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Abstract— Deep brain stimulation (DBS) is a widespread
method of combating tremors associated with Parkinson’s
disease, but whose mechanisms are not fully understood.
One hypothesis, supported experimentally, is that some
symptoms of Parkinson’s are associated with pathological
synchronization of neurons in the basal ganglia. For this
reason, there has been interest in recent years in finding
efficient ways to desynchronize neurons that are both fast-
acting and low-power. Recent results on coordinated reset
and periodically forced oscillators suggest that forming
distinct clusters of neurons may prove to be more effective
than achieving complete desynchronization by promoting
plasticity effects that might persist after stimulation is
turned off. Existing proposed methods for achieving clus-
tering frequently require either multiple input sources or
precomputing the control signal. We propose here a control
strategy for clustering, based on an analysis of the reduced
phase model for a set of identical neurons, that allows for
real-time, single-input control of a population of neurons
with low-amplitude, low total energy signals.

I. INTRODUCTION

Deep brain stimulation (DBS) is a proven method of

reducing certain symptoms related to Parkinson’s disease

(PD), most notably tremors and dyskinesia, wherein an

electrode is implanted in either the subthalamic nucleus

(STN) or global pallidus internus (GPi) [1], [2]. De-

spite its proven effectiveness, the mechanisms by which

DBS alleviates the symptoms are poorly understood.

Additionally, there are risks associated with DBS, both

related to the surgical procedure and hardware as well

as to the chronic usage in combating the symptoms of

PD [1], [3]. For these reasons, there have been various

attempts in recent years at not only better understanding

the processes that allow for the success of DBS, but

also understanding ways to reduce the possible negative

side-effects.

Recent work [4]–[8] suggests that symptoms of

Parkinson’s are associated with elevated synchrony of

neurons in the basal ganglia, and there has been ex-

perimental and theoretical evidence [9]–[11] that the

reduction of this synchrony is correlated to the alle-

viation of symptoms. One approach to achieve partial

desynchronization is to split the neurons into clusters,

in which only a subpopulation of the neurons are spike-

synchronized. In fact, [10] suggests that the standard

DBS protocol leads to clusters.

One promising approach to clustering, coordinated

reset, involves using a network of electrode implants

delivering a series of identical impulses separated by

a time delay between implants. This has been studied

extensively [9], [12]–[14] with preliminary clinical suc-

cess [15]. The method, however, relies on a number of

electrodes equal to the number of clusters desired. This

may not always be physically feasible in practice. It also

requires the powering of multiple electrodes simultane-

ously, which additionally limits its energy efficiency.

Another approach is to design the control to maximize

the desynchronization of the neurons. In [16], this is

done using a high-amplitude input to drive neurons close

to the unstable fixed point in the interior of the stable

limit cycle. [17] develops an optimal control strategy

that is more energy-efficient than the “phaseless set”

method proposed in [16] but requires more frequent

application of the control signal. In both cases, the

energy cost represents a substantial improvement over

conventional DBS and requires only a single input; total

desynchronization, however, may not be preferable, as

it returns to a synchronous state more quickly than in

clustering (for comparison, see [17] and [14]). Addition-

ally, clustering behavior may contribute to longer-term

reduction in pathological synchronization via increased

plasticity in the relevant neural regions [18].

[17], [19]–[21] all employ precomputed signals to

achieve their control objectives. Like [17], [19] and

[20] use optimization principles to derive lowest-energy

control strategies for populations of neurons. In [21],

heterogeneity in the natural frequencies of the neurons

is exploited to entrain clustering of neurons. The use of

precomputed, open-loop control signals in these methods

reduces their flexibility in real-time application; there

is no capacity for adjustment to error in the model.

Additionally, the reliance on heterogeneity makes the

control scheme highly model-specific, requiring a com-

plete recalculation in the event of alterations to the

model or neuron population.

In this paper we develop a control strategy that pro-
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vides a low-energy, single-input solution with minimal

requirement for precomputed information. This strategy

can be easily applied to any neuron model to drive the

population to a K-cluster state, where K is an arbitrary

positive integer as desired for the control objective. The

control strategy is designed based on a population of

identical neurons subject to a single input; we note that

modifications can be made to the strategy to accommo-

date heterogeneities as well. We will begin in Section II

by demonstrating that, provided certain assumptions are

made about the neuron population, the population may

always be stabilized to a desired control state. With this

established, we develop the control strategy in Section

III; the strategy is then applied to a neuron population

in Section IV.

As in some of the previously cited papers, we will

make use of the phase model reduction for the dynamical

system in designing our control strategy. The firing

neuron oscillates via a fixed, stable limit cycle; following

the work in [22]–[24] we can therefore reduce the

dynamics when the neuron’s state is near the limit cycle

to the representation:

θ̇j = ω + Z (θj)u (t) , (1)

where θ̇j describes the evolution of the jth neuron and

the control input, u (t), is proportional to the applied

current I and is common to all neurons. Z (θ) is known

as the phase response curve, and describes the sensitivity

of the phase to a stimulus. The two models in this paper

are examples of Type I and Type II neurons [25], respec-

tively. For both models, the phase response curve was

calculated by solving the appropriate adjoint equation

using the dynamical modeling program XPPAUT [26].

II. GENERAL STABILIZABILITY OF N IDENTICAL

NEURONS

We demonstrate that any order-preserving clustering

scheme for uncoupled, identical neurons is asymptot-

ically stabilizable with an appropriate control input.

To do this, it must be shown that the control system

is passive with a radially unbounded positive definite

storage function and zero-state observable [27]. We will

define the storage function, show its passivity, and then

show its zero-state observability. We demonstrate this

for the case of N identical, uncoupled neurons in the

reduced phase model formulation. We label the neurons

such that, at time t = 0, the neuron phases are ordered as

θ1 < θ2 < θ3 < ... < θN . Note that if the phases of two

neurons are exactly the same, because the neurons are

identical and receive identical inputs they are impossible

to separate; therefore, we exclude the possibility of two

phases being equal by assumption. Furthermore, since

the neurons are identical, the response of a neuron is

bounded by the neurons of phase initially less than the

neuron and those greater than the neuron, so for t > 0, it

follows from these assumptions that θ∗1 < θ∗2 < ... < θ∗N
(here we do not use the modulo 2π value for θj , so θj
is allowed to be greater than 2π) [20].

Because we are attempting to stabilize to a target

trajectory instead of a target state, it is natural to define

our storage function in terms of the differences between

the phases of neurons rather than the individual phases

(which are constantly evolving). More precisely, we

construct our storage function as the linear combination

of positive semidefinite functions, each prescribing the

target separation for the phases of two neurons:

vi = vi (θj − θk) , V (θ1, ..., θN ) =

l
∑

i=1

βivi, (2)

with βi > 0 and where θj and θk are the phases of any

two neurons whose separation is to be prescribed by the

function vi. The value of l is arbitrary in this context; in

Section III, for the specific problem of clustering l = K.

The individual storage function candidates have three

properties:

1) At the target separation θj−θk = ∆θ∗, vi (∆θ∗) =
0;

2) For θj − θk 6= ∆θ∗, vi (θj − θk) > 0 and grows

unbounded away from ∆θ∗ within the interval θj−
θk ∈ (0, 2π);

3) ∂vi
∂∆θ

∣

∣

∣

∣

∆θ∗

= 0.

We now calculate the value of V̇ . As each individual

storage function is dependent on only one phase differ-

ence, we write V̇ as:

V̇ =

l
∑

i=1

βi
∂vi
∂∆θi

∆̇θi =
l

∑

i=1

βi
∂vi
∂∆θi

(

θ̇j − θ̇k

)

. (3)

Substituting in from (1), V̇ can be rewritten as:

V̇ = u

l
∑

i=1

βi
∂vi
∂∆θi

(Z (θj)− Z (θk)) . (4)

Recalling the definition of passivity [27], the system is

passive if the observable is chosen such that uT y ≥
V̇ . We choose our observable to be a vector y =
[y1, y2, · · · , yl]T such that:

yi = βi
∂vi
∂∆θi

(Z (θj)− Z (θk)) (5)

Since all neurons receive an identical input, uT =
[u, u, · · · , u], it follows that uT y ≥ V̇ everywhere in

the state-space (as uT y = V̇ ). Therefore, the system as

constructed is not only passive but also lossless. Addi-

tionally, y is zero-state observable: at the target state,
∂vi

∂∆θi
= 0; y = 0 otherwise only if Z (θj)−Z (θk) = 0,

but no such pair of neurons can stay indefinitely in the
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set y = 0. We can see this by considering:

d

dt
(Z (θj)− Z (θk)) =

∂Z

∂θ

∣

∣

∣

∣

θj

θ̇j −
∂Z

∂θ

∣

∣

∣

∣

θk

θ̇k, (6)

which, given θ̇j = θ̇k instantaneously, would require the

partial derivative evaluations to be equal for this second

derivative to be equal to 0. To remain in the domain

where y = 0, this would further imply that this equality

must hold over the entire period, i.e. ∃δx ∈ (0, 2π) |
∂Z
∂θ

∣

∣

∣

∣

x

= ∂Z
∂θ

∣

∣

∣

∣

x+δx

∀x. Since ∂Z
∂θ

∣

∣

∣

∣

0

= ∂Z
∂θ

∣

∣

∣

∣

2π

and Z (0) =

Z (2π), this is true if and only if Z (θ) = const, which

is physically not realized. Therefore, as the system is

both passive with an unbounded storage function and

zero-state observable, we can conclude that the system

can be stabilized by the choice of u = −φ (y) where

φ (y) is locally Lipschitz and yφ (y) > 0 [27].

III. CONTROL STRATEGY FOR K CLUSTERS OF

NEURONS

The goals of developing a control strategy for clus-

tering are threefold:

1) Create a flexible method such that the strategy

functions in a way that is agnostic both to the

specific neuron model used and the desired number

of clusters K;

2) Require as little precomputing as possible so the

method is robust to inaccuracies in modeling; and

3) Allow for the control to be easily tuned for param-

eters of interest, such as maximum input amplitude

and speed with which clustering is achieved.

These three conditions can be seen as measures of

robustness for the method. A control scheme that meets

these three criteria can be altered on the fly by changing

only a small number of target parameters, allowing the

input to rapidly be tuned to the performance specifi-

cations desired. Additionally, deviations from expected

results can be compensated for if the input is not

constrained to precomputed values, as would be the

case with optimal control strategies derived from, for

example, variational principles.

The approach proposed here consists of considering

the input of maximal instantaneous efficiency (IMIE)

rather than precomputed data. Although not necessarily

as efficient as true optimization strategies, IMIE requires

only knowledge of the phase response curve of the

neurons and the current state of the system.

The rest of this section will be structured as follows:

first, we will define the two necessary functions for

IMIE: a state function and a cost function. Next, we

will lay out the details of the control strategy. Lastly,

we will see how the reduction of the model for special

cases returns results that agree with intuition and past

results.

Control of a system of N neurons into K clusters

requires the direct control of 2K neurons, split into pairs

of 2, with each pair of neurons adjacent to each other

in phase order. The control is generated in such a way

that each pair is driven apart to a target separation of 2π
K

radians. In this way, K clusters are formed by exploiting

the boundedness of response described in Section II. For

example, if we wished to subdivide a population of 16

identical neurons into 4 clusters and the neurons were

ordered by initial phase (θ1 < θ2 < ... < θ16), the K
control pairs would be {2, 3}, {6, 7}, {10, 11}, and {14,

15}, and the final clusters would be {15, 16, 1, 2}, {3,

4, 5, 6}, {7, 8, 9, 10}, and {11, 12, 13, 14}. We define a

positive semidefinite function ri,j for each control pair;

this function is dependent only on the phase difference

∆θi,j = θj − θi and is identically zero at ∆θi,j =
2π
K .

To allow for consistency in the definition of ri,j across

choices of K, the value of ∆θi,j is mapped by the

function g (∆θi,j) such that g
(

2π
K

)

= π. This is done

using the piecewise definition:

g (∆θi,j) =

{

K

2
∆θi,j 0 ≤ ∆θi,j ≤

2π
K

(2π+1)K−2π
2(K−1)

(

∆θi,j −
2π
K

)

2π
K

< ∆θi,j ≤ 2π
.

(7)

With this mapping, we define the positive-definite func-

tion for each pair as follows:

ri,j =

{

1
g(∆θi,j)

p − 1
πp 0 < ∆θi,j ≤ 2π

K
1

(2π−g(∆θi,j))
p − 1

πp
2π
K < ∆θi,j < 2π

, (8)

which is continuous and differentiable everywhere on the

domain (0, 2π) except at ∆θi,j = 2π
K . p is a parameter

whose value can be adjusted to meet control objectives;

in the simulations in Section IV, p = 0.7. The function

can be made first-order differentiable by the replacement

of the constant 1
πp with a term that is linear in g,

though in practice this is not necessary. It does, however,

serve as a valid storage function candidate in (2), while

maintaining derivatives with the same sign as in (8).

Clearly, (8) is greater than zero for all choices of p with

∆θi,j 6= 2π
K and grows unbounded as ∆θi,j → 0 or 2π.

From here we can define a full-state storage function

of the system as:

r =
1

K

K
∑

l=1

r2l−1,2l. (9)

Note that here we have omitted the neurons that are

not being directly controlled, and as such our control

pairs are relabelled as {1,2}, {2,3},...,{2K − 1,2K}.

Since each component of the summation is greater than

zero everywhere except at the desired target state, the

combined function is also positive-definite and only

equal to zero when all pairs of neurons achieve the target

separation.
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With the state function defined, we turn our attention

to the cost function. While any cost function can be

used, we select one that penalizes energy usage and

the time required to reach the target state. This can be

accomplished by defining the cost function:

C (t) =

∫ t

0

[

u (τ)
2
+ αr (τ)

]

dτ. (10)

The value of α can be adjusted to increase or decrease

the relative importance of driving the state quickly to its

target. The instantaneous cost associated with the state

and input at a given time t can be given by taking the

derivative and evaluating:

dC

dt
= u (t)

2
+ αr (t) . (11)

With these two functions defined, the input of maxi-

mal instantaneous efficiency can be generated as follows.

An optimal path is one that minimizes C (t) as t → ∞.

While to truly optimize, the time-dependent input would

need to be computed in advance, IMIE aims to produce

a near-optimal input by minimizing the cost incurred at

each time step instead. We rewrite C (t) in terms of the

value of r, which in the uncoupled case monotonically

decreases at all times with the appropriate choice of u.

Then the total cost as t → ∞ is equal to:

lim
t→∞

C (t) =

∫ 0

r(0)

dC

dr
dr; (12)

by exploiting the chain rule, we equate dC
dr to:

dC

dr
=

dC/dt
dr/dt

. (13)

In this formulation, the input we choose is designed so

that, at all times, the instantaneous magnitude of dC
dr is

minimized. This can be interpreted as the input that is

most efficient in terms of cost relative to change in r.

The value of dC
dt is given by (11). Differentiating r with

respect to time yields:

dr

dt
=

2K
∑

l=1

∂r

∂θl

dθl
dt

. (14)

As in (4), we can reorganize this and express it as:

dr

dt
= u

K
∑

l=1

∂r

∂θ2l
(Z (θ2l)− Z (θ2l−1)) , (15)

which has the characteristic form −a (θ1, ..., θ2K)u (t).
Therefore, dC

dr is equal to:

dC

dr
= −u2 + αr

au
, (16)

where the dependence of a and r on the state Γ =
[θ1, ..., θ2K ] is omitted from the equation for simplicity.

From this, the extrema can be found by differentiating

with respect to u; the input used is then set equal to

this calculated minimum. Differentiating and rearranging

yields:

u (t) =

√

a2αr (t)

a
= sign (a)

√

αr (t). (17)

Note here the positive root is taken because dC
dr is

negative (since dC
dt is always positive and dr

dt is negative

by construction), and therefore the quantity au must be

positive for the entire expression to be negative.

Recalling the definition of r (t), u evolves as a func-

tion of the average separation ∆̄θ of the control pairs as

approximately
√
α∆̄θ

−p/2
. From this it can be seen that,

holding p constant, increasing α corresponds to a
√
α

increase of the maximum amplitude of the input signal.

This in turn decreases the response time of the system at

the cost, generally, of increasing total power usage and

maximum amplitude. In contrast, increasing the value

of p while holding maximum amplitude constant (by

adjusting α accordingly) will cause a sharper decline in

the input signal, reducing power usage but increasing

response time. As such, the system can be tuned to

meet the desired control specifications– power usage,

maximum amplitude, response time– simply by varying

α and p accordingly, regardless of the neuronal model

being used.

We now turn our attention to the case where α = 0
and demonstrate that the method returns a result that

is consistent with intuition. With α = 0, the original

formulation of dC
dr can be simplified greatly, yielding:

dC

dr
=

−u

a
. (18)

Unlike the case where α 6= 0, this is linear and

therefore has no minimum; since the only constraint

is that −u
a should be positive, a lower-cost control is

always achieved by decreasing the magnitude of u. It

can be seen that, as predicted by this result, using a

bang-bang controller of constant amplitude takes longer

(but requires less energy) the smaller an amplitude is

used, thereby agreeing that the optimal control from an

energy perspective is to use as small an input as possible.

In practice, we do not want the state to be reached

in infinite time. If we abstract away from the physical

representations of the phase model (which breaks down

at high amplitudes of u) and consider only what will

allow us to reach the target state in as little time as

possible, we would expect that the solution would be to

allow the input signal to be as large as possible for all

times. We can model this by removing u2 from the cost

function so that C∗ (t) = αr (t). Now, dC
dr is given as:

dC

dr
=

−αr

au
. (19)
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As in the case where α = 0, this has no minimum,

and instead approaches 0 as u → ∞. Therefore, IMIE

correctly predicts that for the fastest possible response,

u should be allowed to be as large as allowed by the

constraints on the system at all times. This trend, as

well as the minimal-energy trend, are demonstrated in

simulation and shown as solid lines in Fig. 2. While we

do not propose IMIE as a fully optimal control strategy,

this demonstrates that the method matches basic sanity

checks in its application.

IV. PHASE MODEL RESULTS

We conclude by demonstrating that IMIE is both

effective in the phase model regime and also an im-

provement over constant-amplitude control strategies,

which require similarly little precomputing. Two neuron

models (N = 50,K = 4 with clusters of (13,13,12,12))

were tested, the reduced Hodgkin-Huxley model (a type

II neuron model) [28], [29] and the thalamic model (a

type I neuron model) [30]. Fig. 1 shows the characteristic

evolution of both systems as well as the input magnitude.

As can be seen, both achieve strong clustering over the

course of the simulation, demonstrating that the control

scheme is capable of adequately clustering the neuron

population. Furthermore, the choice of the distribution

of neurons among the clusters was made to be roughly

equal, but need not be– to achieve asymmetrical cluster

sizes, it is only necessary to change which pairs of

neurons are being controlled and similar results can

be achieved. Perhaps most importantly, IMIE achieves

clustering both quickly and cheaply; Fig. 2 shows a

comparison between the response to constant-amplitude

control and IMIE. For a given maximum input strength,

IMIE is typically both more energy-efficient and faster,

and for a given response time, IMIE is always at least as

energy-efficient as constant-amplitude control and, for

larger amplitudes, significantly more efficient. In par-

ticular, IMIE is a dramatic improvement over constant-

amplitude control when the objective is to rapidly reach

the target state.

V. CONCLUSION

We have outlined a potentially effective, real-time

strategy for controlling neurons via a single electrode

using only present-time information. While precomputed

strategies may be ultimately more optimal, the control

method described can be applied to an arbitrary phase

model with no changes to the underlying control scheme,

making it ideal for controlling neuron populations with-

out resorting to costly computations and still providing

a low-energy solution that could prove effective in

reducing the syptoms of PD.

(a)

(b)

Fig. 1: Evolution of reduced Hodgkin-Huxley (a) and

thalamic (b) phase models at three times. (a), (b), and

(c) show the projection of the phases onto the unit circle

at times t = 0, t = 125, and t = 500 ms (0, 187.5, and

750 for thalamus), respectively. (d) Shows the absolute

value of the input over the length of the simulation. For

both models, α = 0.1 and p = .7.

ACKNOWLEDGEMENT

Support for this work by National Science Foundation

Grants NSF-1264535 and NSF-1635542 is gratefully

acknowledged.

REFERENCES

[1] M. C. Rodriguez-Oroz, J. A. Obeso, A. E. Lang, J. L. Houeto,
P. Pollak, S. Rehncrona, J. Kulisevsky, A. Albanese, J. Volkmann,
M. I. Hariz, N. P. Quinn, J. D. Speelman, J. Guridi, I. Zamarbide,
A. Gironell, J. Molet, B. Pascual-Sedano, B. Pidoux, A. M.
Bonnet, Y. Agid, J. Xie, A. L. Benabid, A. M. Lozano, J. Saint-
Cyr, L. Romito, M. F. Contarino, M. Scerrati, V. Fraix, and
N. Van Blercom, “Bilateral deep brain stimulation in Parkinson’s
disease: A multicentre study with 4 years follow-up,” Brain,
vol. 128, no. 10, pp. 2240–2249, 2005.

2809



Fig. 2: Comparison of constant-amplitude control (solid

lines) and IMIE (dashed lines) for the implementation on

the population of uncoupled, identical Hodgkin-Huxley

neurons reduced to a phase model for control to the 4-

cluster state. The maximum amplitude for each control

strategy was varied between u = 0.02µA/µF to u =
2.0µA/µF . The system was simulated until the value

of r reached a target threshold of r = 0.01; the value

of the settling time T (in black) and cost
∫ T

0
u2dt (in

red) are plotted. IMIE outperforms constant-amplitude

control over a wide band of control parameters.

[2] The Deep-Brain Stimulation for Parkinson’s Disease Study
Group, “Deep-brain stimulation of the subthalamic nucleus or
the pars interna of the globus pallidus in Parkinson’s disease,”
New England Journal of Medicine, vol. 345, no. 13, pp. 956–963,
2001.

[3] A. Beric, P. J. Kelly, A. Rezai, D. Sterio, A. Mogilner, M. Zonen-
shayn, and B. Kopell, “Complications of deep brain stimulation
surgery,” Stereotactic and Functional Neurosurgery, vol. 77,
no. 1-4, pp. 73–78, 2002.

[4] P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disor-
ders: Relevance for cognitive dysfunctions and pathophysiology,”
Neuron, vol. 52, no. 1, pp. 155–168, 2006.

[5] C. C. Chen, V. Litvak, T. Gilbertson, A. Kühn, C. S. Lu,
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