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Abstract. Dark Matter (DM) models providing possible alternative solutions to the small-
scale crisis of the standard cosmology are nowadays of growing interest. We consider DM
interacting with light hidden fermions via well-motivated fundamental operators showing
the resultant matter power spectrum is suppressed on subgalactic scales within a plausible
parameter region. Our basic description of the evolution of cosmological perturbations relies
on a fully consistent first principles derivation of a perturbed Fokker-Planck type equation,
generalizing existing literature. The cosmological perturbation of the Fokker-Planck equation
is presented for the first time in two different gauges, where the results transform into each
other according to the rules of gauge transformation. Furthermore, our focus lies on a
derivation of a broadly applicable and easily computable collision term showing important
phenomenological differences to other existing approximations. As one of the main results
and concerning the small-scale crisis, we show the equal importance of vector and scalar
boson mediated interactions between the DM and the light fermions.

Keywords: cosmological perturbation theory, dark matter theory, particle physics - cosmol-
ogy connection, power spectrum
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1 Introduction

Precise measurements of cosmic microwave background (CMB) anisotropies have been build-
ing strong evidence for the existence of a new form of matter, called dark matter (DM) [1, 2.
However, its nature has not yet been uncovered and one of the most important subjects both
in astrophysics and in particle physics. Recently vigorous efforts have been devoted to cosmo-
logical probes of interaction strengths between the DM and other long-lived particles [3—16].
Interestingly, such probes are not limited to couplings of the DM to standard model (SM)
particles (e.g., baryons, photons, and neutrinos). Couplings to hidden particles are equally
subject to searches. In this paper, we restrict our discussion to hidden light particles, which
we call neutrinos for simplicity. However, the formulation developed and given in this paper
is applicable to other models with DM couplings to SM particles.

Interacting DM models are not only within the scope of precise measurements of the
large-scale structure of the Universe. They also have their motivation in apparent discrepan-
cies between predictions from DM-only N-body simulations and observations on subgalactic
scales. Such discrepancies are called the small-scale crisis collectively: the missing satellite
problem [17, 18]; the cusp vs core problem [19-21]; the too big to fail problem [22, 23]. The
simulations assume that the DM consists of particles with negligible thermal velocities and
faint interactions, called cold dark matter (CDM). The small-scale crisis may imply alter-
natives to the CDM paradigm, while it has to be clarified by state-of-the-art hydrodynamic
simulations what role baryonic processes play in the formation and evolution of subgalactic
objects [24, 25]. One famous alternative is called the warm dark matter (WDM) model, in



which sizable thermal velocities of DM particles suppress the formation of subgalactic ob-
jects [26]. Interacting DM effectively reduces the abundance of substructures in a galactic
halo to a similar degree to that some WDM models do [27-36].

Although there is a growing interest in interacting DM models, it is still unclear what
the evolution equations of cosmological perturbations are in such models. This is because it
is difficult to handle and simplify collision terms of the Boltzmann equations. Some works
start with the relativistic Navier-Stokes equation for the DM imperfect fluid in particle flow
manifest (Eckart’s) formulation [37, 38]. They determine fluid variables with the help of the
Chapman-Enskog method to estimate damping scales in matter power spectra in interacting
DM models. Others just add a collision term in the evolution equations of cosmological
perturbations by analogy to the well-known Thomson scattering term for baryons and pho-
tons [39]. One plausible way is to reduce the collision term to the Fokker-Planck equation by
assuming the momentum transfer in each collision is smaller than the typical DM momentum.
Such formulation is developed for the traditional bino-like DM in [40]. However, the overall
factor, i.e., the reaction rate, in the Fokker-Planck equation is controversial so far. A system-
atic expansion of the collision term in terms of the momentum transfer leads to a reaction
rate proportional to the invariant amplitude at a zero momentum transfer ¢ — 0 [41-43]. On
the other hand, in [44, 45], the reaction rate is given by t-averaging like [ dt(—t)do /dt.

The two formulations introduced above result in different phenomenological conse-
quences. We consider a simple model, where the SM sector is extended by a Dirac DM,
a Dirac (hidden) neutrino, and a mediator. A similar scenario is investigated in [28]. When
the mediator is a scalar, the reaction rate with a zero momentum transfer is negligible and
does not change the matter power spectra on and above subgalactic scales within a plausi-
ble range of model parameters. A subgalactic damping scale can be achieved by a vector
mediator within this formulation [29]. On the other hand, both vector and scalar mediators
can suppress the resultant matter power spectra with the t-averaged reaction rate. We ad-
dress this point by calculating the resultant matter power spectra in the latter formulation
numerically. To this end, we derive the evolution equations of cosmological perturbations
in two gauges: the conformal Newtonian gauge and the synchronous gauge [46]. We pro-
vide an explicit form of gauge transformations between them. We also show a derivation
of the t-averaged reaction rate. It may be useful because a similar derivation is given only
in an unpublished thesis [44]. In the recent ETHOS (effective theory of structure forma-
tion) papers [34, 35], they study the structure formation in interacting DM models based on
the former treatment of the collision term, while they also mention the importance of the
t-averaging in some models. The ETHOS paper and this paper are complementary to each
other in a treatment of the collision term.

The paper is organized as follows. In section 2 we start from first principles and give
a detailed derivation of the Fokker-Planck equation with the t-averaged reaction rate. Fur-
thermore, the evolution equations of cosmological perturbations in the synchronous gauge are
derived for the most general case of an imperfect fluid. We show explicitly in appendix A that
our results transform into the form of the conformal Newtonian gauge according to the rules
of gauge transformation. In section 3, we give an introduction of the neutrino interacting DM
model first. Then, we summarize our analytic results for scalar and vector mediators: the
relic density of the DM; the t-averaged reaction rate; the resultant smallest mass of halos.
In appendix C, we present details of our calculations of the chemical decoupling and also
summarize the results for models with pseudo scalar and pseudo vector mediators. Finally,
we show the resultant matter power spectra to stress that not only a vector, but also a



scalar mediator can lead to a sizable suppression of matter power spectra. In appendix B, we
provide an estimation of a critical wavenumber below which the perfect fluid approximation
appears valid.

Throughout this paper, we use the Planck 2013 cosmological parameters [2]: €, =
0.3175, Hy = 67.11, In(10'°Ay) = 3.098, and ns = 0.9624. Updating these input parameters
to the Planck 2015 ones would not change our results significantly.

2 Fokker-Planck equation

In this section, the perturbed Fokker-Planck equation is derived. Our starting point is the
classical Boltzmann equation with the collision term. We expand it assuming the momentum
transfer per collision is smaller than the typical DM momentum. Within this approximation
the collision term satisfies detailed balance and respects number conservation. As a further
result of this expansion method, the momentum transfer rate can easily be computed by
first taking a t-average and secondly a thermal average of the differential scattering cross
section. As an important result of the formulation used, the t-average is a direct consequence
of the expansion method. Other methods like in [42] expand the scattering amplitude in
terms of a small momentum transfer and keep only the zero order. But this approximation
shows a completely different phenomenology for certain DM theories as will be shown as an
explicit example in section 3. As part of this section, we develop the evolution equations of
linear cosmological perturbations in the synchronous gauge. A comparison to previous works
is given. The results are equivalent to those in the conformal Newtonian gauge under the
gauge transformation law as we show for the first time in appendix A.

2.1 Collision term

In this subsection, we derive a Fokker-Planck equation for the DM phase space distribution
function f, partially inspired by the unpublished thesis [44]. Our starting point is the classical
Boltzmann equation for the DM,

[P0y —TH, PPP2opu] f = C[f], (2.1)

where P, is the conjugate momentum of the spatial coordinate z#. When we handle the
collision term C|[f], it is convenient to take a local inertial frame X*, where the metric is
diag(—1,+1,+1,+1) and the proper momentum is denoted by p* = (E,p). We normalize
the distribution function such that >, [ d®p/(27)?(p*/E)f = n*, where s are spin degrees
of freedom and n* is the DM number current. If we assume the DM particles to interact elas-
tically with particles in a thermal bath, i.e., DM(1)4+TP(2) +» DM(3)+TP(4), the collision
term takes the form of

Z/ 2:: ??;Es — S%Up1,p3) fi(1F f3) + S%ps, p) 51 F f1)] . (2.2)

where

d? d?
4(p1,p3) Z/ > / D (27)%5" (p1 + p2 — p3 — pa)

27 32E2 2m)32E,
IJ\/l(1—|r2—>3—|r4)\2 F 1Y, (2.3)
d? b2 d? P4 4cd
eay (2m)46 —p1—
S°(ps3, p1) Z/ 2m)i2E, 2 / Y (2m)*6%(p3 + pa — p1 — p2)
><|/\/l(3+4—>1+2)|2 A F Y. (2.4)



Here, | M|? is the spin-averaged invariant amplitude squared, and f°9 is a thermal distribution,

Fe9 = (exp{(—p-u—p)/T}£1)~"! (2.5)

with a temperature T' ~ Ty (7)+T1 (), a reference four velocity u* ~ (1,u(z)), and a chemical
potential pu.

If the elastic scattering is T-inversion invariant, | M|?’s are identical between the forward
and backward scatterings,

IMA1+2—-3+4)2=MB+4—-1+2)]2=|M|2. (2.6)

In the presence of four-momentum conservation 6*(p; + p2 — p3 — p4), thermal distributions
satisfy

o (LF f1) = exp{—(p1 — p3) - w/T}Hf" (1 F £5%) - (2.7)
From (2.6) and (2.7), we obtain the following relation:
5% (p1,ps) = exp{—(p1 — p3) - u/T}5*(p3, p1).- (2.8)

Thus, the collision term is
d?
Z/ 27) S’E Ups, p1) [fs(1F f1) — exp{—(p1 — p3) - w/T} (1 F f3)] . (2.9)

We can easily check that the above expression satisfies the so-called detailed balance, i.e.,
Clfi]=0if fi = f{* and f3 = f5%, which follows from the T-inversion invariance.

We assume that the momentum transfer q = p3 — p1 is smaller than the typical DM
momentum pi; and expand the collision term up to the second order,

oft 1__ 9*A - _
~ ; Gt —(p1 —p3) - u/TY = 1+ A;&; + By, (2.10
fs3=fi+Qiz— Ip1; +544 i Sy, exp{—(p1 —p3) - u/T} = 1+ 4;q; + Bi;q;q;, (2.10)

where

Vi — 4, 1 BAZ )
A= ——7—— B = — + A;A; , 2.11
J 2 <8p1j J ( )

with the velocity of the particle v = p/E. After collecting terms, we obtain

- oo -
[f3(LF f1) —exp{—(p1 —p3)/T}H1(L F f3)] = @ + = (8;())[1 + OézA') Qq;, (2.12)
J
where
df1
P = —A; f1(1 . 2.13
a o1 fi(lF f) (2.13)
The collision term is
1 1/ dqy
Clfi] ~ 2{ai/3i t3 <8p + OézA') %’j} ; (2.14)



where

@P3_ eq / Pps g _
v ¢ ) () 3 ¢ R iqi - 2.1
Bi = Z/ 27) 321 ————5%Y(p3, p1)Q; Vi = Z 27) 390, ——————5%(p3, p1)a q; (2.15)

It should be noted that o;; = 0 and thus C[f1] = 0 if f1 = f;, which implies that the detailed
balance is maintained in the approximation.

We expand S°I(p3,p1) in terms of §, noting that p§ = (\/E? + 2p1@; + @, p1 + Q)-
The scalar function S depends on q only through py;q; and g°. Since we keep the terms
only up to the second order in terms of q, the expansion in terms of g2 leads to higher order
terms in C[f;], which are to be neglected in our treatment. Therefore we expand S only in
terms of p1;G; as follows:!

S(ps, p1) ~ Spt(p1, @) + Sy (p1, @) P1ids » (2.16)

o - 054 (p1,@%) - o - -
S%(p1,p3) =~ Sot(p1, %) + %qi — S5%p1, &) p1ids » (2.17)

where S;%(p1,@?) and S7%(p1,§?) are the expansion coefficients defined by (2.16).
Substituting (2.16) and (2.17) into (2.15) and using (2.8) and (2.10), we obtain

=2 | fo ot 5[5 p ) + exp{(pn — pa) - 0/ THS" 1, )]

d3p3 pqu] B 1 ~ . Y
- Z/ K_ E?} >S (P14 )qi+TEl(—Aij)Soq(p1,q )

1 6‘S§q(p1,q2)~ ~ }
q:9;
2E1 aplj

E1 0 1 1
~ q — — AN 2.18
) ap1; <E1%J> 9 Vg ( )

where
d*ps
72] 57,_] E / 27T 32E eq(pl’q )q (2'19)

In the second equality of (2.18), we have dropped the term proportional to Sy (p1,q*)d;,
since it vanishes after integrated in terms of d®>ps = d*q. In addition, in the last equality, we
have replaced q;q; with (1/ 3)5@-(12 for the same reason. It should be noted that, v;; = ;5
holds up to the second order in q.

In practice it is more convenient when evaluating (2.19) to replace the perturbative
quantities Sg%(p1,§?) and —@* with their non-perturbative counterparts S®(ps,p;) and
t/(1 — vi;v1i/3) = —(ps — p1)?/(1 — v1;v1;/3), respectively. These resulting coefficients
only differ through higher order terms and amount to an alternate perturbative expansion.
Substituting (2.18) and (2.19) into (2.14), we obtain a Fokker-Planck-type equation for f;
since the collision term becomes

Clfil ~ B 0 [ <E1T on + (Pri — Erw) fi(1 F fl)ﬂ : (2.20)

8plz a P1i

"n fact, if we take § — 0, S° diverges owing to a delta function of zero §(0)§*(ps4 — p2) in the integrand.
The expansion just in terms of p1;q; also allows us to avoid such a divergence.



where the momentum transfer rate is

1 d3p2 eq eq 0 do
TTET( — vivii/3) %:/ (2m)372 (1 £ )/_ L dt(=t) v (2.21)

4pén,

Here, do/dt is the differential cross section and v is the relative velocity of the initial particles.
The center of mass momentum is evaluated by 4sp?2, = {s — (m1 — ms2)?}{s — (m1 +ms)?},
where s = —(p1+p2)? and m is the mass of the particle. This equation satisfies two important
requirements. First, it maintains the detailed balance: if f1 = f{, then C[fi] = 0. Second,
it conserves the DM number,

Oxuntt = Z/ & L C =0. (2.22)

If the DM particles decouple from the thermal bath when they are relativistic, momen-
tum transfer in each collision is as large as the typical momentum of the DM, which may
spoil our approximation approach, i.e., the Fokker-Planck equation. It may be useful to give
the non-relativistic limit. Then, the Fokker-Planck equation is

Clfil = mlagh [”y (mngglli + (p1i — m1u¢)f1> } : (2.23)

where the momentum transfer rate is

d p2 eq 0 dU
6m1TZ/ 5 )/4{)3 dt(—t) v (2.24)

This expression is the same as given in [44, 45]. The cross section is essentially independent
of p1 since we consider the case that DM is non-relativistic, or in other words, |p1| is much
smaller than my. We focus on such a case in the following.

Before closing this subsection, let us discuss the relation between [41-43] and the present
paper. The main difference is the presence of t-averaging in the momentum transfer rate
of (2.24). Once we set t — 0 in do/dt, we can evaluate the t-integral analytically to re-
produce the result in [41-43]. The t-averaging originates from the approximation in (2.16)
and (2.17) and the replacement of the perturbative quantities with the non-perturbative
counterparts after (2.19). In this respect, our formulation is not a systematic expansion in
terms of the momentum transfer like that in [42]. However, in some cases, the expansion
of invariant amplitudes is not a good approximation since the leading order does not give
the dominant contribution. One such example is the scalar operator of DM-neutrino inter-
action investigated in the present paper. There, the leading order is suppressed by a factor
of m?/(—t) when compared to the next-to-leading order.

2.2 Perturbation theory in the synchronous gauge

Now we develop a linear theory in the synchronous gauge:

ds* = a® [—d7® + (845 + hyj)dx'dx] . (2.25)
Up to the first order of cosmological perturbations, the Fokker-Planck equation is given by
cooq 0, 1, 2 ) 2 9
— shijdin—f = i — i To+ T ;
f mX axl Qth 8q]f (Pyo—i_ﬁyl)a’aqz (q amXu )f+a mX( 0+ 1)8q1f
(2.26)



2

with v = ~(7) + 71(x) and the comoving momentum ¢ = ap.® The homogeneous and

isotropic part, i.e., the leading order is

. d 9 1o}
= _— ; ik . 2.27
fo 095 [quo + a*my "o fo] (2.27)
A solution,
n 27 3/2 q2
_n 9T 2.28
fo 9x (mxTx0> exp< 2a2mxTx0> 7 ( )

is parametrized by the DM temperature T\ (7) and the DM number density per spin degree
of freedom 7/g, with g, = 2s, + 1. Its evolution is described by

dIn(a*T\o) To
—_— = — 1. 2.2
dr Y00 Tyo (2.29)

The DM temperature is tightly coupled to the temperature of the thermal bath T\ = Ty
1/a before the kinetic decoupling v/H > 1. After they decouple, the DM particles start to
stream freely and the temperature decreases adiabatically Ty o< 1/ a’.

The first order perturbation follows:

fi+ m, 0%, fi— ihijq]'aiqifo = yiaLwp|[fo] — a mxuiafqifo + Yoa mleaTleo
—|—70aLFp [fl] . (2.30)
Here, we define the Fokker-Planck operator by
0 0
L = — | 2m, T . 2.31
FP [.ﬂ 8(1i I:qu +a my ani f] ( )
In the Fourier space k; = kl;i, these equations are rewritten as
ik . q h+ 67 2 1 ikiq;  Orp
— ~oalL — _ k.q: _ P
Ji+ am, f1 = aLyp[fi] T3, Too fo =~ (kiai) 2a%m, To Jo T 072 Jo

Ty T q
+ |:’)/1a <TX0 - 1> + ’)’oaTXO:| (W) — 3> fo- (2.32)
Hereafter we consider only the scalar perturbations, defining 1p, 1, and h such that 6rp =
ikju; and hij = kikjh + (l;,l;j - %51-]) 67 (the same notation as in [46]).
In order to handle the Fokker-Planck operator, we expand fi in terms of eigenfunctions
of the Fokker-Planck operator,

LFPQSnEm = _(2n + Z)gbnfm’ aném = e_ySnf(y)nm((D ) (233)

with y = g?/(2a*m,Tp), q; = |q|q;, and a dimensionless function S,¢(y) = ye/QLleﬂ(y).
Here Yy,,, and L denote the spherical harmonics and the Laguerre polynomials, respectively.
Noting the rotational symmetry, we can write

filk,q,7) = We_y D (=) (20 + 1) S e(y) Pe(kid) fue(k, 7), - (2.34)
X n =0

2Hereafter, for notational simplicity, we respectively use my and p for the DM mass and the proper
momentum instead of m; and p; that are used in the previous subsection.



with the Legendre polynomial P, and vice versa,

B VT n! q?
Jne(k,7) =1 21W+3/2)/d3q5n£ <2a2mxTo> Py(k;ai) f1(k,q, 7). (2.35)

After a lengthy but straightforward calculation, we obtain the Boltzmann hierarchy:

foe + (2n+ 0 (Y0a + R) fae — 2nR fr—10

2T [ £+1 3 V4
+ky | ey {2€+1 K + 0+ ) fret1 — nfnlul] + m(fnﬂeq — fne1)}

1. 1, To T
=04 —=A,h+ =B,h — 2B — 1 —
00 { 5 4in + 3 Dn n [7161 <Tx0 > + ’YOGTXJ }

1 2m OTp 2 Tyvo : .
o= Apk X S —XY A, (i . 2.
tongAnky [ — T, 10952 + 25T, n(h =+ 61) (2.36)
Here we introduce three new quantities:
dln(aT1/2) T 0 " T 0 T 0 n-l
R=—>"0 7 4, = - B S X . 2.37
dar 7 " o) ' Ty (2:37)

The first quantity is essentially proportional to the Hubble expansion rate: R = aH /2. Only
a few of the second and third quantities are non-zero before the kinetic decoupling (Tyo = Tp):
Ap = 1 and By = 1, while the others vanish. Higher orders of the second quantity become
non-zero after the kinetic decoupling (Tyo < Tp): A, = 1, while B,,(= nT\o/Tp) is tiny.

Although we need to solve the full Boltzmann hierarchy to obtain a rigorous result, just
taking some small moments of n and ¢ can give the fluid approximation (see discussion in
subsection 3.3). The perturbations f,, with small n and ¢ can be interpreted as primitive
variables of the DM imperfect fluid (i.e., mass density p, bulk velocity potential 6, pressure
P, and anisotropic inertia o):

) _ dq
p(1+5):_ToO:a4z/Wme, (2.38)
Sx
_ = . 7 4 d3q .
. d3q q’
0 —4
P+5P:7T —a Ej/ 3 (2.40)

_ NP | , d? 20 . 1
(p+P)o=— <kikj - 35z‘j) T = —a_42/ (27:)13 ;X [(kiflz‘)Q - 3} [ (241)

Substituting the exact form of f = fo(7) + f1, we obtain

_ Ty

_ _ p—xX05 2.42

p = myi, " (2.42)
T, T T

6=fo., 6=3k |5 - O for, 6P =—LP(foo— fio), o=5—"fps. (2.43)
My Tyo My



The dynamics of the DM imperfect fluid is described by the following equations:

i 1.
0= —0— ih’ (2.44)
0 =—0—ko+ kX — Otp — 0 2.45
. o+ mXPJrVoa(TP ) (2.45)
. a 2T\ */? (21 ATy 2Ty . ..
o6=-2-0-k|— —fos+ fur ) +5—0 + 5 —(h+61) — 2y0a0, (2.46)
a My 4 3my 3my
: a 5.. 5 [(2Ty\*? 5Ty -
OP = —5—6P — —Ph+ -k | — ————P46
a 6 * 4 <mx> Pin 3T
Ty = _ T T;
—2v0ad P + Q’yoa—OPcs + 2P [’yla (0 — 1) + ’yoal] . (2.47)
Tyo Tyo Tyo

The pressure perturbation d P can be decomposed into isentropic cié and entropy m pertur-
bations:

or Ao+ (2.48)

The sound speed squared of the DM fluid is

T 1dnT
2 x0 x0
=— 11— . 2.49
R My < 3 dlna > (249)

The evolution of the DM imperfect fluid can be rewritten as

: 1.
b= —0-5h, (2.50)
;__a 2 2/ 2
0 = _EQ — k%0 + k*(c,0 + ) + v0a(frp — 0), (2.51)
‘ 279\ *? (21 ATy, 2T,
6=-2% —k <°> (fog + fu) + 220 + S (h+67) — 29000, (2.52)
a My 4 3 my 3 my
_ a5 (2T\*? 1 d(a*c3) 5 Tp 1 (5Tyo ,
= % (0 C SRRy (250 2 S (250 2
i PR <mx> fu a2 dr 3 my x 2 \3m, x
T T T T
—2v0a |:7T - <0 - ci) 5} + 20 (0 — 1) X0 (2.53)
My My Tvo My Yo

3 Neutrino interacting dark matter

The section starts with the introduction of the neutrino interacting DM model via a MeV-
scale boson. This particle combination leads in a valid parameter region to a possible solution
to all three small-scale crisis problems if the mediator is of vector type [29]. We reproduce and
confirm these results by using the method that is derived in the previous section to describe
the DM kinetic decoupling. The used method has a different expansion of the collision term
when compared to the aforementioned reference and to others like [42].

Furthermore, by using this alternative description we explicitly show a suppression of
the power spectrum for other types of mediators as well. The suppression is sizable enough



to reduce the abundance of dwarf galaxies but unexpected from the point of view of the
above literature. In particular, scalar and vector mediators share an analogue phenomenology
within our model set-up and the parameter region is relatively similar concerning the minimal
size of the first protohalos. Approximation methods to follow the evolution of cosmological
perturbations are also given. Finally, the matter linear power spectrum for scalar and vector
interactions are presented, showing a suppression of powers on subgalactic scales.

3.1 Simplified neutrino model

A simplified model extends SM by a DM fermion and additional light fermions (denoted by
v). The DM fermion and the additional light fermions are assumed to be of Dirac type,
coupled by a MeV-scale boson denoted by ¢. In particular, this choice allows us to write
down the following set of renormalizable dimension four operators without derivatives:

Ls D gyX¢X + guov,
Ly D g XV'Xbu + g0 vy,
Lps D gy XV X + gy v,

3.
3.
3.
Lpv D XV Xbp + gV Y vy . 3.

)
)
)
)

~~ o~
=W N

Here, we assume parity conservation in the interaction Lagrangian and consider each operator
type separately. There are four parameters: the DM mass m,, the light mediator mass
mg, the DM-mediator coupling g,, and the light fermion-mediator coupling g,. Specifically,
extensions of the simplified model (3.2) into ultraviolet complete models and their constraints
have already been investigated by many authors in connection with the small-scale crisis (for
an exemplary list of references, see [47-50]).

For simplicity and by analogy to previous works we call the light fermions hidden neu-
trinos. In the early Universe, the DM and the hidden neutrinos are assumed to be in thermal
equilibrium, where a temperature difference when compared to the SM sector hides the ad-
ditional light fermions. Further, the light boson is in thermal equilibrium with the neutrino
sector during the DM chemical freeze-out. For all operators the parameters are chosen such
that the relic density of the DM is dominantly determined through yx — ¢¢ annihilation
and not via direct s-channel neutrino production. This is because for the vector, scalar,
and pseudo scalar interactions, we assume g, < g, (see [51] for a list of possible natural
explanations). In this scenario, the DM relic abundance for all operators is independent of
the neutrino coupling ¢g,. In appendix C.1 we provide for all operators the full calculus of
the annihilation cross section and the relic abundance. Due to a more complicated but less
illuminating phenomenology, we discuss the results for the pseudo scalar and pseudo vector
operators in appendix C.2.

3.2 Minimal halo mass

Elastic scattering via a MeV-scale boson keeps the DM for a long time in kinetic equilibrium
with the hidden neutrino sector. During kinetic equilibrium, the DM density perturbations do
not grow but oscillate. This phenomena is known as acoustic oscillations and has been shown
in [3-15, 27-31, 33-36] to be the dominant damping mechanism of the density perturbations
in the case of a late kinetic decoupling.

In the cosmological perturbation theory, the mode that enters the horizon at the kinetic
decoupling defines a cutoff in the linear matter power spectrum of density fluctuations. Only

,10,



the DM density modes that enter the horizon thereafter can significantly grow and collapse
later into halos. Thus, fluctuations on shorter scales are damped. The minimal mass of first
protohalos can be estimated by the mass inside a sphere with radius of Hubble horizon at
the time of the kinetic decoupling:

47 [ 1)° 1keV?
Mcut — pm? (H) =22 X 1087"3 < Tg(d ) M@) (35)

where the matter density p,, and the Hubble expansion rate H are evaluated at the kinetic
decoupling. Here, we allow for a different light fermion temperature from the photon tem-
perature to hide the additional neutrinos. The ratio between the two temperatures is defined
as r =TkKl/ T;‘d, where the superscript kd means the corresponding value at the DM kinetic
decoupling that occurs when the momentum transfer rate « equals to the Hubble expansion
rate H.

In the following, we derive an approximation method to estimate the kinetic decoupling
temperature Tx¢ in order to calculate the corresponding cutoff mass according to (3.5). The
general expression for v (2.24) is adjusted to describe the scattering of the DM with the
light fermions. Dividing it by the Hubble expansion rate and by introducing the following
dimensionless variables x = |p,|/T,, y = T,/m,, and z = mg/m,, one ends up with the
following form:

T, mp [ 45 N, 1 5 [
L v Il dax o4 1 — fed 3.6
7 <Tv> iy = zfyt(x) (1= f,%2)) 9(zy, 2) (3.6)
where we multiply by the number of light fermion species N,. The phase space distribution

function fy%(z) is the usual equilibrium Fermi-Dirac distribution, where we neglected the
mass of the light fermions:

fe() = !

= P /L) 1" 3.7)

Furthermore, the dimensionless quantity g(xy, z) is defined as the t-averaged scattering am-
plitude squared:

1 0
san2) = i [ dt-n) 30 M (38)
o o 0 2,
where in this convention,
1 2
M = Y IME o, (3.9)
51,52,53,54

is the invariant amplitude squared that are averaged over the initial and final spin states.
Equation (3.6) is the basic formula for the kinetic decoupling description of the neutrino
interacting DM. In the following, we derive analytic estimates for the scalar and vector op-
erators, which are valid in a broad range of parameters and derive their corresponding M,
scaling patterns. In the case of the pseudo scalar and pseudo vector operators, this approx-
imation that we call the effective propagator description is only valid in a small parameter
space, and thus (3.6) has to be solved numerically at some point. The results are given in
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appendix C.2. The DM-neutrino scattering amplitudes for the scalar and vector operators
are given by:

8 (8E;m3, 4 4E,myt + t(2m3, 4 t))

Vector operator: Z IM|? = gig?, 3 , (3.10)
5§1,52,53,54 (t— m¢)
4t(t — 4m?
Scalar operator: Z IM|? = gig?, ( o (3.11)

51,52,53,54 (t— mi)2
In the parameter region we are interested in, it turns out that the mass of the mediator
is much larger than the kinetic decoupling temperature. In this case, the Mandelstam ¢ in
the boson propagator denominator of the scattering amplitudes can be neglected. We call
this approximation the effective propagator description. The propagator denominator can be
simplified in such a way because t € |0, —4p,2j] and the neutrino momentum is further limited
by the phase space distribution: |p,| ~ T,. So t can be neglected in the denominator of the
propagator as long as TK4 < mg, which is the case in the parameter region of the scalar and
vector operators.

Within the effective propagator framework, g(zy, ) is only a polynomial function in its
variables and the integral in (3.6) has even an analytic expression. To the leading order in
T,, we find for the vector operator

2 4
. PV (N oy )y me (T
Loo1rox(—) (= 12
= (ro) < 6 0.035 104> 1 TeV 1 MeV 1keV ) (3.12)

and for the scalar operator

2 4
’y T NI/ ax ay mX -1 m(z) —4 Ty
a0 ) e 1
T <7“o> ( 6 0.17 105) <1TeV) (1MeV) 1keV ) ~ (3.13)

with o, /, = gi/y/(élﬂ).

To estimate the kinetic decoupling temperature, we set v/H = 1 in the last two equa-
tions, which are solved for TX4.3 The corresponding minimal halo masses that are derived
from the kinetic decoupling temperature according to (3.5) is given by

9/2 N, a, a 3/4 o \=3/4 ; m -3
(Mcut>v=6-8x108M@<T) ( ° X) (75) 7 (o) o B19)

o 6 10-40.035 1TeV 1 MeV
9/2 3/4 _ _
r N, o, « m 3/4 / m 3
Ment)s = 6.6 x 108 M, (= v Qv O ( X ) ( ¢ ) (315
(Meut)s 8 ®<r0> <6 105 0.17> 1 TeV 1 MeV (3:15)

where we normalize 7 to the SM neutrino temperature ratio: 7o = (4/11)'/3.

To be consistent with constraints on additional radiation components, we use the com-
bined results of Big Bang nucleosynthesis (BBN) and CMB constraints given in [52] to derive
an upper bound for our model within the 1o error bar:

051\
- (3.16)
] Ny, + 7Y9pol

3This defines our kinetic decoupling temperature. Another definition of Tiq is used in the literature [42],
which also has a direct map into the non-linear My given recently in [34]. With our definition, Mcus is
smaller by less than a factor of three when compared to the aforementioned literature.
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(Ny, gpat) | (r/r0)** x (N, /6)**
(2,{0,1,3}) | < (0.09,0.07,0.05)
(6,{0,1,3}) | < (0.06,0.05,0.05)

Table 1. Upper bounds on (r/r0)9/2 X (]\7,,/6)3/4 derived from [52] are shown. We separate two
extreme cases: the mediator is still relativistic at BBN gpq1 = {1,3}; its contribution to the radi-
ation components can be neglected (gpo1 = 0). The factors on the right column reduce the cutoff
masses (3.14) and (3.15) by at least one order of magnitude.

1
E

<

g

01 |

0.01 ek e g -

10° 10® 107 10° 10° 10* 107 10° 10® 107 10® 10° 10* 10°
Ay ay
(a) Cutoff mass for the vector mediator (b) Cutoff mass for the scalar mediator

Figure 1. Contour line of a constant M, is shown for the vector (left) and scalar (right) mediators
within the effective propagator framework. The other parameters are chosen according to the nor-
malization values in (3.14) and (3.15). In the parameter region shown, the results obtained from the
effective propagator description and the exact numerical results obtained by integrating (3.6) coincide.

Here, we consider the possibility of having a sub-MeV scale mediator contribution to the
radiation components at BBN. In table 1 we summarize the upper bounds for two extreme
scenario: the mediator does not contribute (gpo1 = 0); the mediator is still relativistic at BBN
and contributes via its internal degrees of freedom (gpo1 = {1,3} for the scalar and massive
vector mediators, respectively).

First of all, these cutoff masses (3.14) and (3.15) have the same scaling dependence,
and thus differ only by a numerical constant and depend mostly on the boson mass. Using
the relic density constraint on o, given by (C.5) and (C.6), we see that My is essentially
independent of the DM mass. In figure 1, contour lines of a constant M.y are shown for
the scalar and vector interactions in the (mg, a, )-plane. In order to account for the missing
satellite problem and to be consistent with Ly-a forest bounds, the cutoff mass has to be
roughly in between 107 Mgy < Moy < 5 x 1019 My [29]. We provide the corresponding
Myt contour plots for the pseudo scalar and pseudo vector operators and their discussion in
appendix C.2.
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Figure 2. This figure shows the linear matter power spectra at present for the standard CDM (black
line) and the neutrino interacting DM via the vector (red line) and scalar (blue dots) mediators. The
wavenumber of k = 50h /Mpc corresponds to a halo mass of M = ppdn/3(m/k)3 ~ 108 M. In both
the interacting DM cases, we adjust the free neutrino coupling parameters o, in (3.14) and (3.15) to
give the same cutoff mass (Mg, = 6.4 x 108 M) and ignore the small effects of the DM-neutrino
interactions on the neutrino perturbations (back-reaction).

3.3 DMatter power spectrum

The minimal halo masses derived in the previous subsection imply that the scalar operator
leaves a similar suppression in the resultant matter power spectra to the case of the vector
operator. In order to see this explicitly, let us consider our model where the DM scatters
light fermions via the scalar operator. The scattering amplitude has a pure ¢-dependence
given by (3.11). In other collision term expansion methods like that in [42], the scattering
rate would be declared to be zero at the leading order. But as already shown in the previous
subsection, we find that DM models with a scalar interaction can also account for the missing
satellite problem.

To emphasize that scalar interactions are as important as vector interactions regarding
the small-scale crisis problems, we adjust the free neutrino coupling parameters o, in (3.14)
and (3.15) to give the same cutoff mass and show that their linear matter power spectra
are close to each other in figure 2. Here, we modify the public code CAMB [53] suitably
to follow the coevolutions of cosmological perturbations of the DM (subsection 2.2) and
the other components (e.g., baryons, photons, neutrinos, and gravitational potential). The
small effects of the DM-neutrino interactions on the neutrino perturbations are neglected and
the perfect fluid approximation (explained below) is used. Clearly, the shape of the power
spectrum shows the characteristic features of the dark acoustic oscillations and the power on
small scales is suppressed when compared to the CDM prediction.

Additionally, we check the validity of the perfect fluid assumption by comparing the
results to the case of an imperfect fluid. To obtain a closed set of equations, we need to
develop an approximation for fpz and fi; (see (2.50)—(2.53)). One way is setting them to be
zero, defining the imperfect fluid approximation. This is valid when Ty /m, < 1, i.e., the
free streaming of the DM particles is negligible after they decouple kinetically v/H < 1 (see
appendix B). Actually, we can also take 0 = 0 and m = O for the adiabatic perturbations in
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Figure 3. This figure compares the linear matter power spectrum in the perfect and imperfect fluid
approximations. We take the same model with the scalar mediator as in figure 2. We take m,, = 1TeV
in both the perfect and imperfect fluid approximations. When the DM mass is lowered to m, = 1GeV
and ~ is kept fixed, the resultant matter power spectrum in the imperfect fluid approximation starts
to differ from that in the perfect fluid approximation at wavenumbers larger than k& = 100 h/Mpc.

the same limit, defining the perfect fluid approximation. Before the kinetic decoupling, all
the variables fns but fpp and fo; remain zero due to the damping term ~ ~gfne in (2.36).
The former, corresponding to d, does not have the damping term. The latter, corresponding
to 6, has the source term ~ ~o(fTp — €). One non-trivial check is to compare the resultant
power spectra in the perfect and imperfect fluid approximations.

When the results from the perfect and imperfect fluid approximations deviate from each
other, it does not necessarily mean that the imperfect fluid approximation gives a better
description, but it just indicates that the perfect fluid approximation is not valid. To check
if the imperfect fluid approximation gives a valid description or not, we need to compare
the result from the treatment incorporating the full Boltzmann hierarchy, which is beyond
the scope of this paper. Let us stress that the above deviation does not correspond to a
limitation of the Fokker-Planck equation, which is valid as long as the momentum transfer
in each collision is smaller than the typical DM momentum.

For a smaller DM mass with = being fixed, we find differences in their power spectrum
above a certain critical wavenumber as shown in figure 3. This is because the free streaming
is sizable after the kinetic decoupling for the lighter DM. The results from the perfect fluid
approximation are reliable below the critical wavenumber. On smaller scales, however, we
may need to solve the full Boltzmann hierarchy (2.36). In appendix B, we give a more detailed
discussion on the impact of higher order terms in the Boltzmann hierarchy and give a rough
estimate of the critical wavenumber, where the results from the perfect and imperfect fluid
approximations start to deviate.

4 Summary and outlook

In summary, we presented a consistent formulation that allows one to start from an underlying
DM model and calculate its linear matter power spectrum. Regarding the small-scale crisis,
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the method is broadly applicable to essentially generic radiation interacting DM models
that lead to a power spectrum suppression when compared to the standard cosmology on
subgalactic scales.

In this paper, we focused on the case where the DM is in kinetic equilibrium with light
and hidden fermions for a long time and the decoupling process was investigated for mediators
of fundamentally different type. The new message is that not only a vector mediator at
the MeV scale may solve all three small-scale problems at the same time [29], but we find
that new classes of interactions may also solve at least the missing satellite problem. This
result was unexpected from the point of view of previous literature [41-43], where the leading
contribution to the momentum transfer rate is assumed to come from the scattering amplitude
evaluated at Mandelstam ¢ = 0. We explicitly derived an expansion method of the collision
term where the scattering amplitude is t-averaged in the final form of the momentum transfer
rate. This results in a different phenomenology from that in the previous literature for
scattering amplitudes proportional to Mandelstam ¢, e.g., in the scalar, pseudo scalar, and
pseudo vector interactions between the DM and the hidden fermions.

With this new insight, the classification of possible DM-radiation interactions, which
are suppressing the abundance of dwarf galaxies, has to be revisited. During the preparation
of this work, we have been informed that Bringmann et al. [54] have independently derived
similar results concerning the possibility of kinetic decoupling at late times with in new
classes of interactions. As a consequence, our work and studies by the latter authors may
extend the list of realistic WIMP-like DM theories accounting for small-scale discrepancies.

As an important subtlety, we also discussed the validity of the perfect fluid approxima-
tion for the calculation of the power spectrum. We derive the consistent equations needed
to be solved for an imperfect fluid treatment and compare the power spectra obtained from
the perfect and imperfect fluid approximations. As indicated from figure 3, the perfect fluid
approximation is limited by free streaming effects on the smallest scales. This may infer that
we need to solve the full Boltzmann hierarchy to have reliable results for some models where
the DM mass is small.

Our formulation, as a fundamental building block, in combination with N-body sim-
ulations would allow one to map DM models into the observational non-linear small-scale
structure. We plan to combine baryonic feedback and DM-induced small-scale suppression
to investigate the observational outcome. At present or in close future, this kind of sophis-
ticated simulations are expected to shed more light on whether the small-scale crisis will be
related to fundamental properties of DM or not. Even if the DM-radiation interaction does
not resolve the small-scale crisis, our work and others can help to constraint DM models from
a new perspective.
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A Perturbation theory in the conformal Newtonian gauge

In this appendix, we develop a linear theory in the conformal Newtonian gauge and show
its equivalence to the synchronous gauge. The explicit form of the gauge transformation is
presented. The conformal Newtonian gauge is given by:

ds® = a® [—(1 +2®)d7* + (1 — 2¥)dx?] . (A1)

Up to the first order of cosmological perturbations, the Fokker-Planck equation in the con-
formal Newtonian gauge is given by:

b b —my 2 ) 2
Fodep s (ba—mg0) o f
) ) )
= (o +m)a(l+@)5 - (@i = amyw) f+ a>my(To + Tr) 5 - | - (A.2)

Between the conformal Newtonian and synchronous gauges, the collision term differs
by a factor of (14 ®).* This is because in the conformal newtonian gauge, the gravitational
potential ® put the conformal time forward/back in relative to the local inertial time. The
first order perturbation follows:

L AR . 0 0
Vg —my, @
h my 0%; < Qi — Ty ox; > 0q; fo
2 9 3 82 A
= (71 +10®)aLrp|fo] — yoa Mg fo +v0a’myTh o fo+0alrp[fi]. (A.3)

In the Fourier space, these equations are rewritten as

2

: q ikiq; Orp
f1 YoaLrp[fi] = @2a2mxTx0 fo— Tyo <‘I’ +’Yoa—k2 )

Zqul

(A.4)

A +- J
Q?
(2@ *myTyo - 3> fo:

To Ty
+ [(’Yl +70®P)a <T — 1> + ’YOCLTX }

x0

We obtain the Boltzmann hierarchy,

fre+ 2n+ 0 (yoa + R) fre — 2nRfr_10

271 {41 ¢
+k\/>0{2€+ I |:<n + 0+ ) fnZ—H - nfn—1€+1:| + m(fn_,_lg_l — fn@—l)}

= 0o {BAn\II — 2B, [‘Ij + (11 +7%P)a (TOO — 1> + ’yOaTlO] }
X X

1 2 0
o= Apky | Tx (cb + WTP) . (A.5)

“The factor (1 4+ ®) is missing in the corresponding equation of [40].
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This description is equivalent to that in the synchronous gauge through the gauge transfor-
mation of

fro(Syn) = fro(Con) + (34,, — 2B ) a+ B, 61l1r1(;t72-7}<())@’ (A.6)
fur (Sym) = fun(Com) — £ A,k Q?Oxa, (A7)
T1(Syn) = T1(Con) — Tha, (A.8)
7(Syn) = 71(Con) —ocr, (A.9)

with the parameter o = (h + 61)/(2k?). Here, it should be noted again that the above gauge
transformation works only with the factor of the collision term (1 4+ ®) in the conformal
Newtonian gauge. The dynamics of the DM imperfect fluid is described by the following
equations:

5= —0+30, (A.10)
. a 0 0P
0 =——0—Fko+ k22X Ix k2® Orp — 0 A1l
. m, P + +v0a(ftp — 0), (A.11)
; 2T\ */? /21 4T
o= —QEU —k <0> ( fos + f11> + *709 — 2vypa0 , (A.12)
a My SmX
: 2Ty \ %/2 Ty -
5P = —5- 5P+5P\I/+ k:( 0) P — 210 py
my 3TX0

Ty - _ T T
—2v0ad P + 2’yga—0P5 + 2P [('yl +7%P)a <0 — 1) + vgal] . (A.13)
TXO TxO TXO

The evolution of the DM imperfect fluid can be rewritten with the isentropic and entropy
perturbations:

o =—0+30, (A.14)

. a

0 =——0- ko + k(36 + m) + k*® + yoa(frp — 6), (A.15)
; 215\ */? /21 4T,

o= —QE —k ( 0) < fos + f11> + — 09 2voao , (A.16)
a My 3my

, 270\ */? 1 d(a®c2) 5T0 5T o) -

T=—2— 7T+4k<mx> fll_i dT (5 (3TTLX—CX>0+3<3W—CX>\IJ

T T T T
—2y0a [71' - <0 - ci) (5] + 2v0a <0 - 1> —x0 <’y1 + <I>> . (A17)
My My Tyo my \ Y0

B Impact of the higher order terms in the Boltzmann hierarchy

In this appendix we take a closer look at the higher order terms in the Boltzmann hierarchy.
As discussed in subsection 3.3, they represent the free streaming of DM particles and are
important for the case of a smaller DM mass. Once we solve the full Boltzmann hierarchy
directly, we can see their effects on resultant matter power spectra quantitatively. It is,
however, challenging and beyond the scope of this paper. Instead we give an estimate of the
critical wavenumber, below which the perfect fluid approximation appears trustworthy.
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Before the kinetic decoupling (v/H > 1), the higher order terms are negligible. This
is because the friction term (o vpa) in the Boltzmann hierarchy (2.36) leads f,, to a rapid
damping:

e+ (20 + 00 fnr = —25n15zo’yoa;;1 + 6@1}1471]{\/ %VOGQT% : (B.1)
0 3 T k

Here we have used Ty = Ty, which results in By = 1 and B, = 0 (n # 1) as discussed
below (2.37). Exceptions are foo, fo1, and fip since the first does not have the friction term
in its evolution equation and the last two have the source terms (right-handed side) induced
by the collision (x 7pa) in their evolution equations. Through (2.43), foo, fo1, and fip are
respectively related with the density perturbation §, the bulk velocity 6, and the entropy
perturbation 7. From (2.53) with a rapid momentum transfer,

T = —2va <7r - —+ TO5> , (B.2)
my  3my

we can see that the entropy perturbation is proportional to the isocurvature perturbation
Step,om = 6(s/n)/(5/n) = 3T1/To—06: m = 1/3(Ty/my)Stp,pM. As long as DM particles and
those in a thermal bath are tightly coupled to each other, thereby forming one fluid, Stp pm
vanishes for the adiabatic perturbations. Thus only foo and fo1, or in other words, § and 6
are non-zero. The perfect fluid approximation is valid before the kinetic decoupling.

After the kinetic decoupling (v/H < 1), higher order terms become sizable. They,
however, do not change the resultant matter power of long wavelength modes as follows. In
this limit, we can neglect the term proportional to k+/Tp/m.:

. B 1 . 1 me Orp 2 TXU . .
fre+ @2n+ O)Rfne —2nRfp 10 = —25zoh + 5513k‘\/ T, 0%z + g2 57T, (h+6n).
(B.3)

Here we have used A,, = 1 and B,, < 1 after the kinetic decoupling (see the discussion
below (2.37)). Noting that f,_1, affects the evolution of f,; through the term of —2nRf,, _1s,
we can see that the higher order terms f,o become of the order of fyg = ¢ within a few Hubble
time after the kinetic decoupling. This, however, does not affect the evolution of § and thus
does not change the resultant matter power. This is because f,,_1¢ affects the evolution of
fne but not vice versa.

From the above observations, we infer that the impact of higher order terms is sup-
pressed by a factor of k\/Ty/m,/(aH). Thus we can estimate the critical wavenumber by
equating the factor with unity. This ratio scales in proportion to al/? (a®, or in other words,
constant) in the radiation (matter) dominated era, and hence it takes a maximum value of
k/keqr/To(Geq)/my with the wavenumber kqq and the scale factor acq at the matter radiation
equality. As a result, we infer that for

—-1/2

()" (8.9

the fluid approximation is trustworthy (see discussion below (3.5) for the definition of 7). In
figure 3, the deviation between the results from the perfect and imperfect fluid approximations
can be seen above k ~ 100 h/Mpc for m, = 1 GeV. This appears compatible with the above
estimation.

k < 430 /Mpc x (:)
0
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C Thermal history calculation

In this appendix, the annihilation cross section and the annihilation cross section for all
operators. The minimal halo masses and the momentum transfer rates of the pseudo scalar
and pseudo vector operators are presented as well, showing a different kind of phenomenology
when compared to the scalar and vector ones.

C.1 Relic abundance

In our simplified model, the DM abundance is dominantly determined via annihilation process
into two mediators ¢. The invariant amplitude for this process is a sum over ¢- and u-channel
diagrams. In order to calculate the DM relic abundance, the cross section times relative
velocity (ovye) is expanded up to the second order in terms of the relative velocity v, and
the mass ratio z. For each operator, the expanded annihilation cross section is given by:

uay = -2 (1 2 o) 1 B (Y0 002, L ont). (1)
" 167m?2 2 16mm2 \ 24 el el
3q% 11
(v = pyey (14 1357+ O ) o + Ok, (©2)
X
(0vm)Py = G (1 1. +oiY) + Iy (= 4+ 0(="2)) v + Ok, (C.3)
167rm§< 2 127rm§< re rel/ e
4
g 1
(Uvrel)PS — m <1 - 522 + O(Z4)> U?el + O(Ufrlel) . (04)
X

The scalar, vector, and pseudo scalar cross sections are consistent with the ones obtained
in [55]. In the case of the pseudo vector interaction, we find the leading term to be propor-
tional to 24, We discuss this subtlety in subsection C.2.

We estimate the DM freeze-out temperature xy, following basically the method used
in [57], and determine the relic abundance for each operator, which is given approximately by:

=2 ) (7R (25) o
. - o

S: Quh” = 2 (5?2) (123?) (3?%) ’ (C.6)

pviot =2 (0) (orme) (ormer) (o) &™) e
2

PS: Qyh* = g <:0> (4.7 ?(105) <10(;nl\>4<ev>2 (1?4 1;70)2 ‘ (C.8)

In the case of the scalar and vector operators, we assume the DM, ¢, and the light fermions
to have the same temperature as the SM particles at the DM freeze-out. In the case of the
pseudo scalar and pseudo vector operators, we had to lower the DM mass in order to get a
cutoff mass around ~ 108 Mg, as shown in subsection C.2. The DM freeze-out in this case
occurs at a time close to BBN. Thus, the temperature of ¢ and the light fermions has to
differ from the SM radiation temperature in order to be hidden and not to be in conflict with
observation. This subtlety is taken into account in the relic abundance of (C.7) and (C.8).
Throughout this paper, we ignore the logarithmic dependence of the freeze-out temperature
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xf/r on the model parameters and drop the last factor in (C.5)-(C.8) if the relic density
constraint is used to reduce one of the parameters.

Furthermore, we remark that due to the presence of a light mediator and its long range
property one has to include the Sommerfeld effect for DM annihilation in principle. This
may lead to an O(1) correction of the DM coupling in order to produce the correct relic
abundance, but including the effect is beyond the scope of this paper.

C.2 Minimal halo mass of the pseudo scalar and pseudo vector operators

In the case of the pseudo scalar and pseudo vector operators, the parameter space of interest
spoils partially the effective propagator description, and thus 7/H does not have a simple
power law dependence on the neutrino temperature like in the scalar and vector cases. Nev-
ertheless, we derive analytically the scaling pattern of the cutoff mass from the effective
propagator description, and compare it to the cutoff mass derived from the exact numerical
evaluation of (3.6). The DM-neutrino scattering amplitudes for the pseudo scalar and pseudo
vector operators are given by:

42
Pseudo scalar operator: Z IM|? = gig,%i“ ; (C.9)
51,52,83,54 (t— m¢)
8 (8E%m? + 4E,mt — t(2m? —t
Pseudo vector operator: Z M| :gigg ( X - X2 5 (2m3 =) . (C.10)
51,52,53,54 (t B m¢)

Pseudo scalar operator. The DM-neutrino scattering amplitude (C.9) via a pseudo scalar
mediator has a pure t>-dependence. Within the effective propagator framework, v/ H depends
therefore on a different power of T, when compared to the scalar and vector operators:

2 6
NV v -3 —4 Ty
T _gox (L) (I @ ( X ) ( M ) . (C11)
H 0 6 4.7 x 10=210-6 100 MeV 10keV 1keV

Inserting the relic density constraint for a, given by (C.8), we find the scaling pattern of the
cutoff mass:

(Mew)ps = 1.1 x 108 Mo, | — PN, oy 1/2< 2 )71( I >72 (C.12)
cut)JPS = 1. O\ o 6 106 100 MeV 10keV/ '

Note that the mass of the mediator is close to the temperature ~ 1keV for subgalacitc cutoff
masses. This spoils our effective propagator description as can be seen by comparing the
exact numerical result with the effective description in figure 4.

Pseudo vector operator. The DM annihilation cross section via a pseudo vector mediator
shows a z~* enhancement in (C.3). At a first look, the limit z — 0 in the cross section seems
to diverge and give rise to unitarity violation [56]. By embedding the model into a local U(1)
gauge theory where both the mass of the DM and the gauge boson mass arise due to the
spontaneous symmetry breaking via an additional scalar field, we show explicitly that this
is not the case and the parameter region that we use to produce subgalactic cutoffs is in the
perturbative regime.
We denote the additional scalar by ® and the local U(1) gauge invariant action reads

. 1 _ _
L= ZXEJ,-X + ‘D,LL,—Q(I)‘Q - ZFHVF'MV - Ay (XL(I)XR + XRCI)*XL) - V(q)) ) (013)
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(a) Exact numerical result (b) Effective propagator description

Figure 4. Contour line of a constant M., is shown for the pseudo scalar operator within the exact
(left) and effective propagator frameworks (right). The DM parameters chosen are m, = 100 MeV
and a,, satisfying the relic density constraint. The effective propagator description is only valid in
the upper right quarter of figure 4(b).

where D, = @ +igy$y’, Dy—2 = 9y — 29y by, and V(®) = —p20*® + 3 (&*®)* and the
fields transform such that
) 1 A
X — 6”50‘(9”))(, b — b — g—aﬂa(m) , & — e %) g | (C.14)
X

The vacuum expectation value of the field @ in this potential is given by v = /u?/\. We
expand the scalar field around its minimum ®(z) = v + (h(x) +i®2(z)) /v/2 and get the
following relevant quantities after symmetry breaking: m, = Aywv, mé/2 = 4g>2<v2, scalar
mass my, = V2M? = v/2u, Yukawa interaction —\y /v/2Yhx = —m, /(vv/2)xhy and scalar-
gauge boson interaction +4\/§g)2<v hoot.

The invariant amplitude of DM annihilation into two gauge bosons contains three terms:

(77/1 il +mX) (
)

M = €, (k2)e; (k1)v(p2) (—igyr"7) - igyy"y”) u(pr)

(p1 — k1)
( %ﬂLm
(p1 — k2)* —m2

+ 2 x 0(p2) <—z\/§}> u(p1) ort P = - (+i4\@g§v> (k) (k1),  (C.15)

and the total cross section results in

4
(OUrel) = I <1 122—i—(9( )> (C.16)

167rm§< 2

e (k)€ (ka)3(pa) (—ige ") -

(—igxy"7”) u(p1)

g;t 4 4

n ( 16
167 (y? —4)?m2 \ 3 Y

3

(22 + 1)+ O<z°>) W2+ Oy,

where y = mp,/m,. Now, the limit of my — 0 (2 — 0), effectively meaning g,, — 0, results in
a finite value of the annihilation cross section that is proportional to /\%,. In the following, we
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(a) Exact numerical result (b) Effective propagator description

Figure 5. Contour line of a constant M., is shown for the pseudo vector operator within the exact
(left) and effective propagator frameworks (right). The DM parameters chosen are m, = 100 MeV
and o, satisfying the relic density constraint. The effective description is valid only in the upper right
quarter of figure 5(b).

show that all parameters are in the perturbative regime and the scalar contribution (C.15)
can be ignored in the low energy expansion, so that (C.16) reduces to (C.3).

When we choose z ~ 1072, due to the z~* enhancement in the annihilation cross
section (C.4), the DM coupling is forced to be tiny in order to satisfy the relic abundance
constraint. A choice of m, = 100MeV leads to g, = 1.0 x 1075, With these choices, we
derive A\y = 0.03, v = ﬂ = 34GeV, and y = LY < 49. If we take y of O(10), we see
directly that the leadlng ferm in (C.16) is indeed given by

9 _
(OVpel) = =22 W2 (C.17)

This result is the same as the leading one in (C.3) and the relic abundance given by (C.7),
where the scalar contribution has been ignored, holds.
Using the effective propagator description, we derive v/ H:

— = ‘[ « « m -1 —4 4
:[ v X v X m¢ v

and the cutoff mass scaling pattern for the pseudo vector operator:

B8N a, 4 m —3/2 m —3/2
Meue)py = 1.4 x 105 M, = v _Mx e _ 1
(Meu)pv x 10" Mo <r0) (6 104> <100MeV> (100ke\/) » (C19)

where the relic density constraint on o (C.7) is inserted into (3.6). Note that the cutoff mass
depends now on the DM mass unlike in the scalar and vector operator cases. In figure 5, the
exact numerical solution of v/H is compared to the cutoff derived from (C.19), showing the
valid range of the parameter space for the effective propagator description.
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