive

It was
involved 

FADH− [
X-ray str
detailed 

niques sh
can redu
(Fig. 5) [
spectrosc
confirm t
net hole 

might no
reduced w

Fig. 6. Stru
[30]). Only 

electron do
are  discusse

. Mod
scenc

rp re
on ac
rime

 ps 

H•+

 tha
r to 

 valu
rpN•

rpNH
. Thu
ted p
terru
wo  s
ared
e T–
, the

H− c
 inter
ADH
–T d

T CPD
racil,

 thym
onsis
omp
tiona
g the
cture of A. nidulans DNA photolyase highlighting the three-Trp “wire”
 responsible for enzyme activation (PDB ID 1TEZ [30]).

rces are known, which will allow us to construct hop-
s. For MauG, site-directed mutagenesis studies indicate
ing is critical to function, but ET driving forces are not
ur hopping maps for this protein place limits on driving
t are relevant to redox function. We  also have made a hop-

 for a section of the >35 Å radical chain in ribonucleotide
 (RNR). Our hopping map  predicts ET steps that likely are
r function of this very complex molecular machine.

 photolyase

utane pyrimidine dimer (CPD) DNA photolyases carry out
cyclobutane pyrimidine dimers in bacteria [22]. CPDs are
thymine–thymine dimers, which have long been known
mon UV-induced DNA lesions, and are contributors to

 humans [23]. DNA photolyases exhibit rich ET chemistry;
eration of the reduced FADH− cofactor could be accom-
ia long-range ET (Fig. 5), and CPD dimers are broken by

 ET from photoexcited FADH− (Fig. 6).
 first recognized that ET from a Trp residue might be
in reduction of the FAD cofactor to catalytically active

24], an observation that was supported when enzyme
uctures became available [25]. However, increasingly
studies employing time-resolved spectroscopic tech-
owed that a “molecular wire” with three Trp residues

ce bound, oxidized flavin, resulting in an active enzyme
26]. Studies of site-directed mutants using polarization
opy [27], as well as independent theoretical work [28],
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sidues in the photolyase “wire” do not have any potential
cepting groups within 3 Å of the TrpNH. For photolyase,
ntal work suggests that hole transfer is rapid enough

[32]) to compete with deprotonation of the transient
radical(s). An integral aspect of the ET pathway seems
t no protons are lost from transiently generated TrpNH•+

oxidation of the final Trp in the chain. Based on solu-
es, the reduction potential of the neutral TrpN• radical
/−) = 0.43 V vs. NHE) is not high enough to oxidize TrpNH
•+/TrpNH) = 1.15 V), which is dominant at biological pH

s, if the TrpNH•+ generated in DNA photolyase were depro-
rior to the next ET step, it is likely that the “wire” would
pted.

tudies of the mechanism and dynamics of T–T repair have
 recently [31,32]. The ET steps are very rapid and scission
T dimer is thought to occur in less than 100 ps. Interest-

 latter report [32] indicates that the adenine moiety of
ould be involved in the first ET step in T–T dimer repair.
pretation is that the electron is effectively hopping from
− excited state to adenine, then to the distal (5′) side of
imer (Fig. 6). This pathway is suggested by substitution of

 dimer with U–T, T–U and U–U CPD dimers. Substitution
 which has a higher (more positive) reduction potential

ine [33], at the 5′ end of the CPD dimer results in faster
tent with initial reduction of the 5′ base.

utational work does not favor a hopping pathway. Density
l calculations suggest that adenine plays a role in modu-

 electronic coupling of the forward ET reaction, but ET
roceeds through the 3′ base [34]. Ab initio calculations

r direct ET from the proximal side of the excited flavin,
e radical is localized, to the 3′ end of the CPD dimer [35].
, based on experimental and theoretical investigations of
flavin excited states, it was  suggested that DFT  calcula-
not fully account for the observed photochemistry [36].
e is still room for discussion of candidate ET mechanisms,
onsider two scenarios in the following analysis.
are available that can be used to construct a modified

iagram for flavin (Fig. 7). On the basis of the fluores-
ctrum of DNA photolyase, the excited-state energy can be

 to be 2.6 eV [37]. This is corroborated by the analogous
 of reduced flavin anion in ethanol [38]. The one-electron

 potential of the neutral flavin semiquinone radical FADH•

hotolyase has been determined in the presence of sub-
e +0.08 V vs. NHE [39]. Thus, the reduction potential of the

tate of the reduced flavin anion is estimated to be −2.5 V,
ble to that of adenine [33]. The one-electron reduction
s of T–T dimers and related thymine model complexes in
lvents also have been reported, and the reduction poten-

 T–T dimer is ca. −2 V [40]. Using these values, the first
step (*FADH− → A−) has −�G◦

DI = 0 eV and the second
◦

 T–T) has −�G IA = 0.5 eV with relatively large associated
ties (±0.1 eV).
w consider which distances best describe the ET reaction.
om Stark spectroscopy suggest that the unpaired spins
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Fig. 8. Hopping map  for DNA photolyase. � = 0.8 eV and  ̌ = 1.1 Å−1 with distances
r1 = 6.2 Å, r2 = 7.6 Å, rT = 11.7 Å were used to generate the map. The contour lines are
plotted  at 0
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5′ T in the
atoms in 

5′ T is 11
1.1 Å−1 fo
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xcited states are localized on the central and pyrimidine
. EPR studies of adenine radicals show that spin density is

 and C8 [41]. If we take the adenine N3 and C6 as the pri-
eptor sites of the electron from *FADH−, then the distance
he average distance from N3 and C6 to the 6 atoms in the

 T–T dimer is 7.6 Å, and the average distance from the 10
the flavin (excluding the o-xylyl ring) to the 6 atoms in the
.7 Å [42]. Taking 0.8 eV for the reorganization energy and
r the distance decay constant, we construct the hopping
n in Fig. 8. From the aforementioned driving forces, ET in

tolyase lies very near the boundary between the hopping
d the single-step ET region. The system could function in
it (one- vs. two-step tunneling) with ±0.1 eV uncertain-

e driving forces. For reference, the point in the hopping
est to the black dot predicts a time constant of ∼4 ns, a
16 slower than the observed time constant of 250 ps [32].
) and (2) can be used to predict single-step ET time con-

r the pathways suggested from the above work. Taking
r the reorganization energy, decay constant, and single-
ance from FADH− to the 5′ T as before, single-step ET
ed to have a time constant of 100 ns, much larger than

 experimentally.
 foregoing discussion of ET distances in azurin, we noted
tions in r1, r2 or rT do not qualitatively perturb a hop-
; importantly the basic shape (or area where hopping is
) does not change with <1 Å variations in distances. The
ue for the DNA photolyase hopping map. Small variations
tances produce maps similar to Fig. 8 where DNA pho-

 predicted to function at the border between single-step
step tunneling. Furthermore, if single-step tunneling were
, the distance would need to be about 6.5 Å to reproduce
imental value; this distance is much shorter than in the
cture if ET proceeds via the 5′ T.
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complex 
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rces as before (Fig. 9). The revised map, with � = 0.5 eV,
 for the observed 250 ps time constant (�calc = 370 ps), in
f a hopping mechanism for DNA photolyase.
er possibility is that the FADH− electron is partially delo-
n adenine, which would enhance electronic coupling.
r, factors other than � and r can be decisive in cases where
cted time constant occurs close to the hopping/single-step
, as in Fig. 8. Protein dynamics can produce transient con-

ns in which reduction potentials or electronic coupling are
bly altered from their equilibrium values [15,19]. These

effects can have an impact on ET rates that is not accounted
culations of hopping maps. We  conclude that either hop-
ingle-step tunneling could account for DNA photolyase

phasize that variations in � have a pronounced effect on
hapes of hopping maps, as documented in Figs. 8 and 9.
I–A hopping maps where � values are not well estab-
n at best only provide estimates for ranges on ET rates.

 above, in contrast, ET distance variations less than 1 Å do
gly affect the contour shape (although the calculated rate

 can vary by as much as a factor of 10).

G

 is a diheme enzyme responsible for oxidative synthesis
ptophan-tryptophanyl quinone (TTQ) cofactor found in
ine dehydrogenase (MADH) [44]. MADH enzymes cat-

 oxidative degradation of alkylamines to ammonia and
s. The biosynthesis of TTQ by MauG + preMADH (MADH

 Trp (57) and one hydroxylated Trp (108) before forma-
TQ) was  reviewed recently [45]. The generation of the
ctor is interesting because it involves long-range interfa-
tion and coupling of two Trp residues in MADH by MauG.

 many heme proteins carry out oxidative chemistry via
O porphyrin radical species (Cpd I, which is oxidized by 2

 above the ferric state), MauG places an oxidizing equiva-
ach of the two  hemes in the enzyme, producing two  FeIV

 the active complex. The resting diferric enzyme contains
 unusual His-Tyr coordination. The coordinated tyrosine
is necessary for catalysis; the Y294H variant is able to
with MADH and tolerates 2-electron oxidation, but both
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Fig. 10. Re erfacial MauG Trp and the two TTQ precursor residues (denoted with �) in
preMADH (  I and A. Distances are discussed in the text.
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dox cofactors in the MauG/preMADH complex include two MauG hemes, the int
PDB ID 3L4 M [46]). The hole donor, intermediate and hole acceptor are denoted D,

 equivalents localize on the 5-coordinate HS heme and the
oses catalytic activity [46].
tal structure of the MauG/preMADH complex shows the
ent of cofactors for interprotein ET (Fig. 10) [47]. Interest-
-TTQ intermediates also were observed in the structure.
f the redox chemistry of MauG, the Trp between the two
d the interfacial Trp between MauG and preMADH are

noteworthy features. Although the role of the tryptophan
between the hemes (Trp93) is not known, it should be
t cytochrome c peroxidase (CcP) from Rhodobacter capsu-
a very similar 5-coordinate heme/Trp/6-coordinate heme
ent (PDB ID 1ZZH [48]). Replacement of this Trp with Ala

R. capsulatus CcP results in a catalytically inactive enzyme,
e possibility that Trp mediates ET between the two hemes
ed, assuming r1 = 11.4 Å, r2 = 10.9 Å and rT = 21.0 Å in the

-Trp93-LS heme in MauG, we calculate that hopping will
than single-step ET by more than 3 orders of magnitude

 forces less than ∼200 meV  endergonic (data not shown).
se for hopping through Trp199 in the MauG/preMADH
is compelling, as shown by site-directed mutagenesis
y Davidson and Wilmot [49]. Replacement of Trp199

 or Phe results in a MauG enzyme that can complex
ADH, but cannot support TTQ synthesis. Furthermore,

II/II) reduction potentials of the Lys199 and Phe199
are essentially unchanged from WT,  and treatment of
iant with H2O2 results in production of the di-FeIV species

 for catalysis. Thus, it is concluded the Trp199 supports
sfer from MauG to preMADH.

 hopping map  shown in Fig. 11, we have taken distances
 heme to Trp199 (or �Trp108) as the average of those

 heme-iron to the 9 atoms in the Trp indole ring, and
een the two Trps as the average distance between the

in each Trp indole [42,50]. Although driving forces for
eps in MauG/preMADH are not known, we  still can esti-
rate enhancement attributable to hopping. Single-step ET
ed (Eqs. (1) and (2)) to have a time constant of ∼40 ms

G◦
DA = 250 meV, which is slower than hopping by at least

f 102 if the first step has −�G◦
DI > −100 meV. In other

pping in MauG is predicted to be faster than single-step
f the first hopping step is uphill by 100 meV, provided the
ep is not exergonic by more than 400 meV. While these
rces are only rough estimates, they still allow us to con-
t hopping is the most likely ET mechanism, in accord with
vations of Wilmot and Davidson [49].
ntioned above, management of protons for amino acid

 redox reactions is critical for hopping function. In the
eMADH system, Trp199 is hydrogen bonded across the

Fig. 
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al feature that may  help align the system for ET, because
n must remain close to the transiently oxidized amino
aintain free energy. Trp93 (between the two  hemes) is

we will r
loss to a
subseque
resulting
opping map  for MauG/preMADH. ET parameters: � = 0.8 eV;
 r1 = 13.5 Å; r2 = 9.4 Å; and rT = 21.0 Å. A dashed line at
108 → heme) = 0.25 eV is drawn as a guide (see text).

d to a nearby backbone carbonyl (a poor base), so we  would
 to be faster than proton loss. Note that rapid production
FeIV species from H2O2 (k > 300 s−1 [51]) implies that ET
the two  hemes is rapid.

nucleotide reductases

ucleotide reductases (RNRs) are responsible for conver-
ucleotides to deoxynucleotides, the building blocks of
tron/hole transfer in RNR involves a very complex cross-

 ET pathway that arguably is best understood for the Class I
ia coli enzyme [52,53], which consists of two homodimeric

 �2 and �2 (or R1 and R2). In all RNRs the key C–H bond
 step is carried out by a cysteinyl radical in the � subunit.

 enzymes the cysteinyl radical is generated by a tyrosyl
eIII [54]) cofactor located over 30 Å away in the � subunit

ill focus on E. coli RNR, but we emphasize that both simi-
d differences in ET mechanism have emerged from recent

activation and catalytic steps associated with the Chlamy-
matis enzyme [55]. In the current mechanistic model for
yme function [52] (Fig. 12), redox chemistry is initiated by
122 radical (an unusually persistent tyrosyl radical); and
oposed scheme, oxidation of �-Trp48 is followed by hole
to �-Tyr356. The role of �-Trp48 is still unclear, which

eturn to below. Oxidation of �-Tyr356 results in proton

 nearby base, generating the neutral tyrosyl radical. In
nt steps, the hole is transferred across the �/� interface,

 in oxidation of Tyr731 on the � subunit. The next redox
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Fig. 12. Proposed redox pathways in E. coli ribonucleotide reductases. It is not
known  whether W48  is involved in the pathway of E. coli RNR. Arrows show pro-
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22• and �-Tyr356 is likely required for RNR function. The
al candidate for this redox intermediate is �-Trp48, but of
migration pathways.

 thought to occur with net H• transfer from �-TyrOH730
•731, and finally from �-Cys439 to �-TyrO•730 to gen-

 catalytically competent �-Cys439-S• radical. The entire
s dependent on the presence of substrate nucleotide and

 effectors (deoxynucleotide triphosphates and ATP), and
tional gating also is important for function [56]. Precisely
dox cofactors can promote rapid charge transport, which

y the reason why a conformational change is required for
of the full RNR catalytic cycle.
on RNR demonstrates that the protons of transiently
amino acids must be managed during hopping reac-

ss of a proton from the vicinity of either a tyrosyl or
anyl radical results in a drastic loss of driving force for
nt oxidations. Without the ready return of a proton, the
edox couples become TrpN•/− (E◦ = 0.43 V vs. NHE in H2O)
•/− (E◦ = 0.71 V in H2O), instead of the more oxidizing
upled potentials, TrpN• + ½H2 → TrpNH (�E◦′ = 1.0 V, pH

rO• + ½H2 → TyrOH (�E◦′ = 0.99 V, pH 7) [29]. The aqueous
tential of Cys (Cys-S• + ½H2 → Cys-SH) has �E◦′ = 0.85 V

 [29]. For reference, E◦(TrpNH•+/TrpNH) = 1.15 V and
•+/TyrOH) = 1.4 V. These E/pH data often are presented in
namic square schemes or Pourbaix diagrams [29].

e  and coworkers have shown that endergonic ET steps shut
pping in a series of RNRs where nitrotyrosines have been
ed for tyrosines along the ET pathway (Fig. 12) [56,57].

utants the ET pathway is interrupted wherever nitroty-
introduced, probably because nitrotyrosine is more than
arder to oxidize than tyrosine at all pH [57a]. Different
d tyrosines, which also can be incorporated, provide both

y to tune reduction potentials of individual Tyr residues
ue EPR handles [58]. Substitution with unnatural tyro-
atives, in concert with EPR and crystallographic studies,

 identification of different Tyr-conformations that could
in the ET pathway [59].
t EPR experiments have shown that tyrosyl radicals at

 356, 730 and 731 are in equilibrium when �-Tyr122 is
with nitrotyrosine, and the relative reduction potentials
adicals have been estimated [60]. Substitution of nitroty-
position 122 prohibits return of the hole to that position,

 to localize elsewhere along the pathway. Based on radical
on at �-Tyr356, it was postulated that the potential of that

 around 100 mV  lower than either �-Tyr730 or �-Tyr731.
osal is in accord with our observation that hopping is
efficient if intervening steps are more than ∼200 meV
9]. Such tuning of the same amino acid (tyrosine) is pos-

Fig. 1
ET  pa
lines  

based

T
In a
stru
tyro
Tyr3
via 

emp
from
ues [
valid
in X
tyro
25 Å
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k  Jr., Chem. Eur. J. 17 (2011) 5350.
. Marcus, N. Sutin, Biochim. Biophys. Acta 811 (1985) 265;
Sutin, in: S.J. Lippard (Ed.), Progress in Inorganic Chemistry, 1983,

. Barbara, T.J. Meyer, M.A. Ratner, J. Phys. Chem. 100 (1996)
.
, for example: O.S. Wenger, Chem. Soc. Rev. 40 (2011) 3538;
iese, Acc. Chem. Res. 33 (2000) 631;

. Launay, Chem. Soc. Rev. 30 (2001) 386;

. Moser, J.L.R. Anderson, P.L. Dutton, Biochim. Biohphys. Acta 1797 (2010)

. Moser, S.E. Chobot, C.C. Page, P.L. Dutton, Biochim. Biophys. Acta 1777
 1032.
m Research, Inc., Mathematica, Version 7.0, Champaign, IL, 2008.
puter program for the construction of hopping maps is available for
oad  at http://www.bilrc.caltech.edu.

[15] (
(
B

[16] J
[17] T

e
u
r

[18] E
[19] M

C
[20] J
[21] S
[22] A
[23]  J
[24] Y
[25] H
[26] (

(
(
(

[27] A
C

[28] P
(

[29] J
[30] A

3
[31] (

B
(

[32] (
A
(

[33] C
[34] A
[35] T

8
[36]  M
[37] Y

1
[38] S
[39]  Y

1
[40] M

1
[41]  D
[42] N

t
r
d

[43] J
[44] V
[45]  C
[46] N

B
[47] L

1
[48]  L

C
[49] N

s
[50]  A

w
h
a
t
i

[51] S
[52] (

(
(
(
(
2

[53]  (
(

[54]  W
J

[55]  (
(

. Beratan, S.S. Skourtis, I.A. Balabin, A. Balaeff, S. Keinan, R. Venkatramani,
, Acc. Chem. Res. 42 (2009) 1669;
kourtis, D.H. Waldeck, D.N. Beratan, Annu. Rev. Phys. Chem. 61 (2010)

. Prytkova, I.V. Kurnikov, D.N. Beratan, Science 315 (2007) 622.

(c)  W.
Bioche
W. Jian
(d)  W.
5340.
56 (2012) 2478– 2487

. Beratan, J.N. Onuchic, J.R. Winkler, H.B. Gray, Science 258 (1992) 1740;
. Onuchic, D.N. Beratan, J.R. Winkler, H.B. Gray, Annu. Rev. Biophys.
l.  Struct. 21 (1992) 349.
mpsey, J.R. Winkler, H.B. Gray, Chem. Rev. 110 (2010) 7024.
erage distances used here are arguably a better approximation since the
n  comes from (or goes) to a delocalized �-system in Trp. The distances

 the original study [9] are the Trp-C2 to Re (or Cu) distances; r1 = 8.9 Å,
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