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Abstract—Accurate prediction of user consumption is a key
part not only in understanding consumer flexibility and behavior
patterns, but in the design of robust and efficient energy saving
programs as well. Existing prediction methods usually have high
relative errors that can be larger than 30% and have difficulties
accounting for heterogeneity between individual users. In this
paper, we propose a method to improve prediction accuracy of
individual users by adaptively exploring sparsity in historical
data and leveraging predictive relationship between different
users. Sparsity is captured by popular least absolute shrinkage
and selection estimator, while user selection is formulated as an
optimal hypothesis testing problem and solved via a covariance
test. Using real world data from PG&E, we provide extensive
simulation validation of the proposed method against well-known
techniques such as support vector machine, principle component
analysis combined with linear regression, and random forest. The
results demonstrate that our proposed methods are operationally
efficient because of linear nature, and achieve optimal prediction
performance.

Index Terms—ILoad forecasting, least absolute shrinkage and
selection, sparse autoregressive model, significance test

I. INTRODUCTION

LECTRIC load forecasting is an important problem in

the power engineering industry and have received ex-
tensive attention from both industry and academia over the
last century. Many different forecasting techniques have been
developed during this time. The authors in [1] present a
comprehensive literature review on different methods related
to load forecasting, from regression models to expert systems.
Time series methods are further discussed in [2]. A thorough
research on load and price forecasting is presented in [3]. A
common theme among many of the established methods is that
they are used to forecast relative large loads, from substations
serving megawatts to transmission networks serving more than
gigawatts of power [4]. As the grid shifts to a more distributed
system, the need of accurate forecasting for smaller sized loads
is becoming increasing important.

Recent advances in technology such as smart meters, bi-
directional communication capabilities and distributed energy
resources have made individual households active participants
in the power system. Many applications and programs based
on these new technologies require estimating the future load
of individual homes. For example, state estimation algorithms
for distribution systems require pseudo-measurements [5],
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and these are provided by load forecasts. Another important
class of application is demand response and dynamic pricing
programs, where users’ future demand are needed to design
appropriate incentives [6], [7], [8], [9], [10].

In contrast to large aggregated loads, individual load fore-
casting is less developed. The current state of forecasting
algorithms falls under three broad classes: simple averaging,
statistical regression methods, and Artificial Intelligence (AI).
They are listed in increasing order of prediction accuracy and
decreasing in order of model simplicity. Simple averaging
is intuitively pleasing since it is based on the mean of the
previous similar days, but is often not very accurate. On the
other end of the spectrum, Al methods can be extremely
accurate, but it is difficult to associate the obtained parameter
with the input data, i.e., past consumption. In this paper, we
propose an algorithm that can achieve the performance of the
state of the art Al methods, but retains the simplicity of linear
nature of regression methods.

The algorithm we propose is based on the well known Least
Absolute Shrinkage and Selection (LASSO) algorithm in statis-
tics and signal processing [11]. It shrinks parameter estimates
towards zero in order to avoid overfitting as well as pick up
the most relevant regressors. Operationally, it minimizes the
usual sum of squared errors, with a bound on the sum of
the absolute values of the coefficients. LASSO is preferable
in a setting where the dimension of the features are much
higher than the size of the training set [12], [13]. Furthermore,
it can be easily extended to suit for more scenarios, i.e.,
group LASSO or adaptive LASSO [14], [15]. Due to its nice
statistical properties and its efficiency, LASSO is applied to
many different disciplines and has shown its superiority in
sparsity recovery [16], [17].

In particular, we formulate the load forecasting problem as
learning parameters of a sparse autoregressive model using
LASSO. This sparse autoregressive model automatically se-
lects the best recurrent pattern in historical data by shrinking
irrelevant coefficients to zero. By selecting the correct features,
the algorithm improves the order selection in autoregressive
models, and as we will show using real load data from Pacific
Gas and Electric Company (PG&E), it also greatly improves
the prediction accuracy of current regression models. For
example, taking the Mean Absolute Percentage Error (MAPE)
as a metric, autoregressive model with lag order one (AR(1))
has a MAPE of 33.9 %, based on a pool of 150 users. The
proposed method reduces the MAPE to 22.5 %. Nonparametric
methods such as using the consumption data at the same
time during last week (LW method) are more intuitive but
their performance are not robust subject to noise. They yield
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a relative error nearly up to 35% based on a pool of 50
users in our test dataset. In addition, based on our dataset,
linear regression model with the reduced feature space from
Principle Component Analysis (PCA) performs rather poorly,
with a relative error greater than 100 %, which is even worse
than simply predicting zero. Overall, the proposed model with
LASSO achieves a much smaller error and maintains the
intuitive nature of linear methods.

In addition, we observe that given the set of coefficients,
utilities and planners can easily identify and attribute the
impact of different features on load consumption based on
LASSO. For example, suppose for a given user, our method
concludes that its load at time ¢ is mostly determined by the
past load at times # — 1, t —3 and ¢ — 24. This shows that
this user has some short term behavior in the one hour range,
medium term behavior in the 3 hour range, and a daily cycle
partner that repeats every 24 hours. This information can be
interpreted by utilities to better understand this user’s con-
sumption patterns and potentially identify appropriate demand
programs.

Apart from LASSO, data from other users can be leveraged
for forecasting in the proposed framework. Intuitively, this
means that knowing the past history of user j improves
forecasting of the user i. For a given user, we use a sequential
hypothesis testing procedure to find the best other user’s
historical data to include in the algorithm. We give a rigorous
derivation of the hypothesis testing procedure and quantify the
confidence of including other users. This allows us to show
that the procedure is optimal, in the sense that given user i, it
finds user j, whose historical data improves load forecasting
for user i the most among all users.

We derive rigorous theoretical justification for our methods
as well as provide extensive simulation studies with respect to
several well studied prediction methods. In particular, we com-
pare against AutoRegression (AR), Exponential Smoothing
(ES), Support Vector Machine (SVM), linear regression with
PCA, Random Forest (RF) and Neural Network (NN) model.
We also include two more nonparametric methods, i.e., using
ten previous days’ average consumption as prediction and
using last week’s (LW as mentioned earlier) consumption data
as prediction. Using a user’s own historical data, our proposed
method and RF both reduce prediction error by 30% compared
to other predictors. Our proposed method is simpler in nature
than RF since the latter is a generic machine learning technique
that relies on a random ensemble of decision trees [18], [19].
Therefore, our method is useful to system operators in policy
decisions without sacrificing prediction accuracy. By adding
the historical data of another user, we can further improve the
prediction accuracy.

A. Contribution

The contribution of this paper is two fold.

o First, we apply LASSO in consumption prediction.
LASSO has been studied in literature to jointly predicts
price, load and renewables together [20]. However, there
is little discussion on how LASSO can be applied to
consumption forecasting without using other side infor-
mation. Our paper has a thorough discussion on how

LASSO is used in obtaining a sparse autoregressive
model and compares its performances with several other
popular prediction methods in literature. The simulation
results show that LASSO achieves competitive prediction
performance compared to nonlinear machine learning
algorithms such as RF or NN. In addition, LASSO is
computationally much faster and easier to be understood
by human operators.

« Second, we propose a significance test that can leverage
other users’ consumption data for prediction. This testing
procedure differs significantly from standard clustering
algorithms since it looks for the most “predictive” user,
not necessarily the most similar user.

The rest of the paper is organized as follows. Section I-B
analyzes related work in short term load forecasting. Section
II presents the autoregressive model for time series analysis.
Section III introduces LASSO type linear regression model.
Section IV proceeds with the significance test to pair users
in order to improve prediction performance. It describes the
significance test for LASSO, i.e., covariance test, to select the
most significant user to form the pair with the current user.
Section V introduces the evaluation criterion for prediction and
details the simulation of the proposed methods compared to
several other popular prediction methods. And finally Section
VI concludes the paper and draws avenues for future work.

B. Literature review

There exists an extensive literature on short term load fore-
casting [21], [1]. In summary, research on energy consumption
prediction can be divided into three groups [1l], including
simple averaging models, statistical models and AI models.

The simplest approach is to employ moving average [22].
Such models make predictions on mean of consumption data
from previous similar days [23]. Al type methods (e.g. NN
or RF) yield high accuracy at the cost of complexity of the
system, which may lead to overfitting [24]. Other drawbacks
include difficult parametrization and non-obvious selection
of variables. Statistical methods sit in between the previous
methods in terms of complexity and accuracy, and include
regression models, probabilistic approach applied to regres-
sion models, and time series analysis such as autoregressive
models.

In statistical methods, regression models combine several
features to form normally a linear function. In [25], the
authors build a regression tree model with weather data to
predict consumption. SVM is used in [26]. Gaussian process
framework for prediction mitigating the uncertainty problem
is proposed recently in [27].

Advanced Al models have also been used to facilitate load
forecasting. Authors in [28] propose a NN model to handle
uncertainties associated with forecasts. Similarly, authors in
[29] study the interruption prediction with weather conditions
by simulating a NN. Besides these work, the authors in
[30] explore kernel-based learning techniques to forecast both
commercial and industrial load. In addition, feature selection
techniques are applied in [31] to predict electricity load and
prices.
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Apart from these advanced machine learning tools, another
type model involves time series based methods [32]. An
overview can be found in [33]. Models such as ES [34] and the
Autoregressive Integrated Moving Average (ARIMA) model
[35], [36] are all time series based. ARIMA is a widely used
time series based prediction methods and have been adopted
in [37], [38]. In these papers the authors apply ARIMA
to predict either the electricity price or the electric vehicle
demand. Apart from these work, authors in [20] propose
a vector autoregressive model to include renewables, prices
and loads together with sparsity recovery. In this work, the
authors have also explored LASSO to obtain a sparse linear
model. In addition, to extend from linearity to nonlinearity,
[39] addresses a mixed model combining ARIMA model to
deal with the linear part and neural network with the nonlinear
one. In our work, we recover the sparsity for univariate time
series and multivariate time series under the framework of
autoregressive models.

II. AUTOREGRESSIVE MODEL

Autoregressive models are widely used for prediction and
inference of time series data. Here we adopt a linear autore-
gressive model of the hourly consumption of a single user,
where future demands y; depend linearly on historical data
¥i—; plus random noise:

1
ye=PBo+Y Byi-ite&. )
i=1

In this model, y; denotes the demand of the user at time ¢,
B is the coefficient for order (lag order) i in the autoregressive
model (it represents the weight of each historical demand data
y—1 in predicting future demand y;), and & is an additive
random Gaussian noise. The time index ¢ is measured in hours
and the noise is identically and independently distributed at
different hours. Note that in this paper we denote time series
data by notation {e,}, where subscript ¢ refers to the time slot
in this time series data. In addition, / is the number of orders
that we include in the model. An autoregressive model with
maximum order / is denoted by AR(J).

To use the model in (1) for prediction, the standard
approach is to use Ordinary Least Squares (OLS) to es-
timate the coefficients f3;, i € I. By convention, we write

Vo1 Y2 yi—1]T as a vector denoted by x¢. Using this
notation, the model in (1) is written in a compact matrix form:

y=XB +e¢, (2)
where y = [y, yi1  ---]T, X is a matrix where ™ row
is [l x(l, B=1[B B --]',and & =1[g g -]

Vectors y, B and € have dimension 7. Matrix X has P
columns, which we refer to as the dimension of X.
Applying standard OLS to (2), the estimate of B is given
by:
N ) 2
Bovs =arg;nn|\(y—Xﬁ)Ilz- 3)

Under some standard assumptions, the OLS estimator BOLS
is a consistent estimator for the true B, meaning that the
expected difference between the estimator and the true value
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Fig. 1: Error comparison between different autoregressive
models.

approaches zero when sample size becomes large [40]. This
means that the bias goes to zero as the sample size becomes
big. The other asymptotic analysis on the OLS also applies in
this case, such as asymptotic distribution for gaussianality of
estimators and significance tests; however, in autoregressive
models the estimators are typically not unbiased.

To learn and evaluate the estimator B, from OLS, we
separate the dataset into a training set and a test set. The
estimator B¢ is learned from the data from the training set
and the estimation error is evaluated on the test set. Note that
estimators may exhibit extremely good fits on the training set
but poor estimation performance on the test set, as according
to [41].

III. SPARSITY IN AUTOREGRESSIVE MODELS

Since the objective of OLS estimators is to minimize the
sum of squared errors in the training set, OLS achieves
optimal in-sample performance. This means that adding more
regressors into (2) can always decrease the sum of squared
error and better fit the data within the training set. However,
when we include too many irrelevant regressors, i.e. when we
include too many lag orders from the historical data in (2) ,
we are misled by the reduced in-sample bias. We will then
ignore the high variance introduced by the estimator which
leads to model overfitting.

We use the PG&E dataset as an illustrative example. In
this particular dataset, hourly consumption data for single
households is recorded. If we use an AR(5) model for a
particular household, it will result in an average in-sample
squared error of 0.0159, with an average out-of-sample error
of 0.0216, whereas AR(1) model has an average in-sample
squared error of 0.0172, together with an average out-of-
sample error of 0.0174. Thus AR(1) gives better out-of-sample
fitting results. If the potential lag orders are up to 10 days,
i.e., 240, then an AR(240) model would produce large out-
of-sample errors. Overall, we need to select the lag orders
carefully to avoid model overfitting. The tradeoff between out-
of-sample error and the order of the autoregressive model is
shown in Fig. 1.

Determining the correct lag orders is not trivial because
it is a combinatorial problem, which is NP-hard. To this
purpose, we use LASSO, which is a convex relaxation of
such combinatorial problems, to select relevant lag orders. The
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intuition for using LASSO is to get a sparse autoregressive
models with high orders.

More formally, LASSO is a shrinkage and selection method
for linear regression described in (2) [11]. It shrinks parameter
estimates towards zero in order to avoid overfitting as well
as picks up the most relevant regressors. Operationally, it
minimizes the usual sum of squared errors, with a bound on
the sum of the absolute values of the coefficients:

~ . 1
ﬁmsso:arg;mnzI\(y—X3)|\§+7LII3|\1, ©)

where A is a tuning parameter to control the level of sparsity
in the solution. In essence, it controls the number of past con-
sumptions included in the prediction of future consumptions
(i.e. sparsity). The bigger A is, the more sparse the solution
Basso is. which means that less number of data points from
the past is used to predict the future. This parameter balances
the training and testing performances of the model. When
A = 0, the solution is the same as in (3) as a traditional
autoregressive model. For practical purposes, we are using k-
fold cross validation (CV) to determine the value of A in our
simulations, where k is either 5 or 10 [41].

LASSO has gained wide spread popularity in signal pro-
cessing and statistical learning, see [42], [43], [44]. LASSO
has also been applied to forecast electricity price [20], [45], but
its application to load forecasting is still a new topic. In [46],
LASSO has been applied to forecast short and middle term
load. In our paper, we adopt LASSO to predict hour-ahead
consumption and provide a comparison between LASSO and
some other well-used prediction methods in literature. As
discussed later in Section V, LASSO is the most preferable
model when considering model simplicity and prediction
performances. Despite the fact that RF achieves the best
prediction performance with an average relative error less than
20%, it is a highly non linear model and requires to tune many
hyper-parameters. This is computationally expensive and not
linear in nature. On the other hand, LASSO achieves similar
performance as RF and outperforms all other linear models
considered in this paper, i.e., SVM with a linear kernel, linear
regression with PCA, AR(1) and simple averaging method. It
reduces the relative error by 30% compared to these models.
Thus LASSO is considered the best in terms of simplicity and
prediction accuracy based on our dataset.

Another advantage of using LASSO to recover sparsity is
that it has some nice properties as to sign consistency [12],
[13]. This means that B has the same support as B and the
sign of each element in this support is recovered correctly.
Therefore LASSO recovers the exact sparsity of the underlying
model. In our simulation, LASSO selects both the most recent
lag orders and lag orders with intervals of roughly 24 hours,
which performs as a combination of simple averaging and
AR(-). Furthermore, LASSO also gives more intuitive results
with respect to selected orders. In our simulation, for one
electricity user as an example, LASSO selects lag orders as 1,
2,5, 6,16, 22,23, 24, 48, 143, 144, 160, 191, 216, 238, 240.
From these orders we can observe a clear behavior pattern of
an interval of 24 hours. Some are multiples of 24 and some
are not but close to multiples of 24. We thus observe that

not every lag order that LASSO picks is a multiple of 24,
otherwise we would directly employ simple averaging rather
than LASSO, so LASSO is more adaptive and flexible than
simple averaging or AR(:). This implies that user behavior at
current hour depends on similar hours happened in previous
days. Unlike simple averaging which fix the lag orders at 24,
48, 72, etc., LASSO will automatically select these orders
for each individual based on their respective historical data,
instead of directly imposing fixed orders.

As can be seen from Section V, LASSO applied to au-
toregressive model achieves the best prediction performance
among all the linear models considered in this paper, with a
relative error as small as 22.5 %. It improves the prediction
performance by 33.6 % as compared to an AR(1) model.

IV. USER PAIRING BY SIGNIFICANCE TEST

So far we have considered using historical data of an
individual user for its own prediction. One way to leverage the
fact that we have many users’ data is to improve the univariate
autoregressive model by including other user’s historical data
into the model. One popular way to perform this is to conduct
Vector Autoregression (VAR), which extends the univariate
autoregressive model to joint prediction for a vector of time
series data.

To perform a complete VAR, we need to include all poten-
tially relevant users into the autoregressive model, which will
reduce the bias but increase the variance for estimators. This
causes the same overfitting problem as occurred in univariate
autoregressive model, when AR(3) yields a worse prediction
on the test set but a better fit on the training set compared to
AR(1). One possible way to overcome this problem is to first
cluster similar users together and then perform VAR for each
cluster. However, consider a scenario where two time series
have the exact same values for each time slot. Then these two
time series are clustered together since they are identical. In
this case, clustering them together and performance multivari-
ate autoregressive model does not help to enhance prediction
because knowing the history of one time series would not help
predict the future values of another time series. This problem
distinguishes similarity from prediction performance, which is
the focus of this section.

In this paper we focus on selecting the most relevant user to
enhance prediction performance after doing univariate LASSO
selection. To this end, we adopt LASSO significance test to
select this most relevant user. In LASSO significance test,
the inclusion of a particular user is based on how well this
particular user’s history data explains the fitted residual after
performing LASSO to one user’s univariate autoregressive
model. This is a hypothesis test of an exponential random
variable [47]. We will discuss more details of a LASSO
solution to a regression model and the implementation of the
LASSO significance test in the rest of this section. Overall
from the simulation results presented in section V, using
significance test on top of univariate LASSO-type regression
model improves the relative prediction error from 22.5% to
20.9%, which is almost as good as the prediction results from
RF.
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A. Linear Regression Model for the Fitted Residual and
LASSO Path

In LASSO significance test, we want to test if the fitted
residual from LASSO solution in (4) is indeed noise or if
it can be better explained by other user’s historical data.
Intuitively, We need to test inclusion of each user’s historical
data. We therefore generate LASSO autoregressive coefficients
for univariate time series in (1) and compute the residual {e,}
(true value minus fitted value) for each individual user. Then
we use e; as the response variable in a new linear regression
model. To fit this new linear regression model, we include all
users’ historical data at lag order one except for this user as
the regressors. In this way we will have a high dimensional
regressor matrix. Its dimension is the number of users we want
to potentially include, which is the total number of users minus
one. Since we only want to include the most significant user as
the regressor, LASSO is therefore performed and furthermore
tested on this new linear regression problem. In the following,
we first illustrate more details on formulating the LASSO
regression model to the fitted residual from univariate model.
Then we provide more explanations on the LASSO path with a
varying A. In the next subsection we introduce the covariance
statistic and its asymptotic distribution for hypothesis tests
along the LASSO path.

Mathematically, the new linear regression problem for the
residual is formulated as follows:

e=§a+y, (5)

R €r+l.s "]T = [J’m - Xzsﬁmsso Yitls —
X[TH’Sﬁ 1asso )1 is the residual for the current user s, X
= V-1 V-2 yi—15|T and y; ; denotes the consump-
tion data for user s at time #. The parameter & is a vector
of weights that denotes how helpful each other user’s last
demand data is towards the prediction of future demand of
user s. Vector e has a length of N. Moreover, matrix & is the
regressor matrix made by lag order one historical data from all
the other users except for the current user s. The ™ row of &
is [yio1,1 Yie127Yi—1s—1 Yi—1s+1---]. So & has a column
length of P, which is the number of users to be included, and
a row length of N, which is the same as that of e. One user
is represented by one column of € and is regarded as one
regressor variable. In addition, W is the white noise vector
with variance 2. The parameter & = [0ty ¢ --- op|T is
the decision variable for the regression problem.

We again apply LASSO for (5), to avoid overfitting by
including too many irrelevant users. Building on the discussion
in Section III, we define the LASSO path as the revolution of
the estimator & in terms of a sequence of A;’s. The LASSO
path &(A;) is given by:

where e = [e;

5 1
&(hy) =argmin (e~ @)+ Ay, (©)

where Ay is called the knot along the LASSO path.

For different values of A;, we obtain different solutions and
sparsity at different levels. The active set at one particular
value of A; is the set of all non zero coefficients estimated at
that value, i.e., & = {&, #0,A =A,p=0,1,---,P}. The

path @&(Ay) is continuous and piecewise linear with knots at
these values A; > A, > --- > 0 [48]. With the formulation in
(5), the goal is to test if an inclusion of one user’s historical
data is helpful for prediction. Mathematically speaking, we
want to test if the variables that sequentially enter the active
set are statistically significant.

B. Covariance Test

Significance test applied to the LASSO path is fundamen-
tally different from the standard hypothesis tests in linear
regression. In standard testings with linear regression model,
we fix a regressor variable and test the significance of its
inclusion into the model. This can be done by z-test. However,
the scenario is not the same in the case where we want to test
the significance of variables along the LASSO path since the
variables entering the active set are not known in advance. This
means that we do not know which regressors to fix in order
to conduct ¢-test. This problem is addressed by the authors
in [47]. Instead of standard ¢-test, they propose a significance
test for regressors progressively selected by the LASSO path,
using the so called covariance statistic. They have shown
that the covariance statistic asymptotically follows exponential
distribution and can be used to test the significance of the entry
of variables into the active set.

Using the covariance test defined in [47], we test whether
it is significant to include one variable (one other user) into
the active set against including no variables into the active set.
Specifically, we want to analyze whether the residual, i.e., e
is white noise, or it can be explained significantly by the lag
one order historical data from other users.

The null hypothesis is that the true active set is an empty
set, i.e., no other users can help better predict the current user:

Hy:c,=0=---=ap=0. 7
Another way to interpret this is:
Ho: e N(0,6%). ®)

We focus on testing the significance of the first variable
entering the active set and the two main reason for doing
so are as follows. First, for the following variables entering
the active set, the exponential distribution turns out to yield a
slightly higher value than the true value of the test statistic,
so the decision tends to be conservative [47]. Second, If one
would like to include more significant regressors selected by
LASSO, the Tailstop criterion [49] for ordered selection can
be used under the assumption that sequential p-values are
independent. However, we restrain from looking at p-values
at greater indices because of the non-orthogonality of & in our
case (which leads to misleading interpretation of p-values), as
pointed out in [49] and [50]. To illustrate this, we use Tailstop
criteria in our simulation and it turns out that the first eighteen
regressors are selected to limit the type I error of the global
null in (7) under 0.05. It is obviously an overfitting result
and Tailstop criterion cannot be trusted due to the correlation
between each row in the regressor matrix &. From literature,
interpreting p-values from sequential hypothesis and order
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selection under generic conditions is still an open question
and is thus beyond the discussion of this paper.

To test whether the first variable entering the active set is
significant, we first set A = « and gradually reduce A until
one regressor variable has a non-zero o. Denote the value
of this A as A;. Also denote A, as the value of A when the
second regressor variable enters the active set. For simplicity
of representation, we scale the columns of the & so that each
column has unit norm.

Following this scaling strategy, the authors in [47] define the
covariance statistic for testing the entry of the first variable and

it is written as:
M(A =)

I = oz )
From Theorem 2 in [47], the authors have proved that
Pr{T; >t} — ¢™' as P — oo for all > 0. Thus we have that
the asymptotic distribution of 77 obeys exponential distribution
with parameter 1: 7} — Exp(1).
In most cases, the value of 62 is not known a priori. We
can estimate 62 by the residual sum of squared error via:

A 2

~2 ||(e—§a0Ls)||2

& e U/ 1
N—-P (10)

where @¢rs is obtained through:

N !
GoLs = argmin > [[(e — §a)]5. (1
[+1
Plugging (11) into (9), we have a new statistic F;, which is
asymptotically following F distribution (ratio of two indepen-
dent x? distribution) under the null [47]:

2
Fi= Tl% - W — Foy_p. (12)

In conclusion, to test whether another user’s historical data
can explain the residual obtained by the univariate LASSO
introduced in Section III, we compute the value of A; and A5,
along with the full linear regression in (11) which gives us 62.
Plugging these into (12), we include the regressor variable
(which represent one particular user) entering the active set
at A, if F] is greater than some threshold and reject the null
hypothesis in (8). Simulation results show that performing this
significance test on top of univariate LASSO type regression
model has improved the prediction by reducing relative test

error by 38.3%, compared to AR(1) model.

V. SIMULATION RESULTS

We use the data from PG&E. It contains hourly smart meter
readings for residential users during a period of one year
from 2010 to 2011. Temperature data is retrieved from an
online database [51] for the same period. Some preliminary
observations suggest that temperature is not a significant
regressor to predict consumption based on our data set, thus it
is excluded from the regressors for the following simulations.
In addition, the consumption data has been filtered to exclude
daily periodic trends and is separated into weekday data and
weekend data. The simulation results are obtained on weekday
data.

A. Prediction Evaluation Criteria

Before proceeding with the prediction methods, we first
introduce the evaluation criteria for prediction used in this
paper. A naive way to evaluate prediction methods is to
compare the Mean Squared Error (MSE) or Mean Absolute
Error (MAE) within the testing set:

1 n
MSE =—Y" (v —5)° (13)
ni3
1 & .
MAE = =} [y =3 (14)
t=1

where y; is the actual value, J, is the predicted value, and n
is the number of fitted values.

However, MSE and MAE are not scale invariant. This will
be misleading if we want to compare the performance for
two datasets with significantly different scales and means.
One way to solve this problem is to normalize the error or
to compare the relative error, i.e., the prediction error with
respect to the data scale. Here we use the MAPE mentioned
earlier in Section I, to capture the relative error:

z—ﬁz|

1 n
MAPE = - ) |22 (15)
i3

t
Normalized Root-Mean-Square Deviation (NRMSD) is also
a good metric to compare prediction performances of data with
different scales :

\/ %Z?:l (o —)A’t)z
NRMSD =

—_ )

y

where y is the mean of y in the training set.
In case of outliers, we adopt mean curtailing of 0.01 tail and
head, or simply use the median to replace the mean value.
In addition, to evaluate the model between good fit and
complexity (in terms of the number of parameters), Akaike
Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC) can be used [52].

(16)

B. Comparison with Different Prediction Methods

We compare our proposed method with other popular meth-
ods: 1): Simple averaging, which averages the consumption at
the same hour of the day for ten previous days; 2): LW, which
uses the consumption of the same hour of the day during
last week; 3): AR(1); 4): ES with additive error; 5): linear
regression with PCA, 6): SVM with and without PCA 7): RF
and 8): NN with a single hidden layer. Input features are ten
previous days’ consumption data which has a dimension of
240, except that for NN the input features are set to be previous
day’s consumption data, which has a dimension of 24. While
the first and the second method are very intuitive methods
for prediction, AR(1) and ES are popular prediction methods
in analyzing time series data. The remaining methods are
popular machine learning algorithms and artificial intelligence
techniques in prediction. Particularly RF and NN are the only
non linear methods considered in this paper. They serve to
provide reference results as compared to other linear methods.
Since the dataset that we use only contains time series load
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consumption data (plus coarse zip code data), we restrain from
using more complexed models which tend to overfit. In all, our
simulations using real data show that our proposed method
performs similar or better to these sophisticated algorithm
while remaining a simple linear structure.

We make the following clarifications for the machine
learning techniques in 5)-8). First, for the extracted features
obtained from PCA, we threshold the number of components
with a tolerance { on how much the chosen components
explain the covariance matrix of data €. Then we include those
components as new features to the linear regression model.
If we set up a tolerance { = 0.75 and omit components if
their standard deviations are smaller than { times the standard
deviation of the first component, we obtain an average two
principle components for each user based on our dataset.
Second, a linear kernel is trained as we are comparing SVM
with several linear regression models. Third, for RF, we grow
500 trees in total. At each split of the tree node we re-sample
a third of the original features. Note that RF is a nonlinear
model in terms of input features whereas the other models
are linear in input features. For a more in-depth introduction
to RF, please refer to [53]. Last, due to convergence and
computational issues, we consider one hidden layer with five
neurons in the NN model.

We visualize the comparison in terms of MAPE in Fig.
2, with 50 users in the training set. In the simulations, the
forecast horizon is one hour and the shown errors are the
averaged medians over the users. Detailed comparison results
based on MAPE, MAE, MSE and NRMSD are presented in
Table I, Table II, Table III and Table IV. In Table I to Table
IV, the subscript W denotes the window size. Result from
linear regression after PCA is outside the range of the results
from the other prediction methods shown in Fig. 2 and is not
presented. In addition, there is a constraint for the minimum
number of samples in order to have a well behaved LASSO
estimator. This lower bound is of order O(slogp) [13], where s
is the cardinality of the true support and p is the total number
of regressors. However, since we do not know the level of
sparsity s in advance, the number of samples should be at
least O(plogp), which is around 600. Nevertheless, since the
columns in the regressor matrix are correlated, we resort to
a training size larger than the theoretical bound. In the mean
time, we cannot include too many samples into the training
set to avoid losing stationarity. Here unit root test is applied to
test stationarity. To these two ends, we experiment the training
sizes of 720, 960 and 1200 samples and compare the respective
performances by the proposed prediction methods.

From Fig. 2, we see that RF yields the smallest prediction
error in terms of MAPE. This is not unexpected since RF
is a complex method that is highly nonlinear. Surprisingly,
our proposed LASSO method matches the performance of RF
when window sizes are increased. With a sliding window with
length of 720 hours, RF has an average MAPE of 0.211 and
LASSO has an average MAPE of 0.231. When we increase the
size of the sliding window to include 1200 hours’ consumption
data, RF has an average MAPE of 0.203 and LASSO has
an average MAPE as 0.206. At this stage, operators may
prefer to use LASSO since it is as accurate as RF but has

0.4 ‘
-©-RF ES ->-Averaging
NN SVM “$LW
LASSO SVM+PCA HB-AR(1)
0.35 o
A 03 1
<
= |
0.25—— VN:\—¥
I -
O— o H
0.2F o T
720 960 1200

Sliding window size

Fig. 2: MAPE for different prediction methods with various
window size of the training set. RF yields the best prediction
performance among all aforementioned methods and LASSO
yields the best performances among linear models.

TABLE I: Average MAPE cross the 50 users from the dataset
for the prediction methods. Subscript W denotes the window
size.

Method MAPEy_70 | MAPEy_os90 | MAPEw_ 200
Averaging 0.258 0.258 0.258
LW 0.346 0.346 0.346
AR(1) 0.249 0.245 0.237
ES 0.250 0.244 0.236
SVM 0.327 0.282 0.264
SVM after PCA 0.305 0.304 0.285
RF 0.211 0.204 0.203
NN 0.287 0.267 0.256
LASSO 0.231 0.229 0.206

TABLE II: Average MAE cross the 50 users from the dataset
for the prediction methods. Subscript W denotes the window
size.

Method MAEw_720 MAEy —960 MAEw—1200
Averaging 0.0373 0.0373 0.0373
LW 0.0540 0.0540 0.0540
AR(1) 0.0322 0.0318 0.0311
ES 0.0340 0.0334 0.0322
SVM 0.0393 0.0338 0.0322
SVM after PCA 0.0363 0.0357 0.0368
RF 0.0273 0.0265 0.0260
NN 0.0360 0.0336 0.0311
LASSO 0.0291 0.0290 0.0260

much lower model complexity. For example, using LASSO
operators can understand the most significant hours in the past
that influence the prediction. In addition, the coefficients in
LASSO can be understood as sensitivities of future prediction
on past consumption, due to the linear structure of LASSO.
In contrast, the coefficients in RF do not have such “causal”
structure. In addition, LASSO can be computed much faster
than RF.

Besides these two prediction methods, SVM with either
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TABLE III: Average MSE cross the 50 users from the dataset

TABLE IV: Average NRMSD cross the 50 users from the
dataset for the prediction methods. Subscript W denotes the
window size.

Method NRMSDW:720 NRMSDW:%O NRMSDW: 1200
Averaging 0.197 0.197 0.197
LW 0.241 0.241 0.241
AR(1) 0.166 0.156 0.135
ES 0.168 0.153 0.125
SVM 0.221 0.182 0.153
SVM after PCA 0.200 0.194 0.173
RF 0.157 0.143 0.126
NN 0.178 0.167 0.165
LASSO 0.172 0.163 0.126

the original features or the reduced features are average in
their prediction performances. NN does not outperform other
methods. We believe this is due to the lack of data. Since
we only have time series consumption data without any other
side information, only a shallow NN (a single hidden layer)
is trained to avoid overfitting and other computational issues.

The nonparametric methods, LW and simple averaging
method, return higher MAPEs compared to machine learning
techniques. However, based on our dataset, simple averaging
using ten previous day’s data still outperforms LW (using
data from last week only) because the noises are leveraged
by adding more consumption data into account. Since these
nonparametric methods do not depend on the size of the sliding
window, the MAPEs are the same across different sliding
window sizes. What is more, these nonparametric methods
are powerful when the training set is small (a smaller sliding
window size). However, when more data are available to
be included into the training set, the performances of these
methods do not get improved.

In addition, the time series analysis methods, namely AR(1)
and ES, yield moderate MAPE. However, it is still not as good
as either RF or LASSO. In conclusion, LASSO achieves as
good as the performance from RF, and other methods return
inferior prediction performances. Details are shown in Table
1. Table II, Table III to Table IV summarize more results of
the comparison based on different metrics. In all, LASSO is
shown to be consistently the among the best methods and can
provide performances that are as good as advanced machine

for the prediction methods. Subscript W denotes the window
size. LASSO
NN
Method MSEw —720 MSEy —o60 MSEw_1200 RF
Averaging 0.00143 0.00143 0.00143 4 SVM after PCA
LW 0.00231 0.00231 0.00231 g SUM
AR(1) 0.00103 0.00101 0.00096 2 ES
ES 0.00113 0.00105 0.00094
SVM 0.00155 0.00115 0.00104 AR
SVM after PCA | 0.00132 0.00128 0.00125 FW
RF 0.00074 0.00070 0.00067 Averaging
NN 0.00123 0.00108 0.00097 0 001 002 003
LASSO 0.00085 0.00084 0.00067 Change in MAPE

Fig. 3: Average change of MAPE with an increase of window
size.

learning techniques.

Besides the above observations on predictive performance
of various models, we can also see a difference in model
sensitivity with respect to an increase in window size (a larger
training set). The results are shown in Fig 3, in terms of
MAPE.

As can be seen from Fig 3, LW and averaging have no
sensitivity to window size. This is because they are both
an averaged sum of a fixed history and are not parametric.
AR(1) and ES have similar sensitivities since they are both
autoregressive models. SVM originally has a high sensitivity
to window size because we include many features into the
model and fix a linear kernel. However, this may not capture
correctly the underlying consumption behavior. However, with
dimension reduction from PCA, the sensitivity from SVM is
improved. Similarly, NN and LASSO do not have a negligible
sensitivity towards window size because of the large number
of features in the model but since they are more powerful
models than SVM, the sensitivity is not as high as the latter.
In addition, RF falls into the scheme of ensemble learning
algorithm and its variance should be smaller than the other
parametric models. Therefore its sensitivity towards window
size is small.

We then compare the averaging computational time for
the aforementioned methods. The simulations are tested on
a MacBook with 2.7 GHz Intel Core i5 processor and 8GB
1867 MHz DDR3 memory. The empirical computational time
for each prediction method is shown in Table V.

As can be seen from Table V, Simple averaging, LW, AR(1)
and ES are most time efficient but at the sacrifice of prediction
accuracy. Linear regression with PCA is moderately efficient
but provides the worst prediction accuracy. RF yields the
worst computational time because it needs to be trained on
the repeated bootstrapping samples. NN is also not preferable
because for a single layer model it already takes up to more
than 14 seconds to train over a single sliding window. LASSO
beats both SVM with either the original regressor matrix or the
principle components in terms of time efficiency. Combining
the observations from Table V with Fig. 2, we can see that for
univariate time series analysis, LASSO best trades off between
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prediction accuracy and time efficiency.

Based on the observations from Fig. 2 and Table V, the
complexity grows as the prediction model varies from simple
averaging method up to RF and consequently the computa-
tional time grows accordingly. It is even more time consuming
when we try to the tune the hyper-parameters in RF, for
example, the number of features to bootstrap at each split of
the tree, total number of trees, etc...What is more, although RF
provides the most accuracy, it is the hardest to be understood
in terms of the estimated parameters from the model, i.e.,
the decision boundary at each split of the tree node for each
tree. Since throughout this paper the focus is on one hour
ahead prediction, this complexity ruins the performance of
the model and is not preferred. In contrast, LASSO yields
a competing prediction performance with RF and has only
one hyper-parameter (1) to tune. The optimal value of this
hyper-parameter can be determined from cross-validation and
is easy to implement. Thus it is the most preferable method
for univariate analysis based on our dataset.

Table VI further consolidates this preference in terms of
complexity of input data. Feature dimension is defined as the
number of input variables in the model. Simple averaging
method has a dimension of 10 because it is a average of
consumption data during the same hour for the past ten days.
LW only needs one data point during last week to make
prediction. AR(1) and ES also have a much smaller input
space but their prediction performances are not as good as
either LASSO or RF. For methods associated with dimension
reduction by PCA, the feature dimension is the number of
the reduced features for the model, thus around 20 in our
case. We restrict the feature dimension as 24 for NN since a
higher feature dimension will require more iterations in the
algorithm to reach convergence. Other than that, for SVM,
RF and LASSO, the input data has a dimension of 240 which
stands for the total number of hours in the past ten days. With
the same input complexity, LASSO yields the most efficient
computational time from Table V.

Based on the discussions from Fig. 2, Table V and Table
VI, LASSO is the best choice in terms of model efficiency
and model simplicity.

TABLE V: Average computational time per user per sliding
training window for each prediction method.
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TABLE VI: Feature dimension for different prediction meth-

Prediction method Time (in seconds)

Averaging less than 0.0001

LW less than 0.0001
AR(1) 0.005
ES 0. 093
PCA + linear regression 0.175
SVM 9.347
SVM + PCA 9.522
RF 21.562
NN 14.416
LASSO 0.220

In addition, the average computational time for computing
the optimal pairs using the covariance test is 3.51 seconds on
average per each user. We then conclude that it is time efficient

ods.
Prediction method Feature dimension
Averaging 10
LW 1
AR(1) 1
ES at most 3
PCA + linear regression around 20
SVM 240
SVM + PCA around 20
RF 240 (split the tree 500 times.)
NN 24
LASSO 240 (active regressors around 10-20.)

to compute the optimal pairs of users. What is more, since
the optimal pair assignment is fixed once we compute it, this
computational time can be amortized and is nearly negligible.

C. Results for Univariate Time Series Analysis

Based on the comparison result shown in Section V-B, in
this subsection we perform more detailed simulations on the
following prediction methods from the methods considered so
far:

o Simple averaging method, which is a representative
method from nonparametric methods;

o AR(1), which is a representative method from time series
methods;

« RF, which is a representative method from machine
learning techniques;

o LASSO applied in autoregressive model, which is the
proposed method in this paper.

¢ SVM with and without PCA, which we use as an illus-
tration of the failure of PCA based on our dataset.

The simulation results associated with the covariance test
are going to be introduced later in Section V-D. The results
of the prediction methods besides covariance test are shown
in Fig. 4 and Table VII, for a random selection of 150 users
from the dataset. We use MAPE as the criterion to compare
prediction performances because it is a normalized metric.
Again, the MAPE shown is the median over all the sliding
windows and the forecast horizon is one. As can be seen in
Fig. 4, LASSO type regression reduces the variance of MAPE
for these 150 users in the dataset. Its mean is also reduced. A
comparison of the aforementioned methods is summarized in
Table VII.

From Fig. 4, we see that MAPE varies on a user to user
basis. For example, from Fig. 2(a), using AR(1) model to
predict consumption will yield a MAPE greater than 50%
for some of users. What is more, there is one extreme case
for simple averaging method shown in Fig. 2(c) that MAPE
reaches 200%. This extreme value of MAPE suggests a
rather unfavarable prediction result, even worse than simply
predicting zero (which has a MAPE as 100%.). However, for
both methods, a MAPE close to zero can still be achieved for
other users. Besides these methods, SVM achieves a moderate
deviation of MAPE but it is still higher that by LASSO and RE.
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Comparing Fig. 2(a), Fig. 2(c) with Fig. 2(b), Fig. 2(d), Fig.
(e) and Fig. (f), we see that LASSO and RF have MAPEs that
are less spread between 0% and 100%. In addition, LASSO
and RF have a smaller mean of MAPE than that from the
other prediction methods. More detailed statistics are shown
in Table VII. What is more, comparing Fig. 2(e) and Fig.
2(f), PCA does not improve the performance of prediction
models such as SVM, as we have discussed in Section V. B.
Here, prediction by SVM using the original features (historical
consumption data) as inputs achieves a smaller MAPE than
that after dimension reduction by PCA. SVM after PCA has
a MAPE of 0.291 against a MAPE of 0.264 by SVM alone.

In addition, besides the improved prediction performance
compared to AR(1) and simple averaging method, LASSO also
provides some straightforward understandings of the model.
Particularly, we include as much as 240 lag orders for LASSO,
which includes all the historical data for the previous ten
days. Taking user No.1 as an example, LASSO selects 16 non
zero lag orders, according to 10-fold CV with a sequence of
decreasing {A;}. The lag orders that LASSO picks are 1, 2, 5,
6, 16, 22, 23, 24, 48, 143, 144, 160, 191, 216, 238, 240. This
pattern reflects that LASSO not only selects the most recent lag
orders (which is similar to AR(1)), but the lag orders roughly
at interval of one day, i.e., 24 hours as well (which is similar
to simple averaging). The coefficients for the lag orders also
have different scales. In the example of user No.l, the most
recent lag orders given the largest coefficient (8; = 0.259).
The second largest coefficient is given to lag order 24 (B4 =
0.187). The rest of the coefficients are scaled between 0.01 to
0.06.

Note that LASSO will return selected lag orders adaptively
for different users. For user No.10, the lag orders that LASSO
picks up for this user are 1, 23, 24, 120, 138, 144, 168, 239,
240. In this case, the three most recent lag orders are given the
largest coefficients, where B; = 0.579, B3 = 0.123 and B4 =
0.103. The rest of the coefficients scale at around 0.02. So for
this particular user, LASSO picks up less historical data at the
same hour than user No. 1, at roughly one day ago, five days
ago, six days ago, seven days ago and ten days ago. This is
different from simple averaging, since LASSO does not pick
up the lag order 48 or 72, which are more recent lags than
120. Still, however different lag orders that LASSO picks for
each user, we can observe a clear pattern of multiples of 24
hours, indicating user’s consumption behavior.

In all, the proposed model based on LASSO is useful in
practice because of its simplicity and linear nature. Given the
set of coefficients, utilities and planners can easily identify and
attribute the impact of different features on load consumption.
For example, suppose for a given user, our method concludes
that its load at time 7 is mostly determined by the past load
at times t — 1, t — 3 and 7 — 24. This shows that this user has
some short term behavior in the one hour range, medium term
behavior in the 3 hour range, and a daily cycle partner that
repeats every 24 hours. This information can be interpreted by
utilities to better understand this user’s consumption patterns
and potentially identify appropriate demand programs.
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Fig. 4: Histogram comparison for univariate time series. Mean
of MAPE for AR(1) is 0.339, for LASSO 0.225, for simple
averaging method 0.359, for RF 0.195 and for SVM with
and without PCA is 0.264 and 0.291 respectively. Standard
deviation of MAPE for AR(1) is 0.151, for LASSO 0.094, for
simple averaging method 0.237, for RF 0.109, for SVM 0.142
and for SVM after PCA is 0.129.

D. Results for Pairing the Users

As described in Section IV, we include historical consump-
tion data from other users to fit the current user’s data. We
compare the results of the two methods discussed as follows:

1) Reference method: LASSO selection in autoregressive
model using one user’s own data.

2) Pairing by covariance test: the optimal pairing for a user
is selected by the best user fitted to the residuals obtained
from this user’ consumption data after LASSO in uni-
variate autoregressive model. This best user corresponds
to the first regressor in € entering the active set when its
associated p-value is small. The lag orders for this user
are selected by LASSO in the reference method, but the
lag order for its paired user is fixed to one.

The results for these two methods are in Fig. 5 and Table
VII, with a forecast horizon as one. The results are based
on the same 150 users chosen from the dataset. It can be
seen from Fig. 5 that with the covariance test that includes
another useful user into the model, the prediction performance
is enhanced. The mean of the MAPE on the test set is improved
by 7% and the variance by 6%. Note that the selection of
another user into the model is not mutual, for example, for
user No.14, user No.137 is selected by covariance test whereas
for user No.137, user No.50 is selected. This is essentially
different from bivariate autoregressive model where pairs of
users are included into the model simultaneously. Here, the
pairing of the users is adaptive according to the covariance
statistic defined in (9).

As can be seen from Table VII, the proposed methods
greatly improve the prediction performance by reducing the
relative prediction error, thus will provide more reliable results
on consumption prediction. The proposed prediction methods
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TABLE VII: Results for the prediction methods, where CovT
stands for covariance test and Ave stands for simple averaging
method.

Ave AR() | LASSO RF SVM | CovT
mean (MAPE) | 0.359 | 0.339 0.225 0.195 | 0.264 | 0.209
sd (MAPE) 0.237 | 0.151 0.094 0.109 | 0.142 | 0.088
(a) . LASSO
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Fig. 5: Histogram comparison for multivariate time series,
where covT stands for covariance test. Mean MAPE for
LASSO is 0.225 and for performing covariance test after
LASSO is 0.209. Standard deviation of MAPE has also
reduced by 7% from LASSO to performing covariance test
after LASSO.

in this paper can help compare the user behavior with and
without demand response incentives. In the future, we will
use the results in this paper to investigate the demand response
effect of users by comparing their actual consumption data and
predicted consumption data.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a sparse autoregressive model
to predict the electricity consumption of individual users.
First, we adopt LASSO to recover the sparsity in linear
regression models. LASSO selects the most recent lag orders
and important lag orders with close multiples of 24 hours,
which reveals user consumption patterns. Second, we improve
prediction accuracy of a particular user by leveraging other
user’s historical data, where we use the covariance statistic to
test if inclusion of another user is significant to explain the
fitted residual from univariate LASSO-type regression. Third,
we give a comprehensive analysis on the proposed methods
against several available predictive models in literature. We
observe that LASSO best trades off between model complexity
and prediction performance. It has the least predictive error
among the linear models and yields a competitive performance
as compared to ensemble methods such as random forests.
Further simulation results show that LASSO with covariance
test outperforms both simple averaging method and auto
regressive method with order 1 for individual consumption
prediction, improving the prediction performance by 38.4% in
terms of MAPE.
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