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The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules
in intense laser fields

Bethany Jochim?, R. Siemering?, M. Zohrabi?, O. Voznyuk3, J. B. Mahowald3, D. G. Schmitz3,
K. J. Betsch?, Ben Berry?, T. Severt?, Nora G. Kling™*, T. G. Burwitz3, K. D. Carnes?, M. F. Kling!*,
l. Ben-Itzhak?, E. Wells3, and R. de Vivie-Riedle?

Much of our intuition about strong-field processes is built upon studies of diatomic
molecules, which typically have electronic states that are relatively well separated
in energy. In polyatomic molecules, however, the electronic states are closer
together, leading to more complex interactions. A combined experimental and
theoretical investigation of strong-field ionization followed by hydrogen
elimination in the hydrocarbon series C;D,, C;Ds and C;De reveals that the
photofragment angular distributions can only be understood when the field-
dressed orbitals rather than the field-free orbitals are considered. Our measured
angular distributions and intensity dependence show that these field-dressed
orbitals can have strong Rydberg character for certain orientations of the
molecule relative to the laser polarization and that they may contribute
significantly to the hydrogen elimination dissociative ionization yield. These
findings suggest that Rydberg contributions to field-dressed orbitals should be
routinely considered when studying polyatomic molecules in intense laser fields.
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Strong-field ionization is a key topic in ultrafast science since it is an essential step in attosecond
pulse generation [1-5], serves as a probe of electronic and nuclear dynamics [6-13] and is used
to image molecular orbitals [14-17]. Continued development of our understanding of ionization
dynamics in molecular systems [18] is an important aspect of forefront experimental challenges
such as controlling molecular fragmentation dynamics [19-22], the creation of multi-hole
electronic wave packets [23-27] and the drive for ever finer time-resolved measurements of
molecular dynamics [28-29] that one day may, for example, probe charge migration [30-33] on
intrinsic timescales.

Strong-field ionization is well studied in atoms [34-41], in the benchmark H; molecule [42-47] and
in somewhat more complex systems [48-50]. This work has informed our understanding of many
characteristic strong-field processes, such as tunnel ionization, above-threshold ionization and
high harmonic generation. Since the electronic states in atomic systems are generally well-
separated, in many cases the behavior of the outermost occupied orbitals approximately
characterize the entire process. As strong-field ionization experiments moved to diatomic
molecules, however, the electronic behavior became more complex. Unlike in atomic cases, a
simple ionization potential could no longer adequately characterize the relative tunneling rates
[48,51-55]. Subsequent work has included examples of diatomics (CO, N2, HCl) [26,56-58] where
several orbitals participate in the tunneling process. These studies and other recent efforts
exploring strong-field molecular ionization of multi-electron systems [56-70] suggest that a full
understanding of the ionization process and associated angular structure requires consideration
of not just the highest occupied molecular orbital (HOMO) but also the neighboring HOMO-1. In
this study we show that to correctly predict the angular character of strong-field ionization of
small hydrocarbon molecules, formerly unoccupied molecular orbitals should be taken into
account as well.

Polyatomic molecules are now the focus of many strong-field ionization experiments since these
molecules are important in a variety of settings, such as the building blocks in molecular
machines, in quantum information applications, for energy storage and structural classification
of proteins. These experiments offer opportunities to test imaging techniques [73-75] and
explore and control dynamics [60,64,76] in more complicated molecular systems. The polyatomic
nature of the system does not change the foundational role of strong-field ionization in ultrafast
processes, but the ionization dynamics become increasingly complex. Mechanisms such as
Freeman resonances [77] and laser-induced AC Stark shifts result in more complicated behavior
as the number and proximity of electronic states increase. Of particular interest in this work is
the strong-field driven modification of the molecular orbitals, which becomes relatively more
important as the number and angular complexity of the molecular orbitals increase and the
energetic separation of the field-free orbitals decreases. Field-driven excitation of the orbitals
of the constituent atoms in the polyatomic molecule can lead to molecular orbitals that have
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many characteristics of Rydberg orbitals. Technically, molecular Rydberg states are formed when
one of the excited atomic orbitals involved in bonding has a principal quantum number that is
higher than the principal quantum number of the conventional atomic orbital. These Rydberg
states are usually quite diffuse and centered on the molecule as a whole rather than an individual
atom. Common theoretical practice uses only the field-free orbitals to describe ionization, but
as recently shown for strong-field ionization of excited cyclohexadiene and its derivatives, the
field-dressed orbitals can have altered spatial characteristics [78] and a significant amount of
Rydberg character, which leads to high ionization rates. In this article, we present a series of
measurements that illustrate that these Rydberg contributions also play an important role in the
strong-field ionization of small hydrocarbon molecules starting from their electronic ground
state.

Results

We focus on a specific process initiated by intense few-cycle laser pulses in acetylene (C2D>),
ethylene (C2Da4), and ethane (C2D¢), namely single ionization of the parent molecule followed by
hydrogen elimination. In each case, we measure the momentum of the remaining C;Dn-1*
fragment using velocity map imaging (VMI) [79]. We are assured that this fragmentation channel
is uniquely identified as neutral hydrogen elimination by the lack of any momentum-matching D*
partner ions obtained under the same laser conditions, therefore excluding contributions from
the D* + C2Dn-1* channel. The short pulse duration (approximately 5 fs) limits any possibility for
significant vibration or rotation of the nuclei while the laser pulse is present [18,80] and avoids
molecular dynamics such as internal conversion that sometimes occur on excited states of the
neutral molecule via multiphoton resonances [81-83]. Thus, the measured C;Dn.1* fragment
angular distributions can represent the angle-dependent ionization probability. In the ethylene
case, the general four-lobed structure shown in Fig. 1(a) and (b) for the C,D3* photofragments is
independent of pulse intensity and duration (at least up to ~45 fs [76]).

The comparison between measured and calculated C;Ds3* photofragment angular distributions
from ethylene, shown in Fig. 1, clearly illustrates the need to include Rydberg contributions from
field-dressed orbitals if the calculations are to even approximate the experimental result.
Calculations (detailed in the Discussion and Methods sections) that do not include ionization from
field-dressed orbitals with Rydberg character (called FDRC orbitals from now on) result in an
approximately isotropic angular distribution, like the one shown in Fig. 1(c). Here the tunnel
ionization is considered only from the HOMO. Including ionization from FDRC orbitals yields the
four-lobed structureillustrated in Fig. 1(d), which qualitatively matches the experimental results.
The influence from lower lying orbitals was also examined but unlike CO [60] or other small
molecules [68], the effect of these orbitals was negligible for the present calculations.
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Figure 1: (a) The two-dimensional slice (Py = 0) through the three-dimensional momentum distribution obtained
from VMI data of CoDs3* photofragments produced in the no + C2Ds — CoDst — CoDs3* + D process. The laser
polarization, indicated by the arrow, is vertical (0-180°) in all panels. The faint outer ring is mirrored in the D*
momentum image, suggesting that those ions are part of the double ionization process (D* + C2D3*). The laser pulses
are approximately 5 fs in duration with a central wavelength of 740 nm and a focused peak intensity (lpeak) Of
approximately 6x10'* W cm™. The corresponding focal-volume-averaged intensity, lavg, (see the Methods section for
details) is approximately 2x10*3 W cm™. (b) Measured yield as a function of the relative angle between the C,Ds*
photofragment and the laser polarization. The yield is obtained for the inner single ionization followed by hydrogen
elimination process and excludes the faint outer double ionization process. (c) Calculated angular distribution for
the C2Ds3* photofragments (see Methods for details) without including FDRC orbitals at a uniform intensity of
9x10'* W cm™. (d) Similar calculations for an intensity of 9x10*3> W cm™ but with the ionization from FDRC orbitals

included. The ethylene HOMO has © symmetry.
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Figure 2: (Left) Experimental C2D* photofragment angular distributions arising from nw + C2D2 — C2D2* — C2D* + D.
Experimental laser parameters are about 5 fs pulse duration and a central wavelength of 740 nm. The laser
polarization is vertical (along the 0-180° direction) in all panels, as indicated by the arrow. (a) Experimental results
With lpeak = 4x10%° W cm™ and lavg = 4x10* W cm? (b) Ipeak = 8x10*° W cm™? and lavg = 7x103 W cm™2. (c) lpeak = 1x10%
W cm2 and lavg = 1x10** W cm2. (Right) Calculated angular distribution for the C.D* photofragments (see Methods
for details). In panel (d) the calculations are done without including FDRC orbitals, at a uniform intensity of 9x10%3
W cm2. (e) Similar calculations but with the ionization from FDRC orbitals included, at the same intensity of 9x10%3

W cm™. The symmetry of the acetylene HOMO and LUMO are ntu and g, respectively.
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Similar calculations to those performed for ethylene were conducted for the hydrogen
elimination channels in acetylene and ethane, no + C;D,— C;D2* — C.D* + D and nw + C;Dg —
C2D6" — CoDs* + D, respectively. In those two cases we can observe the intensity dependent
"turn on" of contributions to the ionization from the FDRC orbitals. The comparison between the
calculations and the experimental results are shown in Figures 2 and 3. For acetylene the
calculations for the angular distribution are depicted in Figure 2(d) and 2(e), where 2(d) only takes
the HOMO into account, while 2(e) also includes the FDRC orbital. In theory a clear cutoff
intensity exists, above which the FDRC orbital becomes partially occupied in the field and
therefore the angular distribution takes the form of Figure 2(e), while below the cutoff intensity
only the HOMO is occupied and the distribution is the shape of Figure 2(d). These idealized
conditions cannot be replicated in the experiment as the intensity of the laser varies over the
focal volume. Therefore in the experiment both cases of molecules, those who only ionize from
the HOMO and those who have the FDRC orbital partially occupied, contribute to the measured
data. With increasing intensity the number of molecules exhibiting a FDRC contribution rises so
the shape gradually goes from 2(d) to 2(e). Figure 2(a)-2(c) shows exactly this, with increasing
intensity the angular distributions come to resemble 2(e) more and more. Experimentally we
note the larger error bars along the polarization axis in Figure 2(c). This noise, which is discussed
in the methods section, does not affect the general conclusion that the photofragment angular
distribution narrows at higher laser intensity.

The experimental and theoretical results for ethane molecules are shown in Figure 3. Here the
effect of "turning on" the contributions to the ionization from the FDRC orbitals can be seen as
well in the four lobes observed at higher intensity (Figure 3(b)). Since the shapes with and without
FDRC contributions, shown in Figure 3(c) and 3(d), are more similar than in the acetylene case
the gradually shifting effect on the angular distributions is not as easily visualized. The intensity
dependence is described further in the Discussion section. Clearly, the angle-resolved ionization
from all three of these small hydrocarbon molecules show significant effects due to contributions
from the FDRC orbitals that are populated in intense, few-cycle laser pulses.
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Figure 3: (a) Measured C2Ds* photofragment angular distribution from the nw + C2De — C2Ds* — C2Ds* + D process
at lpeak = 2x10%° W cm™? (lavg = 2x10* W cm™) and a pulse duration of about 5 fs. (b) Measured C.Ds* photofragment
angular distribution for the same process and pulse duration but at a higher intensity: Ipeak= 7x10* W cm2 and lavg
=6x10'3 W cm™ . (c) Calculated C2Ds* angular distribution without including FDRC orbitals, at a uniform intensity of
9x10'3 W cm2. (d) Calculated C.Ds* angular distribution once the FDRC orbitals are included, at a uniform intensity
of 2x10% W cm™. The laser polarization, indicated by the red arrow in (a), is vertical in all panels. The ethane
HOMO has ©* symmetry.

Discussion

The angle-dependent ionization probabilities for ethylene, acetylene and ethane shown in Figs.
1-3 are calculated based upon electronic structure theory including the laser field as an external
dipole field in the Hamiltonian, as detailed in reference [68]. The neutral molecules in our
effusive jet are randomly oriented, and thus the interaction between the laser field and the
electronic wavefunction depends on their angle relative to the laser polarization. In the
calculations, therefore, the molecule is rotated in the plane formed by laser polarization and the
C=C bond, as well as out of the plane, i.e., around the C=C bond axis. For each position, the
electronic wavefunction is calculated in the presence of the electric field and the tunneling
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probability is deduced for various orbitals. Coherent ionization from multiple orbitals is treated
using a linear combination of the selected orbitals, as described in Ref. [68].

As illustrated in Figure 4, in the case of ethylene, the 6-, the n- and the ©* orbitals do not change
significantly either in shape or in energy under the influence of the laser field. In contrast, the
orbital with Rydberg character reacts strongly to the applied field. Its shape aligns with the
direction of the laser field, and its orbital energy strongly depends on the laser polarization. For
polarization parallel or perpendicular to the C=C backbone, the orbital energy is lowered, but the
HOMO and the FDRC orbital remain well separated in energy. When the laser polarization is
aligned with the C-H bond direction, however, the energy gap between these orbitals decreases
significantly. These calculations indicate that the field stabilizes a high-lying Rydberg orbital with
a localized electron density in the direction of the laser polarization. For these orientations of
the molecule relative to the laser polarization, the stabilization of the Rydberg orbital is so large
that it becomes energetically close to the field-dressed m orbital (HOMO), leading to partial
occupation of the FDRC orbital in the laser field. The electron density is far from the nuclei and
the tunneling ionization rate becomes relatively large.

The calculated angular-dependent tunnel ionization only describes the electron leaving the
system, while the experimental measurement is the photofragment from a C-H dissociation. To
compare the theoretical calculations with the experimental results, we need to calculate the C-
H bond dissociation direction related to the angular-dependent ionization rate. For the smallest
molecule C;H», the correlation between the detected C;H* fragment and the angular-dependent
ionization rate is simple, as this molecule is linear. If for example the molecule is rotated by an
angle a with respect to the laser polarization and its ionization leads to a C-H bond break, the
detected signal will be at the angle a (or 180° + a). The rotation of the molecule is about 1000
times slower than the vibration correlated with the dissociation and does not significantly
influence the shape of the angular distribution of the fragments. Thus the angular distribution is
the same for the electron leaving the system as for the neutral hydrogen or the C;Dn.1* fragment
leaving the system.
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225  For the other two non-linear molecules with more than two H-atoms attached, the case is more
226  complex. Therefore, we introduce a mapping of the tunnel ionization to the photofragment
227  dissociation direction. In our calculations we use the C-C axis to determine the position of the
228  molecule relative to the laser.

229  In calculating the angular distributions for hydrogen elimination in C2Hs, we have explored three
230 possible dissociative ionization scenarios, which are illustrated in Figure 5(a)-(c). In all scenarios
231  tunnelionization creates an electronic wavepacket with a hole localized along the two C-H bonds
232 that align most closely with the laser field (“nearby” C-H bonds). The three scenarios differ in the
233  degree of influence the localized wavepacket has for preferential C-H bond breaking.

234 Inthe first scenario, the tunnel ionization probability is largest when a C-H bond is aligned along
235  thelaser polarization. This situation leads to subsequent dissociation of these nearby C-H bonds.
236  In this scenario, the hole is not allowed to evolve from its birthplace along the direction of the
237 laser field and it is assumed that the nearby bonds break and not the other C-H bonds. In this
238  scenario the localized wavepacket has a great influence in selecting possible C-H bond breaks. As
239  can be seen in Figure 5(a), the theoretical photofragment distribution for this scenario displays a
240  four-lobed structure similar to that observed in the experimental data. This scenario, however,
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as expected, yields zero ionization for 60°-120° and 240°-300°, as these angles do not
correspond to the C-H bonds being near the laser polarization.

In the second scenario the electronic wavepacket delocalizes almost instantaneously and all C-H
bonds dissociate with the same probability. In this scenario the former localized wavepacket has
no influence on selective C-H bond breaking. Figure 5(b) shows the predicted angular distribution
for this scenario. The yields at 90° and 270° come from dissociation of the C-H bonds farthest
from the polarization axis of the laser field, while the smaller contributions at angles of 45°, 135°,
225° and 315° are due to dissociation of the nearby C-H bonds.

180
Figure 5: Schemes for calculating the

(a) 120 60
photofragment angular distributions in C2D4
(right) and corresponding results (polar plots,
left). The red arrow indicates the direction of
the dipole field. The dashed arrows relate the
(b) 120 orientation of the molecule to the dipole
vector with the angle between the field and

210

150 the dissociation direction plotted in the polar
diagram. (a) Contributions from the hole
180 localized at “nearby” C-H bonds only. The blue
vectors indicate the dissociation direction of
210 these H-atoms. (b) The hole delocalizes
quickly, allowing all C-H bonds to dissociate
240 270 360 ‘.4 with equal probability. The cyan vectors
indicate the dissociation direction of the more
(c) 80 remote H-atoms (c) Contributions to
120 dissociative ionization yield are weighted
partially by their projection to the dipole
150 vector which is indicated by the dark and light
green line, respectively (see eq. (4)). The
180 individual projections are indicated as dotted
: lines.
210 330 (’
240 570 300

As in the aforementioned cases, the final scenario, illustrated in Figure 5(c), dictates that the
probability of hole creation is favored for the nearby C-H bonds, but here the photofragment
yield contributions from various sites are weighted by their “distance” to the laser field. This
distance is indicated by the dotted green lines in Figure 5(c). In this sense this scenario is a middle
ground between scenario one and two. The localized electronic wavepacket influences the
selection of which C-H bond breaks, in contrast to scenario two, but not as exclusively as in
scenario one. Hence, while the nearby C-H bonds are most likely to break, the other C-H bonds

10
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dependent hole density in ethylene.
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have a much smaller but non-zero probability of breaking as well, thus leading to the yields at
60°-120° and 240°-300°, seen in Figure 5(c), which were absent in scenario 1. The final scenario
best matches the experimental result, and its underlying idea is supported by the time-
dependent propagation of the hole in the electronic density, shown in Figure 6. The electron
hole density (after ionization) is demonstrated to spend the most time in the vicinity of the
nearby C-H bonds within the first vibrational period of about 10 fs (the vibration is not shown).
An animation of the electron hole density for the first 10 fs after ionization is available as
supplemental information to this article. A similar strategy was applied to the ethane case in
order to obtain the photofragment emission angular-distributions.

As shown in Figures 2 and 3, the FDRC orbitals make an important contribution to the dissociative
ionization in acetylene and ethane. In those cases the effect of "turning on" the contribution of
the FDRC orbital can be clearly seen. In the ethylene case the HOMO-only angular photofragment
distribution, shown in Fig. 1(c), is nearly isotropic and therefore does not make an easily
observable contribution to the measured angular distribution. This effect masks the intensity-
dependent transition from the HOMO-only photofragment angular distribution to the angular
distribution where the FDRC orbitals become relevant. The energy gap separating the HOMO
and the FDRC orbital defines the intensity at which the FDRC orbitals are partially occupied and
contribute significantly to the ionization yield. This idea is supported by Figure 7, which shows
the intensity-dependent energies of the field-dressed HOMO and the FDRC orbitals of ethane.
With increasing intensity the orbitals come close in energy and eventually cross. The intensity at
which the FDRC orbitals in ethane should become relevant is at around 3x10'> Wecm™. Depending
on the molecules in the volume of the laser focus above the crossover intensity the observed
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A final point that this study can begin to probe is the usefulness of the molecular orbital picture
for examinations of strong-field ionization for these examples as well as other large molecules
[84]. Despite the fact that the MO-ADK [73] and other ionization models (e.g. Ref. [68]) based on
molecular orbitals have been fairly successful, describing the ionization in terms of field-free
molecular orbitals is strictly valid only when Koopmans’ theorem holds; i.e. within Hartree-Fock
theory, the first ionization energy is equal to the negative of the HOMO orbital energy. This
condition is not met in the case of many polyatomic molecules. In these cases, the preferred
methods for treating the ionization of a single electron include the use of a Dyson orbital [85] or
including “dynamic exchange” effects [86] in the calculation of the time-dependent Schrodinger
equation. Calculation of the Dyson orbital requires evaluating the overlap between the multiple-
electron wavefunctions of the neutral and the cation. Dynamic exchange calculations of strong-
field ionization of molecules include effects beyond the relative symmetry of the initial and final
states; specifically these calculations take into account the antisymmeterization of the virtual
states that occur during the ionization process [86]. Both of these techniques go beyond a field-
free description of the electronic characteristics of the target molecule. In the calculations
presented here, we also go beyond the field-free molecular orbital approach by calculating the
molecular orbitals with and without field at the CAS level of theory to capture the important part
of the electronic wavefunction and allow ionization to occur from more than one orbital. The
field-dressed molecular orbitals describe much of the electron correlation that occurs when the
bound electronic states are coupled by the strong laser field to the ionized continuum states. The
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model, however, does not go so far as to make a full Dyson orbital calculation or include dynamic
exchange effects.

Despite the various potential theoretical liabilities discussed above, does the current model
produce acceptable results? If the problem depended on the behavior of the electron during the
tunneling process it is likely that the model would be insufficient because the molecular orbitals
would not be precise enough. Importantly, however, the present problem only depends on the
angular-dependent tunneling probabilities, and these are quite accurate. By using field-dressed
molecular orbitals rather than simply mixing field-free orbitals, electron correlation effects are
included in the total electronic wavefunction that is subsequently used to depict the molecular
orbitals relevant to the tunnel ionization. The agreement between the calculations and the
experiment despite the various approximations and assumptions suggests that the somewhat
simplified model presented here reproduces most, if not all, of the important aspects of the
strong-field ionization. A more careful comparison of these different theoretical methods is a
potential pathway for future work. It should be noted that the involvement of the FDRC orbitals
is a property of the (studied) hydrocarbons and is not present in simpler diatomic molecules like
CO [60], although the necessary basis functions to form FDRC orbitals were available in previous
calculations [68].

Collectively, these results provide robust evidence of the important role played by field-dressed
orbitals with Rydberg character in strong-field ionization of molecules where the energy
separation between the HOMO and the FDRC orbitals is comparable to the Stark shift caused by
the laser. These conditions are satisfied in the hydrocarbon molecules studied here and should
be relevant for large classes of polyatomic molecules that are attracting increasing experimental
interest. lonization from these field-dressed orbitals with Rydberg character creates holes in the
electronic wavefunction that strongly influence the direction of the hydrogen elimination from
the molecular cation. Understanding the link between the electronic properties of the ionization
process and the photofragment angular distributions that result from molecular dissociation is
an essential component of designing adaptive control schemes that use photofragment imaging
as a feedback source [76].

Methods

Calculations: We performed quantum chemical calculations for the ground state with the
MOLPRO program package [87] at the CASSCF[10,12], CASSCF[12,12] and CASSCF[14,12] level of
theory, for acetylene, ethylene and ethane respectively using the 6-31++G** basis set. The
calculations were carried out with and without an external dipole field. The dipole field was
added to the one-electron Hamiltonian to simulate the interaction with the strong ionization
field, which corresponds to a static field. While this basis set is at the lower limit of what is
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suitable for calculations at these field strengths, it is sufficient to demonstrate the influence of
the FDRC orbitals.

The ionization probability of a molecule in a laser field can be modeled in terms of the induced
electron flux through the barrier of the combined molecular and external electric field [83]
(atomic units m = h = e =1 are used throughout the paper):

w(t)=[j(r.t)ds,
i 1 * * (1)
j(r,t)=—5(t//(r,t)Vl//(r,t) ~y(rt) Vo (1))

Here j(r,t) is the electron flux density and ((r,t) is the electronic wavefunction in the presence of
the electric field inducing the electron flux W(t). For the surface S it is convenient to choose a
plane perpendicular to the direction of the electric field. In our case, S is located at the outer
turning points of the electronic wavefunction. Here the wavefunction enters the classically-
forbidden region where tunneling occurs. The electronic wavefunctions, evaluated by a quantum
chemical program package, are typically real, and their flux density (Eq. 1) is zero.

Refs. [68, 88] demonstrated that this problem can be overcome by evaluating the electron flux
for the electron density p(r,t) with the help of the divergence theorem and the continuity
equation, as proposed by [88].

We can then rewrite eq. (1) as:

W(t):—J'Vj(r,t)dV':%le(r,t)dlf' o)

with V' being the part of the total volume V in which the electronic wavefunction ¢(r) is defined
and which is spanned by the surface S and a vector perpendicular to S pointing away from the
nuclei. In order to calculate the tunneling probability T(S), we need the electron density with (at
final time ty) and without the external field (at initial time t;).

Therefore we integrate Eqn. 2 over time and obtain the following:
T(6:8) = [ p(r.t,)dv'=[ p(r.t)dV' (3
V! V'

To treat ionization from more than one single orbital we solve the working equations derived
above for a linear combination of the selected molecular orbitals. This implies a basis
transformation rewriting the two orbitals (e.g. HOMO and LUMO) in the Slater determinant as
the orbitals HOMO + LUMO and HOMO - LUMO, allowing for coherent ionization of the electron
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from both orbitals [60,89]. The coefficients for the linear combination are taken from the CASSCF
calculations and correspond to the coefficients of the configuration expansion of the ground
state electronic wave function.

C-H dissociation
direction

Figure 8: Relevant angles a, between the
) ] dipole field and the molecular orientation
B d|p0|>ef|e|d (in this case the C-C axis), and B, between

/\ the dipole field and the C-H dissociation
direction.

molecular
orientation

The position of the molecules relative to the dipole field is given by a rotation ¢ along the C-C
axis and a rotation a perpendicular to the C-C axis. Both rotations were varied in 10° steps. The
resulting tunnel ionization T («) is obtained from Eqn. 3 by integrating over the angle ¢, as the
surface S can be written depending on the angles a and .

Once the angular dependent tunnel ionization is obtained, a mapping between that quantity and
the much slower C-H (C-D) dissociation is needed for the non-linear C;D4 and C;Ds molecules. For
the mapping step from angular tunnel ionization T () to the calculated angular H* fragment
signal U(B), where B describes the angle between the dipole field and the C-H dissociation,
direction as shown in Fig. 8, we used the following formula:

UB) = 2o T() - M(a,B) -w(a,B), (4)

with M (a, B) the mapping function and w(a, B) a weight for the “distance” between the C-H

bond and the dipole field. The mapping function is one if B coincides with a C-H bond for a given
VD) J

angle a and zero otherwise. The weight was set tow(a,8) = 0.5 1 + WL ) where V is the

vector along the dissociation direction shown as the blue (and cyan) vectors in Figure 5 (c), and

D is the vector of the dipole field.

The tunnel ionization creates a hole in the electron density in the FDRC orbital. This orbital is
taken to represent the hole. To visualize the hole dynamics, the FDRC orbital is projected onto
the basis of the field free orbitals. This projected hole is treated like an electronic wavepacket
and propagated in the eigenstate basis.

Experiment: A Ti:Sapphire laser system (named PULSAR) generates 2 mJ pulses of approximately
24 fs duration and 790 nm central wavelength at 10 kHz. These pulses are used to generate few-
cycle pulses (~200 w, 450-1000 nm bandwidth) through self-phase modulation in an argon-filled
hollow-core fiber. A set of chirped mirrors compensates for substantial up-chirp acquired during
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spectral broadening and creates an overall negative dispersion to counterbalance positive
dispersion from propagation through air and glass in the beam path. Moreover, a pair of fused
silica wedges allows for fine adjustment of the dispersion. These procedures allow delivery of
Fourier transform-limited pulses of about 5 fs duration on target. A small fraction of the laser
beam is split off and focused into a stereographic above-threshold ionization (ATIl) phase meter
[90,91]. Using the phase meter to obtain a parametric asymmetry plot of the expected radius
verifies the production of few-cycle pulses [92]. The main portion of the laser beam travels to
the velocity map imaging (VMI) [93,94] spectrometer and is focused by an f=75 mm spherical
mirror inside the chamber. An iris placed just before the entrance is used to vary the peak laser
intensity, which is evaluated approximately using simple Gaussian beam optics.

Our VMI spectrometer follows well-documented design and operation, e.g., [79,95]. An effusive
gas jet of the target hydrocarbon molecules intersects the laser beam inside the spectrometer,
which is composed of an electrostatic lens system that focuses photofragments to specific radii
on the detector depending upon their transverse momenta. Using a fast high voltage switch, the
detector is active during a narrow time window (80-100 ns wide) around the expected arrival
time of the fragment of interest. Deuterated hydrocarbon gas is used to ensure adequate time
separation of fragments differing by only one “hydrogen” atom. The obtained images are
inverted offline using a version of the onion-peeling method [79,96] to retrieve the two-
dimensional slice (Py = 0) through the three-dimensional momentum distribution of the
dissociating fragments.

At the lowest intensity (Fig. 2(a)) measurement for the acetylene target, the no + C;D,— C,D2*
— C;D* + D* double ionization channel is negligible. At higher intensities this channel is present,
but well separated (similar to the ethylene case in Fig. 1(a)) from the C,D* + D single ionization
channel of interest and does not significantly affect the angular distribution shown in Fig. 2(b).
At the highest intensity (Fig. 2(c)), however, the double ionization channel dominates the outside
of the image and thus somewhat compromises the VMI inversion process. The 12-bit dynamic
range of the camera that images the phosphor screen in our setup limits the image acquisition
time so as not to saturate the portion of the detector collecting the larger-momentum higher-
yield C;D* photofragments arising from double ionization. The corresponding signal from lower-
momentum, smaller-yield C;D* photofragments arising from single ionization is small and also
contains contributions from higher momentum C;D* photofragments arising from double
ionization that must be subtracted in the image inversion process [79, 96]. The small signal along
with numerical uncertainty from the inversion leads to noisy data along the polarization axis, as
indicated by the error bars in Fig. 2(c). Despite this problem along the center of the image, the
data that is more than a few degrees away from the polarization direction demonstrates the
change in the photofragment angular distribution discussed in the results.
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To compare laser intensity between the calculations and the measurements, we use the
measured input beam parameters and the focusing conditions to calculate an experimental
volume-averaged intensity. The spread of the effusive jet from the 100 um opening is much
larger than the size of the laser focus at the interaction point. Using Gaussian beam optics, the
measured beam waist radius outside the vacuum chamber (/) and the central frequency of

the laser pulse (1), the beam waist at the focus of the spherical mirror (W) is calculated using

A
W, = % since the depth of focus of the input beam may be considered to be much longer than
Ty

the focal length of the mirror (f) [97]. The optical intensity is then a function of the radial distance
1
z and the axial distance p = (x2 + y2)2 ,

vl o] o

where [ is the peak intensity,

s
w(z)=W, 1+[1J (6)
Zy
and zp is the Rayleigh range
TW? Af?
Zy=—"= f, > (7)
A=)

The focal volume is then defined as the region where I(p,r) is larger than an experimentally

determined value of the peak intensity that produced little or no signal of the photofragment of

interest. I(p,r) is then averaged over this volume to obtain layg, the focal-volume-averaged

experimental intensity. This value is used along with the peak intensity (lpeak) to compare to the
intensity used in the calculation.
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