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ABSTRACT

Demand response is designed to motivate electricity cus-

tomers to modify their loads at critical time periods. Ac-

curately estimating customers response to demand response

signals is crucial to the success of these programs. In this

paper, we consider signals in demand response programs as a

treatment to the customers and estimate the average treatment

effect. Specifically, we adopt the linear regression model and

derive several consistent linear regression estimators. From

both synthetic and real data, we show that including more

information about the customers does not always improve

estimation accuracy: the interaction between the side infor-

mation and the demand response signal must be carefully

modeled. We then apply the so-called modified covariate

method to capture these interactions and show it can strike

a balance between having more data and model correctness.

Our results are validated using data collected by Pecan Street.

Index Terms— Linear regression, treatment effect, de-

mand response

1. INTRODUCTION

The electrical system is undergoing a transformation in both

operation and design. A particular area that is changing dra-

matically is the balance of supply and demand. Instead of

treating demand as inflexible load that must be met by chang-

ing generation levels, operators are starting to explore chang-

ing demand to balance intermittent generation such as solar

and wind. This type of operation is commonly known as de-

mand response (DR). In typical implementation of DR pro-

grams, customers receive a DR signal such as modification in

prices or simply a message requesting changes in electricity

usage. An effective DR program improves the efficiency and

sustainability of power systems by allowing utilities and op-

erators to leverage flexibility in the load rather than relying on

conventional generators [1, 2, 3, 4, 5, 6].

Demand response have received considerable attention

from researchers and operators (e.g. see [7] and the refer-

ences within). Most of works in the literature have viewed

the DR problem from optimization or market design per-

spectives. For example, authors in [6, 8] considered how to

optimize the social welfare; and authors in [9] have consid-

ered how to create an efficient market for demand response.

In all these setups, customers’ responses to demand response

signals are either assumed to be known to the operators, or

at least known to themselves. However, in practice, the cus-

tomers often do not know their own utility functions and

therefore cannot reveal this information to utilities even if

they are perfectly truthful. This uncertainty about customer

responses leads to uncertainty about the effectiveness of DR

programs, since it is difficult for utilities to judge the im-

pact of DR signals [10]. Namely, it is not trivial to answer

basic questions such as whether the DR signal causes any

significant change in customer consumption.

In this paper, we focus on the problem of estimating cus-

tomer responses to DR signals from observational data. We

adopt a treatment model [11], where we collect consumption

data from customers, and DR signal is perceived as a treat-

ment and is applied to some of them. The quantity of interest

in this model is the average treatment effect (ATE), represent-

ing the average response of the customers to the treatment.

The fundamental question we investigate here is to determine

if the ATE is statistically significant, and if so, estimating its

value. Heuristic estimations such as simple averaging (aver-

aging over the ten previous days for example) are popular and

easy to implement [12], but lack model explanation. Here

we use regression models, where the output is the measured

energy consumption of customers. The inputs consist of the

binary treatment indicator variables and covariates, denoting

other information such as temperature and appliance informa-

tion.

We derive three consistent linear regression estimators

of the ATE through simple linear regression, multiple linear

regression and modified covariate method presented in[13].

The first estimator requires the least information on how the

covariates interact with the outcome by just considering the

treatment variable. The second estimator assumes a much

more stringent linear condition but is able to use more in-

formation by considering all covariates. The last estimator

can be seen a compromise between the first two when the

treatment effect is linear in the observed covariates. The

estimators are tested based on both synthetic data and real

data from Pecan Street[14]. We then compare the estimation
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performances based on the variance of the estimators. We

show that somewhat contrary to common belief, including

more data into the model especially when the assumed model

is wrong does not perform better. In particular, we show for

both data sets that under certain circumstances, simple linear

regression is more efficient when the interactions between the

covariates and the outcome remain unknown.

The fact that adding more data does not always improve

estimation of the ATE is not new. This can be seen as the dif-

ference between prediction and inference [15]. Adding more

data will almost always improve prediction. But in this con-

text, we are trying to estimate the effect of a single variable,

the DR signal, on the output. Having more knowledge about

customers may actually “drown out” the relationship between

the DR signal and customer consumption. A message from

this paper is that the interactions between covariates and the

treatment variable need to be carefully modeled to correctly

leverage additional information contained in the covariates.

Many results about casual impact estimation has been de-

veloped (see [16, 17] and the references within). We choose

to emphasize linear models in our analysis because of their

ubiquity in both theory and practice, and because they do not

involve calculating the distance metrics required in the match-

ing algorithms.

The rest of the paper is organized as follows. Section 2

introduces the linear model and assumptions throughout this

paper. Section 3 presents several different estimators based

on various forms of linear regression. Section 4 details the

case study on the performance of these estimators. Section 5

concludes the paper.

2. PROBLEM SETUP

2.1. Model

The Neyman-Rudin model [17] is commonly adopted when

estimating the ATE. It suggests that in each observation of

customer i, the outcome Yi (in our case the consumption data)

can only take on one of the two values, either Yi(0) or Yi(1).
These two values are the potential outcomes either under the

DR signal (when Ti = 1 and the customer is in treatment

group), or with no DR signal (when Ti = 0 and the customer

is in control group):

Yi = TiYi(1) + (1− Ti)Yi(0). (1)

We further use an additive model and express (1) as:

Yi = f(xi) + g(xi)Ti, (2)

where f(xi) = Yi(0), g(xi) = Yi(1)− Yi(0) and the covari-

ates are denoted by xi. The covariates xi in DR programs are

the potential predictors of household consumption data, such

as temperature and appliance information. In the following

sections, we write f(xi) as fi and g(xi) as gi for simplicity.

The ATE modeled in (2) is the empirical mean of gi:

ḡ =
1

N

N
∑

i=1

gi. (3)

It measures the average effect induced by the treatment

to the whole group. We then call fi as the main effect for

customer i and gi as the treatment effect for customer i.

2.2. Assumptions

We assume a randomized trial scenario, where Ti ⊥ xi, so

Ti ⊥ {fi, gi}. Throughout the paper, ⊥ denotes statistical in-

dependence. This scenario guarantees that the treated group

is similar to the control group in each trial, so there is no need

to balance the covariates in either groups. Note that this as-

sumption might seem strict in reality, but it is not beyond un-

reasonable. First, the design of the trial is unknown in an ob-

servational study, so any assumptions other than randomized

trial is even more stringent. Second, the Pecan Street database

that we use has customers in and out of the DR programs con-

tinuously so it is reasonably to exert such assumption.

3. LINEAR REGRESSION

As discussed in introduction, estimation can be made in sev-

eral ways. We choose to emphasize linear models in our

analysis because of their ubiquity in both theory and prac-

tice [18][19]. In this section, we propose three different ways

to obtain linear regression estimators, i.e., through simple lin-

ear regression (SLR) on treatment variable, multiple linear

regression (MLR) on both the treatment variable and the co-

variates, and a simple linear regression using the modified co-

variate method (MCM) introduced in [13].

3.1. Simple Linear Regressing on Treatment

Suppose that T̄ = 1

N

∑

i Ti = p, which means that pN cus-

tomers are treated in a pool of N customers. It can also be

interpreted as the probability that each customer gets a treat-

ment. The two explanations are different, but in the presence

of large number of samples they share similar statistical prop-

erties [20]. We then rewrite (2) into the following form by

centering the variables:

Yi = (Ti − p)ḡ + ḡ + f̄ + Ti(gi − ḡ) + (fi − f̄)

= Ziḡ + α0 + σi,
(4)

where ḡ = 1

N

∑N

i=1
gi, f̄ = 1

N

∑N

i=1
fi, Zi = Ti − p, α0 =

ḡ + f̄ , and σi = Ti(gi − ḡ) + (fi − f̄).
The least square estimator is consistent, and the estima-

tion for ḡ is given by (ZT
Z)−1

Z
T
Y. With some manipula-

tion, a simpler expression is:

ˆ̄gSLR =

∑

i Ti(gi + fi)
∑

i Ti

−

∑

i(1− Ti)fi
∑

i(1− Ti)
. (5)
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Note that Yi(1) = gi + fi and Yi(0) = fi, this indi-

cates that the linear regression estimator is exactly the same

as difference-in-mean estimator [16]. It simply takes the dif-

ference between the average outcome between the treatment

group and the control group. The simulation results of the

simple linear regression estimator is presented in section 4.

3.2. Multiple Linear Regression on Treatment and Co-

variates

Now suppose that we know some covariates xi about cus-

tomer i. A multiple linear regression model is carried out

when both the treatment variable Ti and xi are included as

regressors. The simulation results of the multiple linear re-

gression estimator is presented in section 4. The simulations

show that even though multiple linear regression still yield a

consistent estimator, it does not always improve over the sim-

ple linear regression method (measured via variance of the

estimators). This is mainly because that the wrong covariates

can be selected into the model and that the underlying model

may not be linear.

3.3. Modified Covariate Method

As pointed out in the last section, including covariates directly

into the linear model to estimate ḡ does not necessarily im-

prove the estimator’s performance. Here performance is mea-

sured by the variance of the estimator. One possible improve-

ment is to relax the assumptions by only assuming linearity in

the treatment effect for each customer i, i.e., only gi is linear

in the covariates.

We thus use a new method proposed in [13]. This method

works when we assume that the treatment effect is linear in

the covariate, i.e., gi = x
T
i γ, but we do not impose any con-

ditions on fi. In this case, ATE can be presented as ḡMCM =
1

N

∑

i x
T
i γ.

We then have the following linear regression model [13]:

Yi = fi + Tix
T
i γ

= v
T
i γ + α0 + σi,

(6)

where vi = (Ti − p)xi, α0 = f̄ + px̄Tγ, and σi = (fi −
f̄) + p(xi − x̄)Tγ. We refer to vi as the modified covariate.

The modified covariate method is carried out when regress-

ing the outcome Yi on vi and an intercept. The estimator is

still consistent[13]. The corresponding simulation result is

presented in section 4.

4. CASE STUDY

We conducted several experiments in two settings: synthetic

data and real-world data from Pecan Street [14]. In both set-

tings, SLR stands for simple linear regression, MLR stands

for multiple linear regression and MCM is modified covariate

method.

4.1. Synthetic Data

We simulate outcome data from four different models, i.e., a

linear model, a non-linear model, a model with constant fi,

and a model with non-linear fi but linear gi. The covariates

x’s are i.i.d. samples from a joint gaussian distribution. The

probability of a treatment assignment is set to be 0.8, 0.9, 0.75

and 0.1 respectively for these four models (model 1 to model

4) presented in (7a) to (7d), where d is the dimension of the

covariate vector xi.

Yi = x
T
i γ + x

T
i βTi (7a)

Yi =
4

√

√

√

√|
d

∑

j=1

x3

i,jγj |+ (
d

∑

j=1

x2

i,jβj +
d

∑

j=1,k �=j

xi,jxi,kμj,k)Ti

(7b)

Yi = α0 + (
d

∑

j=1

x2

i,jβj +
d

∑

j=1

d
∑

k �=j

xi,jxi,kμj,k)Ti (7c)

Yi =
4

√

√

√

√|
d

∑

j=1

x3

i,jγj |+ x
T
i βTi (7d)

The variance of the three estimators presented in section

3, i.e., SLR, MLR and MCM is shown in Fig.1. The ε2 shown

in Fig.1 is the empirical variance of the estimator and we com-

pare the performance of the estimators based on the magni-

tude of this variance.

Fig. 1. Variance of the three estimators of synthetic data. SLR

performs best in (b) and (c), MLR in (a) and MCM in (d).

From Fig.1, we observe that it is not always the case that

MLR yields a better estimator. As seen from Fig.1(a), when

the model is linear in the covariates, MLR has the best perfor-

mance with respect to variance reduction. However, if the

model is not linear then MLR does not necessarily reduce

the variance of the estimator, as shown in Fig.1(b) through
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Fig.1(d). Comparing results from Fig.1(b) and Fig.1(c), we

observe that SLR has the lowest estimator variance in both

cases, when neither fi nor gi is linear in the covariates. Thus

we argue that performing SLR is the safest way to yield an

estimator with least variance. What is more, if the treatment

effect is linear in the covariates and the probability of treat-

ment assignment is small, then MCM outperforms both SLR

and MLR, as shown in Fig.1(d). It thus serves as a compro-

mise to use covariate information while keeping the estima-

tor’s variance low.

4.2. Pecan Street Data

In this section, we test the estimators on data from Pecan

Street [14]. In the tests, we treat the high price signals as

treatments. The outcomes are customers’ consumption data.

To compose the treatment group and control group, we extract

the high price signal and include customers whose consump-

tion data is available at that time into the treatment group,

and include the other customers into the control group. For

the control group, we find their consumption data at the same

hour in the date closest to the high price signal date. This

mimics the situation where the signals are randomized as-

signed, since each customer has some chance of receiving a

specific signal. Temperature is a primary regressor that re-

searchers use in practice, so we include temperature into the

linear regression model as covariate. Other covariates suh as

appliance information can easily be added.

Since we do not know the true ATE and the true model

for observational data, we use p-values associated with the t-

test and the F -test to make comparisons in Pecan Street data.

These tests are hypothesis tests for linear regression models

with Gaussian noise [21]. The difference between t-test and

F -test is that t-test only examines whether including one par-

ticular regressor significantly improve the model whereas the

F -test examines whether including all regressors significantly

improve the model. Suppose that we just include one covari-

ate into the regression model, the MLR model is in the form

of Yi = Ziḡ+xiβ+α0+ δi, where ḡ is the ATE to a specific

DR signal, Zi = Ti − p is the centered binary indicator vari-

able for DR signal and xi is the covariate. The null hypothesis

for the t-test in this regression model is given as H0 : ḡ = 0
and for the F -test: H0 : ḡ = β = 0.

For both tests, we examine the significance by setting a

confidence level α, normally taken as 0.05. While comparing

the values of a certain statistic under different models does not

seem intuitive, we can alternatively resort to p-value, which is

defined as the probability of obtaining the observed(or more

extreme) result under the null hypothesis. Higher p-values

suggest that the null hypothesis is true, whereas smaller p-

values suggest the opposite. We then can compare the p-

value to interpret the significance test under different regres-

sion models.

The results are shown in Table 1. The treatment group

has 3911 observations and the control group has 893 observa-

tions. All estimators are consistent. What is more, from the

results in Table 1, we can see that the p-value with the F -test

for all methods is generally small, meaning that the consump-

tion data cannot be explained by just an intercept. However,

the p-value associated with the t-test is high for MLR, sug-

gesting the insignificance of regressing on the treatment vari-

able. This is mainly due to the lack of information on how the

covariates interact with consumption data and that the treat-

ment group is much bigger than the control group. If an utility

uses MLR to estimate the ATE, it may conclude that the DR

program is ineffectual by mistake. Therefore although includ-

ing covariates into the model may seem to improve prediction

(smaller p-value for the F -test), it does not necessarily lead

to a better inference.

From Table 1 we can also see that the p-value for t-test

with MCM is small, suggesting that we should regress on the

modified covariate. Therefore if we know that the treatment

effect is linear in the covariates, then using modified covariate

method can on the one hand exploit the covariate information

and on the other hand reduce the variance of the estimator.

Other interaction terms can be added in similar fashion.

Table 1. Results for pecan street data. Smaller p-values sug-

gsest significance of the variable(s).

p-value for t test p-value for F test

SLR 2e-16 2e-16

MLR 0.133 2e-16

MCM 2e-16 2e-16

5. CONCLUSION

In this paper, we estimate the average treatment effect of de-

mand response programs. We adopt a regression model and

assume that the DR signal is randomly assigned to customers.

We derive a simple linear regression estimator on just the

treatment, multiple linear regression estimator on treatment

and other covariates, and a modified covariate method. The

simulation results show that although including more infor-

mation may be good for prediction purposes, simple linear

regression estimators may have lower variances. In the case

where the treatment effect is linear in the covariates, the mod-

ified covariate method is able to leverage additional covariate

information to reduce estimation error. Thus, the interactions

between the covariates and the demand response signal must

be carefully modeled. This work can provide a framework

for further research in applying causal inference in analyzing

consumption data and DR interventions.
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