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A Sparse Linear Model and Significance Test for

Individual Consumption Prediction
Pan Li, Baosen Zhang, Yang Weng, and Ram Rajagopal

Abstract—Accurate prediction of user consumption is a key
part not only in understanding consumer flexibility and behavior
patterns, but in the design of robust and efficient energy saving
programs as well. Existing prediction methods usually have high
relative errors that can be larger than 30% and have difficulties
accounting for heterogeneity between individual users. In this
paper, we propose a method to improve prediction accuracy of
individual users by adaptively exploring sparsity in historical
data and leveraging predictive relationship between different
users. Sparsity is captured by popular least absolute shrinkage
and selection estimator, while user selection is formulated as an
optimal hypothesis testing problem and solved via a covariance
test. Using real world data from PG&E, we provide extensive
simulation validation of the proposed method against well-known
techniques such as support vector machine, principle component
analysis combined with linear regression, and random forest. The
results demonstrate that our proposed methods are operationally
efficient because of linear nature, and achieve optimal prediction
performance.

Index Terms—Load forecasting, least absolute shrinkage and
selection, sparse autoregressive model, significance test

I. INTRODUCTION

ELECTRIC load forecasting is an important problem in

the power engineering industry and have received ex-

tensive attention from both industry and academia over the

last century. Many different forecasting techniques have been

developed during this time. The authors in [1] present a

comprehensive literature review on different methods related

to load forecasting, from regression models to expert systems.

Time series methods are further discussed in [2]. A thorough

research on load and price forecasting is presented in [3]. A

common theme among many of the established methods is that

they are used to forecast relative large loads, from substations

serving megawatts to transmission networks serving more than

gigawatts of power [4]. As the grid shifts to a more distributed

system, the need of accurate forecasting for smaller sized loads

is becoming increasing important.

Recent advances in technology such as smart meters, bi-

directional communication capabilities and distributed energy

resources have made individual households active participants

in the power system. Many applications and programs based

on these new technologies require estimating the future load

of individual homes. For example, state estimation algorithms

for distribution systems require pseudo-measurements [5],
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and these are provided by load forecasts. Another important

class of application is demand response and dynamic pricing

programs, where users’ future demand are needed to design

appropriate incentives [6], [7], [8], [9], [10].

In contrast to large aggregated loads, individual load fore-

casting is less developed. The current state of forecasting

algorithms falls under three broad classes: simple averaging,

statistical regression methods, and Artificial Intelligence (AI).

They are listed in increasing order of prediction accuracy and

decreasing in order of model simplicity. Simple averaging

is intuitively pleasing since it is based on the mean of the

previous similar days, but is often not very accurate. On the

other end of the spectrum, AI methods can be extremely

accurate, but it is difficult to associate the obtained parameter

with the input data, i.e., past consumption. In this paper, we

propose an algorithm that can achieve the performance of the

state of the art AI methods, but retains the simplicity of linear

nature of regression methods.

The algorithm we propose is based on the well known Least

Absolute Shrinkage and Selection (LASSO) algorithm in statis-

tics and signal processing [11]. It shrinks parameter estimates

towards zero in order to avoid overfitting as well as pick up

the most relevant regressors. Operationally, it minimizes the

usual sum of squared errors, with a bound on the sum of

the absolute values of the coefficients. LASSO is preferable

in a setting where the dimension of the features are much

higher than the size of the training set [12], [13]. Furthermore,

it can be easily extended to suit for more scenarios, i.e.,

group LASSO or adaptive LASSO [14], [15]. Due to its nice

statistical properties and its efficiency, LASSO is applied to

many different disciplines and has shown its superiority in

sparsity recovery [16], [17].

In particular, we formulate the load forecasting problem as

learning parameters of a sparse autoregressive model using

LASSO. This sparse autoregressive model automatically se-

lects the best recurrent pattern in historical data by shrinking

irrelevant coefficients to zero. By selecting the correct features,

the algorithm improves the order selection in autoregressive

models, and as we will show using real load data from Pacific

Gas and Electric Company (PG&E), it also greatly improves

the prediction accuracy of current regression models. For

example, taking the Mean Absolute Percentage Error (MAPE)

as a metric, autoregressive model with lag order one (AR(1))

has a MAPE of 33.9 %, based on a pool of 150 users. The

proposed method reduces the MAPE to 22.5 %. Nonparametric

methods such as using the consumption data at the same

time during last week (LW method) are more intuitive but

their performance are not robust subject to noise. They yield
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a relative error nearly up to 35% based on a pool of 50

users in our test dataset. In addition, based on our dataset,

linear regression model with the reduced feature space from

Principle Component Analysis (PCA) performs rather poorly,

with a relative error greater than 100 %, which is even worse

than simply predicting zero. Overall, the proposed model with

LASSO achieves a much smaller error and maintains the

intuitive nature of linear methods.

In addition, we observe that given the set of coefficients,

utilities and planners can easily identify and attribute the

impact of different features on load consumption based on

LASSO. For example, suppose for a given user, our method

concludes that its load at time t is mostly determined by the

past load at times t − 1, t − 3 and t − 24. This shows that

this user has some short term behavior in the one hour range,

medium term behavior in the 3 hour range, and a daily cycle

partner that repeats every 24 hours. This information can be

interpreted by utilities to better understand this user’s con-

sumption patterns and potentially identify appropriate demand

programs.

Apart from LASSO, data from other users can be leveraged

for forecasting in the proposed framework. Intuitively, this

means that knowing the past history of user j improves

forecasting of the user i. For a given user, we use a sequential

hypothesis testing procedure to find the best other user’s

historical data to include in the algorithm. We give a rigorous

derivation of the hypothesis testing procedure and quantify the

confidence of including other users. This allows us to show

that the procedure is optimal, in the sense that given user i, it

finds user j, whose historical data improves load forecasting

for user i the most among all users.

We derive rigorous theoretical justification for our methods

as well as provide extensive simulation studies with respect to

several well studied prediction methods. In particular, we com-

pare against AutoRegression (AR), Exponential Smoothing

(ES), Support Vector Machine (SVM), linear regression with

PCA, Random Forest (RF) and Neural Network (NN) model.

We also include two more nonparametric methods, i.e., using

ten previous days’ average consumption as prediction and

using last week’s (LW as mentioned earlier) consumption data

as prediction. Using a user’s own historical data, our proposed

method and RF both reduce prediction error by 30% compared

to other predictors. Our proposed method is simpler in nature

than RF since the latter is a generic machine learning technique

that relies on a random ensemble of decision trees [18], [19].

Therefore, our method is useful to system operators in policy

decisions without sacrificing prediction accuracy. By adding

the historical data of another user, we can further improve the

prediction accuracy.

A. Contribution

The contribution of this paper is two fold.

• First, we apply LASSO in consumption prediction.

LASSO has been studied in literature to jointly predicts

price, load and renewables together [20]. However, there

is little discussion on how LASSO can be applied to

consumption forecasting without using other side infor-

mation. Our paper has a thorough discussion on how

LASSO is used in obtaining a sparse autoregressive

model and compares its performances with several other

popular prediction methods in literature. The simulation

results show that LASSO achieves competitive prediction

performance compared to nonlinear machine learning

algorithms such as RF or NN. In addition, LASSO is

computationally much faster and easier to be understood

by human operators.

• Second, we propose a significance test that can leverage

other users’ consumption data for prediction. This testing

procedure differs significantly from standard clustering

algorithms since it looks for the most “predictive” user,

not necessarily the most similar user.

The rest of the paper is organized as follows. Section I-B

analyzes related work in short term load forecasting. Section

II presents the autoregressive model for time series analysis.

Section III introduces LASSO type linear regression model.

Section IV proceeds with the significance test to pair users

in order to improve prediction performance. It describes the

significance test for LASSO, i.e., covariance test, to select the

most significant user to form the pair with the current user.

Section V introduces the evaluation criterion for prediction and

details the simulation of the proposed methods compared to

several other popular prediction methods. And finally Section

VI concludes the paper and draws avenues for future work.

B. Literature review

There exists an extensive literature on short term load fore-

casting [21], [1]. In summary, research on energy consumption

prediction can be divided into three groups [1], including

simple averaging models, statistical models and AI models.

The simplest approach is to employ moving average [22].

Such models make predictions on mean of consumption data

from previous similar days [23]. AI type methods (e.g. NN

or RF) yield high accuracy at the cost of complexity of the

system, which may lead to overfitting [24]. Other drawbacks

include difficult parametrization and non-obvious selection

of variables. Statistical methods sit in between the previous

methods in terms of complexity and accuracy, and include

regression models, probabilistic approach applied to regres-

sion models, and time series analysis such as autoregressive

models.

In statistical methods, regression models combine several

features to form normally a linear function. In [25], the

authors build a regression tree model with weather data to

predict consumption. SVM is used in [26]. Gaussian process

framework for prediction mitigating the uncertainty problem

is proposed recently in [27].

Advanced AI models have also been used to facilitate load

forecasting. Authors in [28] propose a NN model to handle

uncertainties associated with forecasts. Similarly, authors in

[29] study the interruption prediction with weather conditions

by simulating a NN. Besides these work, the authors in

[30] explore kernel-based learning techniques to forecast both

commercial and industrial load. In addition, feature selection

techniques are applied in [31] to predict electricity load and

prices.
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Apart from these advanced machine learning tools, another

type model involves time series based methods [32]. An

overview can be found in [33]. Models such as ES [34] and the

Autoregressive Integrated Moving Average (ARIMA) model

[35], [36] are all time series based. ARIMA is a widely used

time series based prediction methods and have been adopted

in [37], [38]. In these papers the authors apply ARIMA

to predict either the electricity price or the electric vehicle

demand. Apart from these work, authors in [20] propose

a vector autoregressive model to include renewables, prices

and loads together with sparsity recovery. In this work, the

authors have also explored LASSO to obtain a sparse linear

model. In addition, to extend from linearity to nonlinearity,

[39] addresses a mixed model combining ARIMA model to

deal with the linear part and neural network with the nonlinear

one. In our work, we recover the sparsity for univariate time

series and multivariate time series under the framework of

autoregressive models.

II. AUTOREGRESSIVE MODEL

Autoregressive models are widely used for prediction and

inference of time series data. Here we adopt a linear autore-

gressive model of the hourly consumption of a single user,

where future demands yt depend linearly on historical data

yt−i plus random noise:

yt = β0 +
I

∑
i=1

βiyt−i + εt . (1)

In this model, yt denotes the demand of the user at time t,

βi is the coefficient for order (lag order) i in the autoregressive

model (it represents the weight of each historical demand data

yt−1 in predicting future demand yt ), and εt is an additive

random Gaussian noise. The time index t is measured in hours

and the noise is identically and independently distributed at

different hours. Note that in this paper we denote time series

data by notation {•t}, where subscript t refers to the time slot

in this time series data. In addition, I is the number of orders

that we include in the model. An autoregressive model with

maximum order I is denoted by AR(I).

To use the model in (1) for prediction, the standard

approach is to use Ordinary Least Squares (OLS) to es-

timate the coefficients βi, i ∈ I. By convention, we write

[yt−1 yt−2 · · · yt−I ]
T as a vector denoted by xt. Using this

notation, the model in (1) is written in a compact matrix form:

y = Xβββ + εεε, (2)

where y = [yt yt+1 · · · ]T, X is a matrix where t th row

is [1 xT
t ], βββ = [β0 β1 · · · ]T, and εεε = [εt εt+1 · · · ]T.

Vectors y, βββ and εεε have dimension T . Matrix X has P

columns, which we refer to as the dimension of X.

Applying standard OLS to (2), the estimate of βββ is given

by:

β̂ββ OLS = argmin
βββ

‖(y−Xβββ)‖2
2 . (3)

Under some standard assumptions, the OLS estimator β̂ββ OLS

is a consistent estimator for the true βββ , meaning that the

expected difference between the estimator and the true value
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Fig. 1: Error comparison between different autoregressive

models.

approaches zero when sample size becomes large [40]. This

means that the bias goes to zero as the sample size becomes

big. The other asymptotic analysis on the OLS also applies in

this case, such as asymptotic distribution for gaussianality of

estimators and significance tests; however, in autoregressive

models the estimators are typically not unbiased.

To learn and evaluate the estimator β̂ββ OLS from OLS, we

separate the dataset into a training set and a test set. The

estimator β̂ββ OLS is learned from the data from the training set

and the estimation error is evaluated on the test set. Note that

estimators may exhibit extremely good fits on the training set

but poor estimation performance on the test set, as according

to [41].

III. SPARSITY IN AUTOREGRESSIVE MODELS

Since the objective of OLS estimators is to minimize the

sum of squared errors in the training set, OLS achieves

optimal in-sample performance. This means that adding more

regressors into (2) can always decrease the sum of squared

error and better fit the data within the training set. However,

when we include too many irrelevant regressors, i.e. when we

include too many lag orders from the historical data in (2) ,

we are misled by the reduced in-sample bias. We will then

ignore the high variance introduced by the estimator which

leads to model overfitting.

We use the PG&E dataset as an illustrative example. In

this particular dataset, hourly consumption data for single

households is recorded. If we use an AR(5) model for a

particular household, it will result in an average in-sample

squared error of 0.0159, with an average out-of-sample error

of 0.0216, whereas AR(1) model has an average in-sample

squared error of 0.0172, together with an average out-of-

sample error of 0.0174. Thus AR(1) gives better out-of-sample

fitting results. If the potential lag orders are up to 10 days,

i.e., 240, then an AR(240) model would produce large out-

of-sample errors. Overall, we need to select the lag orders

carefully to avoid model overfitting. The tradeoff between out-

of-sample error and the order of the autoregressive model is

shown in Fig. 1.

Determining the correct lag orders is not trivial because

it is a combinatorial problem, which is NP-hard. To this

purpose, we use LASSO, which is a convex relaxation of

such combinatorial problems, to select relevant lag orders. The
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intuition for using LASSO is to get a sparse autoregressive

models with high orders.

More formally, LASSO is a shrinkage and selection method

for linear regression described in (2) [11]. It shrinks parameter

estimates towards zero in order to avoid overfitting as well

as picks up the most relevant regressors. Operationally, it

minimizes the usual sum of squared errors, with a bound on

the sum of the absolute values of the coefficients:

β̂ββ LASSO = argmin
βββ

1

2
‖(y− xβββ )‖2

2 +λ ‖βββ‖1 , (4)

where λ is a tuning parameter to control the level of sparsity

in the solution. In essence, it controls the number of past con-

sumptions included in the prediction of future consumptions

(i.e. sparsity). The bigger λ is, the more sparse the solution

β̂ββ LASSO is, which means that less number of data points from

the past is used to predict the future. This parameter balances

the training and testing performances of the model. When

λ = 0, the solution is the same as in (3) as a traditional

autoregressive model. For practical purposes, we are using k-

fold cross validation (CV) to determine the value of λ in our

simulations, where k is either 5 or 10 [41].

LASSO has gained wide spread popularity in signal pro-

cessing and statistical learning, see [42], [43], [44]. LASSO

has also been applied to forecast electricity price [20], [45], but

its application to load forecasting is still a new topic. In [46],

LASSO has been applied to forecast short and middle term

load. In our paper, we adopt LASSO to predict hour-ahead

consumption and provide a comparison between LASSO and

some other well-used prediction methods in literature. As

discussed later in Section V, LASSO is the most preferable

model when considering model simplicity and prediction

performances. Despite the fact that RF achieves the best

prediction performance with an average relative error less than

20%, it is a highly non linear model and requires to tune many

hyper-parameters. This is computationally expensive and not

linear in nature. On the other hand, LASSO achieves similar

performance as RF and outperforms all other linear models

considered in this paper, i.e., SVM with a linear kernel, linear

regression with PCA, AR(1) and simple averaging method. It

reduces the relative error by 30% compared to these models.

Thus LASSO is considered the best in terms of simplicity and

prediction accuracy based on our dataset.

Another advantage of using LASSO to recover sparsity is

that it has some nice properties as to sign consistency [12],

[13]. This means that β̂ββ has the same support as βββ and the

sign of each element in this support is recovered correctly.

Therefore LASSO recovers the exact sparsity of the underlying

model. In our simulation, LASSO selects both the most recent

lag orders and lag orders with intervals of roughly 24 hours,

which performs as a combination of simple averaging and

AR(·). Furthermore, LASSO also gives more intuitive results

with respect to selected orders. In our simulation, for one

electricity user as an example, LASSO selects lag orders as 1,

2, 5, 6, 16, 22, 23, 24, 48, 143, 144, 160, 191, 216, 238, 240.

From these orders we can observe a clear behavior pattern of

an interval of 24 hours. Some are multiples of 24 and some

are not but close to multiples of 24. We thus observe that

not every lag order that LASSO picks is a multiple of 24,

otherwise we would directly employ simple averaging rather

than LASSO, so LASSO is more adaptive and flexible than

simple averaging or AR(·). This implies that user behavior at

current hour depends on similar hours happened in previous

days. Unlike simple averaging which fix the lag orders at 24,

48, 72, etc., LASSO will automatically select these orders

for each individual based on their respective historical data,

instead of directly imposing fixed orders.

As can be seen from Section V, LASSO applied to au-

toregressive model achieves the best prediction performance

among all the linear models considered in this paper, with a

relative error as small as 22.5 %. It improves the prediction

performance by 33.6 % as compared to an AR(1) model.

IV. USER PAIRING BY SIGNIFICANCE TEST

So far we have considered using historical data of an

individual user for its own prediction. One way to leverage the

fact that we have many users’ data is to improve the univariate

autoregressive model by including other user’s historical data

into the model. One popular way to perform this is to conduct

Vector Autoregression (VAR), which extends the univariate

autoregressive model to joint prediction for a vector of time

series data.

To perform a complete VAR, we need to include all poten-

tially relevant users into the autoregressive model, which will

reduce the bias but increase the variance for estimators. This

causes the same overfitting problem as occurred in univariate

autoregressive model, when AR(3) yields a worse prediction

on the test set but a better fit on the training set compared to

AR(1). One possible way to overcome this problem is to first

cluster similar users together and then perform VAR for each

cluster. However, consider a scenario where two time series

have the exact same values for each time slot. Then these two

time series are clustered together since they are identical. In

this case, clustering them together and performance multivari-

ate autoregressive model does not help to enhance prediction

because knowing the history of one time series would not help

predict the future values of another time series. This problem

distinguishes similarity from prediction performance, which is

the focus of this section.

In this paper we focus on selecting the most relevant user to

enhance prediction performance after doing univariate LASSO

selection. To this end, we adopt LASSO significance test to

select this most relevant user. In LASSO significance test,

the inclusion of a particular user is based on how well this

particular user’s history data explains the fitted residual after

performing LASSO to one user’s univariate autoregressive

model. This is a hypothesis test of an exponential random

variable [47]. We will discuss more details of a LASSO

solution to a regression model and the implementation of the

LASSO significance test in the rest of this section. Overall

from the simulation results presented in section V, using

significance test on top of univariate LASSO-type regression

model improves the relative prediction error from 22.5% to

20.9%, which is almost as good as the prediction results from

RF.



0885-8950 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2679110, IEEE

Transactions on Power Systems

IEEE TRANSACTIONS ON POWER SYSTEMS 5

A. Linear Regression Model for the Fitted Residual and

LASSO Path

In LASSO significance test, we want to test if the fitted

residual from LASSO solution in (4) is indeed noise or if

it can be better explained by other user’s historical data.

Intuitively, We need to test inclusion of each user’s historical

data. We therefore generate LASSO autoregressive coefficients

for univariate time series in (1) and compute the residual {et}
(true value minus fitted value) for each individual user. Then

we use et as the response variable in a new linear regression

model. To fit this new linear regression model, we include all

users’ historical data at lag order one except for this user as

the regressors. In this way we will have a high dimensional

regressor matrix. Its dimension is the number of users we want

to potentially include, which is the total number of users minus

one. Since we only want to include the most significant user as

the regressor, LASSO is therefore performed and furthermore

tested on this new linear regression problem. In the following,

we first illustrate more details on formulating the LASSO

regression model to the fitted residual from univariate model.

Then we provide more explanations on the LASSO path with a

varying λ . In the next subsection we introduce the covariance

statistic and its asymptotic distribution for hypothesis tests

along the LASSO path.

Mathematically, the new linear regression problem for the

residual is formulated as follows:

e = ξξξααα +ψψψ , (5)

where e = [et,s et+1,s · · · ]T = [yt,s − XT
t,sβ̂ββ LASSO yt+1,s −

XT
t+1,sβ̂ββ LASSO · · · ]T is the residual for the current user s, Xt,s

= [yt−1,s yt−2,s · · · yt−I,s]
T and yt,s denotes the consump-

tion data for user s at time t. The parameter ααα is a vector

of weights that denotes how helpful each other user’s last

demand data is towards the prediction of future demand of

user s. Vector e has a length of N. Moreover, matrix ξξξ is the

regressor matrix made by lag order one historical data from all

the other users except for the current user s. The t th row of ξξξ
is [yt−1,1 yt−1,2 · · ·yt−1,s−1 yt−1,s+1 · · · ]. So ξξξ has a column

length of P, which is the number of users to be included, and

a row length of N, which is the same as that of e. One user

is represented by one column of ξξξ and is regarded as one

regressor variable. In addition, ψψψ is the white noise vector

with variance σ2. The parameter ααα = [α0 α1 · · · αP]
T is

the decision variable for the regression problem.

We again apply LASSO for (5), to avoid overfitting by

including too many irrelevant users. Building on the discussion

in Section III, we define the LASSO path as the revolution of

the estimator α̂αα in terms of a sequence of λk’s. The LASSO

path α̂(λk) is given by:

α̂αα(λk) = argmin
ααα

1

2
‖(e− ξξξ ααα)‖

2
2 +λk ‖ααα‖1 , (6)

where λk is called the knot along the LASSO path.

For different values of λk, we obtain different solutions and

sparsity at different levels. The active set at one particular

value of λk is the set of all non zero coefficients estimated at

that value, i.e., A = {α̂p �= 0,λ = λk, p = 0,1, · · · ,P}. The

path α̂αα(λk) is continuous and piecewise linear with knots at

these values λ1 � λ2 � · · · � 0 [48]. With the formulation in

(5), the goal is to test if an inclusion of one user’s historical

data is helpful for prediction. Mathematically speaking, we

want to test if the variables that sequentially enter the active

set are statistically significant.

B. Covariance Test

Significance test applied to the LASSO path is fundamen-

tally different from the standard hypothesis tests in linear

regression. In standard testings with linear regression model,

we fix a regressor variable and test the significance of its

inclusion into the model. This can be done by t-test. However,

the scenario is not the same in the case where we want to test

the significance of variables along the LASSO path since the

variables entering the active set are not known in advance. This

means that we do not know which regressors to fix in order

to conduct t-test. This problem is addressed by the authors

in [47]. Instead of standard t-test, they propose a significance

test for regressors progressively selected by the LASSO path,

using the so called covariance statistic. They have shown

that the covariance statistic asymptotically follows exponential

distribution and can be used to test the significance of the entry

of variables into the active set.

Using the covariance test defined in [47], we test whether

it is significant to include one variable (one other user) into

the active set against including no variables into the active set.

Specifically, we want to analyze whether the residual, i.e., e

is white noise, or it can be explained significantly by the lag

one order historical data from other users.

The null hypothesis is that the true active set is an empty

set, i.e., no other users can help better predict the current user:

H0 : α1 = α2 = · · ·= αP = 0. (7)

Another way to interpret this is:

H0 : e
H0∼ N(0,σ2I). (8)

We focus on testing the significance of the first variable

entering the active set and the two main reason for doing

so are as follows. First, for the following variables entering

the active set, the exponential distribution turns out to yield a

slightly higher value than the true value of the test statistic,

so the decision tends to be conservative [47]. Second, If one

would like to include more significant regressors selected by

LASSO, the Tailstop criterion [49] for ordered selection can

be used under the assumption that sequential p-values are

independent. However, we restrain from looking at p-values

at greater indices because of the non-orthogonality of ξξξ in our

case (which leads to misleading interpretation of p-values), as

pointed out in [49] and [50]. To illustrate this, we use Tailstop

criteria in our simulation and it turns out that the first eighteen

regressors are selected to limit the type I error of the global

null in (7) under 0.05. It is obviously an overfitting result

and Tailstop criterion cannot be trusted due to the correlation

between each row in the regressor matrix ξξξ . From literature,

interpreting p-values from sequential hypothesis and order
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selection under generic conditions is still an open question

and is thus beyond the discussion of this paper.

To test whether the first variable entering the active set is

significant, we first set λ = ∞ and gradually reduce λ until

one regressor variable has a non-zero α . Denote the value

of this λ as λ1. Also denote λ2 as the value of λ when the

second regressor variable enters the active set. For simplicity

of representation, we scale the columns of the ξξξ so that each

column has unit norm.

Following this scaling strategy, the authors in [47] define the

covariance statistic for testing the entry of the first variable and

it is written as:

T1 =
λ1(λ1 −λ2)

σ2
. (9)

From Theorem 2 in [47], the authors have proved that

Pr{Ti > t} → e−t as P → ∞ for all t ≥ 0. Thus we have that

the asymptotic distribution of T1 obeys exponential distribution

with parameter 1: T1 → Exp(1).
In most cases, the value of σ2 is not known a priori. We

can estimate σ2 by the residual sum of squared error via:

σ̂2 =
‖(e− ξξξ α̂ααOLS)‖

2
2

N −P
, (10)

where α̂ααOLS is obtained through:

α̂ααOLS = argmin
ααα

1

2
‖(e− ξξξααα)‖

2
2 . (11)

Plugging (11) into (9), we have a new statistic F1, which is

asymptotically following F distribution (ratio of two indepen-

dent χ2 distribution) under the null [47]:

F1 = T1
σ2

σ̂2
=

λ1(λ1 −λ2)

σ̂2
→ F2,N−P. (12)

In conclusion, to test whether another user’s historical data

can explain the residual obtained by the univariate LASSO

introduced in Section III, we compute the value of λ1 and λ2,

along with the full linear regression in (11) which gives us σ̂2.

Plugging these into (12), we include the regressor variable

(which represent one particular user) entering the active set

at λ1 if F1 is greater than some threshold and reject the null

hypothesis in (8). Simulation results show that performing this

significance test on top of univariate LASSO type regression

model has improved the prediction by reducing relative test

error by 38.3%, compared to AR(1) model.

V. SIMULATION RESULTS

We use the data from PG&E. It contains hourly smart meter

readings for residential users during a period of one year

from 2010 to 2011. Temperature data is retrieved from an

online database [51] for the same period. Some preliminary

observations suggest that temperature is not a significant

regressor to predict consumption based on our data set, thus it

is excluded from the regressors for the following simulations.

In addition, the consumption data has been filtered to exclude

daily periodic trends and is separated into weekday data and

weekend data. The simulation results are obtained on weekday

data.

A. Prediction Evaluation Criteria

Before proceeding with the prediction methods, we first

introduce the evaluation criteria for prediction used in this

paper. A naive way to evaluate prediction methods is to

compare the Mean Squared Error (MSE) or Mean Absolute

Error (MAE) within the testing set:

MSE =
1

n

n

∑
t=1

(yt − ŷt)
2 (13)

MAE =
1

n

n

∑
t=1

|yt − ŷt | (14)

where yt is the actual value, ŷt is the predicted value, and n

is the number of fitted values.

However, MSE and MAE are not scale invariant. This will

be misleading if we want to compare the performance for

two datasets with significantly different scales and means.

One way to solve this problem is to normalize the error or

to compare the relative error, i.e., the prediction error with

respect to the data scale. Here we use the MAPE mentioned

earlier in Section I, to capture the relative error:

MAPE =
1

n

n

∑
t=1

|
yt − ŷt

yt

|. (15)

Normalized Root-Mean-Square Deviation (NRMSD) is also

a good metric to compare prediction performances of data with

different scales :

NRMSD =

√

1
n ∑n

t=1(yt − ŷt)2

ȳ
, (16)

where ȳ is the mean of y in the training set.

In case of outliers, we adopt mean curtailing of 0.01 tail and

head, or simply use the median to replace the mean value.

In addition, to evaluate the model between good fit and

complexity (in terms of the number of parameters), Akaike

Information Criterion (AIC) and Bayesian Information Crite-

rion (BIC) can be used [52].

B. Comparison with Different Prediction Methods

We compare our proposed method with other popular meth-

ods: 1): Simple averaging, which averages the consumption at

the same hour of the day for ten previous days; 2): LW, which

uses the consumption of the same hour of the day during

last week; 3): AR(1); 4): ES with additive error; 5): linear

regression with PCA, 6): SVM with and without PCA 7): RF

and 8): NN with a single hidden layer. Input features are ten

previous days’ consumption data which has a dimension of

240, except that for NN the input features are set to be previous

day’s consumption data, which has a dimension of 24. While

the first and the second method are very intuitive methods

for prediction, AR(1) and ES are popular prediction methods

in analyzing time series data. The remaining methods are

popular machine learning algorithms and artificial intelligence

techniques in prediction. Particularly RF and NN are the only

non linear methods considered in this paper. They serve to

provide reference results as compared to other linear methods.

Since the dataset that we use only contains time series load
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consumption data (plus coarse zip code data), we restrain from

using more complexed models which tend to overfit. In all, our

simulations using real data show that our proposed method

performs similar or better to these sophisticated algorithm

while remaining a simple linear structure.

We make the following clarifications for the machine

learning techniques in 5)-8). First, for the extracted features

obtained from PCA, we threshold the number of components

with a tolerance ζ on how much the chosen components

explain the covariance matrix of data ξξξ . Then we include those

components as new features to the linear regression model.

If we set up a tolerance ζ = 0.75 and omit components if

their standard deviations are smaller than ζ times the standard

deviation of the first component, we obtain an average two

principle components for each user based on our dataset.

Second, a linear kernel is trained as we are comparing SVM

with several linear regression models. Third, for RF, we grow

500 trees in total. At each split of the tree node we re-sample

a third of the original features. Note that RF is a nonlinear

model in terms of input features whereas the other models

are linear in input features. For a more in-depth introduction

to RF, please refer to [53]. Last, due to convergence and

computational issues, we consider one hidden layer with five

neurons in the NN model.

We visualize the comparison in terms of MAPE in Fig.

2, with 50 users in the training set. In the simulations, the

forecast horizon is one hour and the shown errors are the

averaged medians over the users. Detailed comparison results

based on MAPE, MAE, MSE and NRMSD are presented in

Table I, Table II, Table III and Table IV. In Table I to Table

IV, the subscript W denotes the window size. Result from

linear regression after PCA is outside the range of the results

from the other prediction methods shown in Fig. 2 and is not

presented. In addition, there is a constraint for the minimum

number of samples in order to have a well behaved LASSO

estimator. This lower bound is of order O(slogp) [13], where s

is the cardinality of the true support and p is the total number

of regressors. However, since we do not know the level of

sparsity s in advance, the number of samples should be at

least O(plogp), which is around 600. Nevertheless, since the

columns in the regressor matrix are correlated, we resort to

a training size larger than the theoretical bound. In the mean

time, we cannot include too many samples into the training

set to avoid losing stationarity. Here unit root test is applied to

test stationarity. To these two ends, we experiment the training

sizes of 720, 960 and 1200 samples and compare the respective

performances by the proposed prediction methods.

From Fig. 2, we see that RF yields the smallest prediction

error in terms of MAPE. This is not unexpected since RF

is a complex method that is highly nonlinear. Surprisingly,

our proposed LASSO method matches the performance of RF

when window sizes are increased. With a sliding window with

length of 720 hours, RF has an average MAPE of 0.211 and

LASSO has an average MAPE of 0.231. When we increase the

size of the sliding window to include 1200 hours’ consumption

data, RF has an average MAPE of 0.203 and LASSO has

an average MAPE as 0.206. At this stage, operators may

prefer to use LASSO since it is as accurate as RF but has

Sliding window size
720 960 1200

M
A

P
E

0.2

0.25

0.3

0.35

0.4
Averaging
LW
AR(1)

ES
SVM
SVM+PCA

RF
NN
LASSO

Fig. 2: MAPE for different prediction methods with various

window size of the training set. RF yields the best prediction

performance among all aforementioned methods and LASSO

yields the best performances among linear models.

TABLE I: Average MAPE cross the 50 users from the dataset

for the prediction methods. Subscript W denotes the window

size.

Method MAPEW=720 MAPEW=960 MAPEW=1200

Averaging 0.258 0.258 0.258

LW 0.346 0.346 0.346

AR(1) 0.249 0.245 0.237

ES 0.250 0.244 0.236

SVM 0.327 0.282 0.264

SVM after PCA 0.305 0.304 0.285

RF 0.211 0.204 0.203

NN 0.287 0.267 0.256

LASSO 0.231 0.229 0.206

TABLE II: Average MAE cross the 50 users from the dataset

for the prediction methods. Subscript W denotes the window

size.

Method MAEW=720 MAEW=960 MAEW=1200

Averaging 0.0373 0.0373 0.0373

LW 0.0540 0.0540 0.0540

AR(1) 0.0322 0.0318 0.0311

ES 0.0340 0.0334 0.0322

SVM 0.0393 0.0338 0.0322

SVM after PCA 0.0363 0.0357 0.0368

RF 0.0273 0.0265 0.0260

NN 0.0360 0.0336 0.0311

LASSO 0.0291 0.0290 0.0260

much lower model complexity. For example, using LASSO

operators can understand the most significant hours in the past

that influence the prediction. In addition, the coefficients in

LASSO can be understood as sensitivities of future prediction

on past consumption, due to the linear structure of LASSO.

In contrast, the coefficients in RF do not have such “causal”

structure. In addition, LASSO can be computed much faster

than RF.

Besides these two prediction methods, SVM with either



0885-8950 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2679110, IEEE

Transactions on Power Systems

IEEE TRANSACTIONS ON POWER SYSTEMS 8

TABLE III: Average MSE cross the 50 users from the dataset

for the prediction methods. Subscript W denotes the window

size.

Method MSEW=720 MSEW=960 MSEW=1200

Averaging 0.00143 0.00143 0.00143

LW 0.00231 0.00231 0.00231

AR(1) 0.00103 0.00101 0.00096

ES 0.00113 0.00105 0.00094

SVM 0.00155 0.00115 0.00104

SVM after PCA 0.00132 0.00128 0.00125

RF 0.00074 0.00070 0.00067

NN 0.00123 0.00108 0.00097

LASSO 0.00085 0.00084 0.00067

TABLE IV: Average NRMSD cross the 50 users from the

dataset for the prediction methods. Subscript W denotes the

window size.

Method NRMSDW=720 NRMSDW=960 NRMSDW=1200

Averaging 0.197 0.197 0.197

LW 0.241 0.241 0.241

AR(1) 0.166 0.156 0.135

ES 0.168 0.153 0.125

SVM 0.221 0.182 0.153

SVM after PCA 0.200 0.194 0.173

RF 0.157 0.143 0.126

NN 0.178 0.167 0.165

LASSO 0.172 0.163 0.126

the original features or the reduced features are average in

their prediction performances. NN does not outperform other

methods. We believe this is due to the lack of data. Since

we only have time series consumption data without any other

side information, only a shallow NN (a single hidden layer)

is trained to avoid overfitting and other computational issues.

The nonparametric methods, LW and simple averaging

method, return higher MAPEs compared to machine learning

techniques. However, based on our dataset, simple averaging

using ten previous day’s data still outperforms LW (using

data from last week only) because the noises are leveraged

by adding more consumption data into account. Since these

nonparametric methods do not depend on the size of the sliding

window, the MAPEs are the same across different sliding

window sizes. What is more, these nonparametric methods

are powerful when the training set is small (a smaller sliding

window size). However, when more data are available to

be included into the training set, the performances of these

methods do not get improved.

In addition, the time series analysis methods, namely AR(1)

and ES, yield moderate MAPE. However, it is still not as good

as either RF or LASSO. In conclusion, LASSO achieves as

good as the performance from RF, and other methods return

inferior prediction performances. Details are shown in Table

I. Table II, Table III to Table IV summarize more results of

the comparison based on different metrics. In all, LASSO is

shown to be consistently the among the best methods and can

provide performances that are as good as advanced machine

Averaging

LW

AR(1)

ES

SVM

SVM after PCA

RF

NN

LASSO

M
et

h
o

d
s

-0.03-0.02-0.010

Change in MAPE

Fig. 3: Average change of MAPE with an increase of window

size.

learning techniques.

Besides the above observations on predictive performance

of various models, we can also see a difference in model

sensitivity with respect to an increase in window size (a larger

training set). The results are shown in Fig 3, in terms of

MAPE.

As can be seen from Fig 3, LW and averaging have no

sensitivity to window size. This is because they are both

an averaged sum of a fixed history and are not parametric.

AR(1) and ES have similar sensitivities since they are both

autoregressive models. SVM originally has a high sensitivity

to window size because we include many features into the

model and fix a linear kernel. However, this may not capture

correctly the underlying consumption behavior. However, with

dimension reduction from PCA, the sensitivity from SVM is

improved. Similarly, NN and LASSO do not have a negligible

sensitivity towards window size because of the large number

of features in the model but since they are more powerful

models than SVM, the sensitivity is not as high as the latter.

In addition, RF falls into the scheme of ensemble learning

algorithm and its variance should be smaller than the other

parametric models. Therefore its sensitivity towards window

size is small.

We then compare the averaging computational time for

the aforementioned methods. The simulations are tested on

a MacBook with 2.7 GHz Intel Core i5 processor and 8GB

1867 MHz DDR3 memory. The empirical computational time

for each prediction method is shown in Table V.

As can be seen from Table V, Simple averaging, LW, AR(1)

and ES are most time efficient but at the sacrifice of prediction

accuracy. Linear regression with PCA is moderately efficient

but provides the worst prediction accuracy. RF yields the

worst computational time because it needs to be trained on

the repeated bootstrapping samples. NN is also not preferable

because for a single layer model it already takes up to more

than 14 seconds to train over a single sliding window. LASSO

beats both SVM with either the original regressor matrix or the

principle components in terms of time efficiency. Combining

the observations from Table V with Fig. 2, we can see that for

univariate time series analysis, LASSO best trades off between
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prediction accuracy and time efficiency.

Based on the observations from Fig. 2 and Table V, the

complexity grows as the prediction model varies from simple

averaging method up to RF and consequently the computa-

tional time grows accordingly. It is even more time consuming

when we try to the tune the hyper-parameters in RF, for

example, the number of features to bootstrap at each split of

the tree, total number of trees, etc...What is more, although RF

provides the most accuracy, it is the hardest to be understood

in terms of the estimated parameters from the model, i.e.,

the decision boundary at each split of the tree node for each

tree. Since throughout this paper the focus is on one hour

ahead prediction, this complexity ruins the performance of

the model and is not preferred. In contrast, LASSO yields

a competing prediction performance with RF and has only

one hyper-parameter (λ ) to tune. The optimal value of this

hyper-parameter can be determined from cross-validation and

is easy to implement. Thus it is the most preferable method

for univariate analysis based on our dataset.

Table VI further consolidates this preference in terms of

complexity of input data. Feature dimension is defined as the

number of input variables in the model. Simple averaging

method has a dimension of 10 because it is a average of

consumption data during the same hour for the past ten days.

LW only needs one data point during last week to make

prediction. AR(1) and ES also have a much smaller input

space but their prediction performances are not as good as

either LASSO or RF. For methods associated with dimension

reduction by PCA, the feature dimension is the number of

the reduced features for the model, thus around 20 in our

case. We restrict the feature dimension as 24 for NN since a

higher feature dimension will require more iterations in the

algorithm to reach convergence. Other than that, for SVM,

RF and LASSO, the input data has a dimension of 240 which

stands for the total number of hours in the past ten days. With

the same input complexity, LASSO yields the most efficient

computational time from Table V.

Based on the discussions from Fig. 2, Table V and Table

VI, LASSO is the best choice in terms of model efficiency

and model simplicity.

TABLE V: Average computational time per user per sliding

training window for each prediction method.

Prediction method Time (in seconds)

Averaging less than 0.0001

LW less than 0.0001

AR(1) 0.005

ES 0. 093

PCA + linear regression 0.175

SVM 9.347

SVM + PCA 9.522

RF 21.562

NN 14.416

LASSO 0.220

In addition, the average computational time for computing

the optimal pairs using the covariance test is 3.51 seconds on

average per each user. We then conclude that it is time efficient

TABLE VI: Feature dimension for different prediction meth-

ods.

Prediction method Feature dimension

Averaging 10

LW 1

AR(1) 1

ES at most 3

PCA + linear regression around 20

SVM 240

SVM + PCA around 20

RF 240 (split the tree 500 times.)

NN 24

LASSO 240 (active regressors around 10-20.)

to compute the optimal pairs of users. What is more, since

the optimal pair assignment is fixed once we compute it, this

computational time can be amortized and is nearly negligible.

C. Results for Univariate Time Series Analysis

Based on the comparison result shown in Section V-B, in

this subsection we perform more detailed simulations on the

following prediction methods from the methods considered so

far:

• Simple averaging method, which is a representative

method from nonparametric methods;

• AR(1), which is a representative method from time series

methods;

• RF, which is a representative method from machine

learning techniques;

• LASSO applied in autoregressive model, which is the

proposed method in this paper.

• SVM with and without PCA, which we use as an illus-

tration of the failure of PCA based on our dataset.

The simulation results associated with the covariance test

are going to be introduced later in Section V-D. The results

of the prediction methods besides covariance test are shown

in Fig. 4 and Table VII, for a random selection of 150 users

from the dataset. We use MAPE as the criterion to compare

prediction performances because it is a normalized metric.

Again, the MAPE shown is the median over all the sliding

windows and the forecast horizon is one. As can be seen in

Fig. 4, LASSO type regression reduces the variance of MAPE

for these 150 users in the dataset. Its mean is also reduced. A

comparison of the aforementioned methods is summarized in

Table VII.

From Fig. 4, we see that MAPE varies on a user to user

basis. For example, from Fig. 2(a), using AR(1) model to

predict consumption will yield a MAPE greater than 50%

for some of users. What is more, there is one extreme case

for simple averaging method shown in Fig. 2(c) that MAPE

reaches 200%. This extreme value of MAPE suggests a

rather unfavarable prediction result, even worse than simply

predicting zero (which has a MAPE as 100%.). However, for

both methods, a MAPE close to zero can still be achieved for

other users. Besides these methods, SVM achieves a moderate

deviation of MAPE but it is still higher that by LASSO and RF.
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Comparing Fig. 2(a), Fig. 2(c) with Fig. 2(b), Fig. 2(d), Fig.

(e) and Fig. (f), we see that LASSO and RF have MAPEs that

are less spread between 0% and 100%. In addition, LASSO

and RF have a smaller mean of MAPE than that from the

other prediction methods. More detailed statistics are shown

in Table VII. What is more, comparing Fig. 2(e) and Fig.

2(f), PCA does not improve the performance of prediction

models such as SVM, as we have discussed in Section V. B.

Here, prediction by SVM using the original features (historical

consumption data) as inputs achieves a smaller MAPE than

that after dimension reduction by PCA. SVM after PCA has

a MAPE of 0.291 against a MAPE of 0.264 by SVM alone.

In addition, besides the improved prediction performance

compared to AR(1) and simple averaging method, LASSO also

provides some straightforward understandings of the model.

Particularly, we include as much as 240 lag orders for LASSO,

which includes all the historical data for the previous ten

days. Taking user No.1 as an example, LASSO selects 16 non

zero lag orders, according to 10-fold CV with a sequence of

decreasing {λk}. The lag orders that LASSO picks are 1, 2, 5,

6, 16, 22, 23, 24, 48, 143, 144, 160, 191, 216, 238, 240. This

pattern reflects that LASSO not only selects the most recent lag

orders (which is similar to AR(1)), but the lag orders roughly

at interval of one day, i.e., 24 hours as well (which is similar

to simple averaging). The coefficients for the lag orders also

have different scales. In the example of user No.1, the most

recent lag orders given the largest coefficient (β1 = 0.259).

The second largest coefficient is given to lag order 24 (β24 =

0.187). The rest of the coefficients are scaled between 0.01 to

0.06.

Note that LASSO will return selected lag orders adaptively

for different users. For user No.10, the lag orders that LASSO

picks up for this user are 1, 23, 24, 120, 138, 144, 168, 239,

240. In this case, the three most recent lag orders are given the

largest coefficients, where β1 = 0.579, β23 = 0.123 and β24 =

0.103. The rest of the coefficients scale at around 0.02. So for

this particular user, LASSO picks up less historical data at the

same hour than user No. 1, at roughly one day ago, five days

ago, six days ago, seven days ago and ten days ago. This is

different from simple averaging, since LASSO does not pick

up the lag order 48 or 72, which are more recent lags than

120. Still, however different lag orders that LASSO picks for

each user, we can observe a clear pattern of multiples of 24

hours, indicating user’s consumption behavior.

In all, the proposed model based on LASSO is useful in

practice because of its simplicity and linear nature. Given the

set of coefficients, utilities and planners can easily identify and

attribute the impact of different features on load consumption.

For example, suppose for a given user, our method concludes

that its load at time t is mostly determined by the past load

at times t − 1, t − 3 and t − 24. This shows that this user has

some short term behavior in the one hour range, medium term

behavior in the 3 hour range, and a daily cycle partner that

repeats every 24 hours. This information can be interpreted by

utilities to better understand this user’s consumption patterns

and potentially identify appropriate demand programs.
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Fig. 4: Histogram comparison for univariate time series. Mean

of MAPE for AR(1) is 0.339, for LASSO 0.225, for simple

averaging method 0.359, for RF 0.195 and for SVM with

and without PCA is 0.264 and 0.291 respectively. Standard

deviation of MAPE for AR(1) is 0.151, for LASSO 0.094, for

simple averaging method 0.237, for RF 0.109, for SVM 0.142

and for SVM after PCA is 0.129.

D. Results for Pairing the Users

As described in Section IV, we include historical consump-

tion data from other users to fit the current user’s data. We

compare the results of the two methods discussed as follows:

1) Reference method: LASSO selection in autoregressive

model using one user’s own data.

2) Pairing by covariance test: the optimal pairing for a user

is selected by the best user fitted to the residuals obtained

from this user’ consumption data after LASSO in uni-

variate autoregressive model. This best user corresponds

to the first regressor in ξξξ entering the active set when its

associated p-value is small. The lag orders for this user

are selected by LASSO in the reference method, but the

lag order for its paired user is fixed to one.

The results for these two methods are in Fig. 5 and Table

VII, with a forecast horizon as one. The results are based

on the same 150 users chosen from the dataset. It can be

seen from Fig. 5 that with the covariance test that includes

another useful user into the model, the prediction performance

is enhanced. The mean of the MAPE on the test set is improved

by 7% and the variance by 6%. Note that the selection of

another user into the model is not mutual, for example, for

user No.14, user No.137 is selected by covariance test whereas

for user No.137, user No.50 is selected. This is essentially

different from bivariate autoregressive model where pairs of

users are included into the model simultaneously. Here, the

pairing of the users is adaptive according to the covariance

statistic defined in (9).

As can be seen from Table VII, the proposed methods

greatly improve the prediction performance by reducing the

relative prediction error, thus will provide more reliable results

on consumption prediction. The proposed prediction methods
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TABLE VII: Results for the prediction methods, where CovT

stands for covariance test and Ave stands for simple averaging

method.

Ave AR(1) LASSO RF SVM CovT

mean (MAPE) 0.359 0.339 0.225 0.195 0.264 0.209

sd (MAPE) 0.237 0.151 0.094 0.109 0.142 0.088
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Fig. 5: Histogram comparison for multivariate time series,

where covT stands for covariance test. Mean MAPE for

LASSO is 0.225 and for performing covariance test after

LASSO is 0.209. Standard deviation of MAPE has also

reduced by 7% from LASSO to performing covariance test

after LASSO.

in this paper can help compare the user behavior with and

without demand response incentives. In the future, we will

use the results in this paper to investigate the demand response

effect of users by comparing their actual consumption data and

predicted consumption data.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a sparse autoregressive model

to predict the electricity consumption of individual users.

First, we adopt LASSO to recover the sparsity in linear

regression models. LASSO selects the most recent lag orders

and important lag orders with close multiples of 24 hours,

which reveals user consumption patterns. Second, we improve

prediction accuracy of a particular user by leveraging other

user’s historical data, where we use the covariance statistic to

test if inclusion of another user is significant to explain the

fitted residual from univariate LASSO-type regression. Third,

we give a comprehensive analysis on the proposed methods

against several available predictive models in literature. We

observe that LASSO best trades off between model complexity

and prediction performance. It has the least predictive error

among the linear models and yields a competitive performance

as compared to ensemble methods such as random forests.

Further simulation results show that LASSO with covariance

test outperforms both simple averaging method and auto

regressive method with order 1 for individual consumption

prediction, improving the prediction performance by 38.4% in

terms of MAPE.
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