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Abstract: We introduce a systematic framework for counting and finding independent
operators in effective field theories, taking into account the redundancies associated
with use of the classical equations of motion and integration by parts. By working in
momentum space, we show that the enumeration problem can be mapped onto that of
understanding a polynomial ring in the field momenta. All-order information about the
number of independent operators in an effective field theory is encoded in a geometrical
object of the ring known as the Hilbert series. We obtain the Hilbert series for the theory
of N real scalar fields in (0+1) dimensions—an example, free of space-time and internal
symmetries, where aspects of our framework are most transparent. Although this is as
simple a theory involving derivatives as one could imagine, it provides fruitful lessons to
be carried into studies ofmore complicated theories: we find surprising and rich structure
from an interplay between integration by parts and equations of motion and a connection
with SL(2,C) representation theory, which controls the structure of the operator basis.
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1. Introduction

The Wilsonian picture of effective field theory (EFT) dictates that the effective action
contains all possible local operators consistent with the symmetries of the EFT,

Seff =
∫
M

∑
a

κaOa, (1.1)

where Oa are local operators, κa are their associated Wilson coefficients, and M is the
spacetimemanifold. It is well known that distinct operators can lead to the same physical
effect, i.e. give the same S-matrix elements. Two examples, which will play a prominent
role in this work, are operators related by integration by parts (IBP) and operators related
through the equations of motion (EOM). We will refer to the minimum set of operators
encapsulating all possible physical effects as a basis for the EFT.

The issue of determining (subsets of) the EFT basis has arisen in the past for various
specific EFTs, but no general prescription exists. Logically, properties of the basis should
be discussed first since they include, for example, the number of physically distinct
effects. Determining the EFT basis is a very difficult task. Ideally, one wants some sort
of generating function, if it exists, which encodes information about the generators of a
basis together with all possible relations among these generators. In addition to allowing
us to enumerate the operators in an EFT basis, such a function is appealing since it would
encode information about the basis as a whole—it could potentially reveal properties of
the EFT that are difficult or impossible to see when working with any fixed subset of
operators.

To obtain a function with many of the aforementioned properties, we define a gener-
alized Hilbert series as follows. Associate a weight ui to each field φi in the EFT and a
weight t to the (covariant) derivative. The generalized Hilbert series is then defined as

H(t, {ui }) =
∞∑
k=0

∞∑
r1=0

· · ·
∞∑

rN=0

ck r1···rN tku
r1
1 · · · urNN , (1.2)

where ck r1···rN ∈ N is the number of independent operators in the basis composed of k
derivatives and r1, . . . , rN powers of the φ1, . . . , φN . The weights {t, ui } are complex
numbers; formally, in order to have the above series converge, we require |t | , |ui | < 1.

The summed Hilbert series succinctly encodes information about the EFT basis.
For simplicity, let us assume all fields in the EFT are bosonic. Denoting the (possibly
infinite) set of generators of the EFT basis by Xgen, the denominator of the Hilbert series,
H = N/D, takes the form

D(t, {ui }) =
∏
a

(1 − ha), (1.3)

where ha is the weight of an operator Oa ∈ Xgen. In the case where any operator in
the basis can be uniquely written as a polynomial of the generators we say the basis is
freely generated, i.e., there are no non-trivial relations among the generators. In this case
the numerator is unity: binomial expansion of the denominator clearly shows that the
weights of all operators in the basis are obtained and counted once. A numerator of H
differing from unity accounts for relations among the generators.

The grading where each field has a unique weight is, of course, just a choice; while
this grading retains the most information about the basis, different weighting choices
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may be more expedient for other purposes. For example, we could grade by dimension
of operators: let di = [φi ] be the dimension of φi and send ui → qdi and t → q so that
the coefficient ck in expansion of the Hilbert series, H(t, {ui }) → H(q) = ∑

ckqk ,
is the number of dimension k operators in the basis. In the case of a conformal theory,
the operator-state correspondence implies that the Hilbert series when only including
EOM coincides with the partition function when we grade operators by their scaling
dimension, angular momentum, and other quantum numbers.1

Hilbert series are common objects in algebraic geometry and commutative algebra.
They have appeared in the physics literature through their connection to invariant theory,2

finding application in, e.g., studying flavor invariants [1,2] and counting gauge invariants
in SUSY gauge theories [3–5]. A recent work reviewed and emphasised their utility for
counting operators that do not contain derivatives in phenomenological settings, such as
in subsets of the StandardModel EFT [6]. The present work can be seen as a contribution
towards extending the use of Hilbert series in general EFTs by including operators with
derivatives. Explicitly, we show how to systematically deal with IBPs and EOM, both
of which define equivalence relations:

1. IBPs: Two operators are equivalent if they are related by a total derivative,

Oa ∼ Ob if Oa = Ob + dOc, (1.4)

since
∫
M dO = 0.3

2. EOM: Two operators related by the EOM lead to the same physical effects [7,8].
The EOM follow from the requirement

δSeff
δφi

= 0. (1.5)

The above equation is often evaluated at lowest order in an expansion parameter of the
EFT; the operator relations implied are then worked out at each successive order. For
the purpose of simply counting operators, considering equations of motion derived
from kinetic terms is sufficient. We therefore have the following equivalence,

Oa ∼ Ob if Oa = Ob + Oc
δSkin
δφ j

, (1.6)

for some φ j ∈ {φi }.
The physical system to which we restrict ourselves in this paper is a one-dimensional

quantum field theory of N real scalar fields, φ1, . . . , φN . We refer to the N fields as
flavors and denote the generalized Hilbert series as HN (t, {ui }). Even though this is the
simplest theory one could imagine for our purpose, we find surprising and non-trivial
results when both IBP and EOM are accounted for.

The outline of this paper is as follows. In Sect. 2 we develop a framework for com-
puting the coefficients ck r1···rN of the Hilbert series and constructing sets of independent
operators, while taking into account IBP and EOM. Although this section is limited
to one dimension only, the framework is general: it outlines in principle a systematic

1 IBP removes local operators which are total derivatives, but these must be included in the partition
function.

2 A brief and accessible introduction to invariant theory and Hilbert series can be found in section IV of
[1].

3 As usual, the operators are assumed to vanish at infinity in the case where M is non-compact.
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procedure for obtaining both the dimensionality and explicit realizations of an operator
basis for an EFT.

Sections 3 and 4 explore the possibility of summing the series and obtaining an all-
orders result for the EFT considered here. Section 3 relies heavily on the formalism
developed above, and we show that while the summed series is easily obtainable when
accounting for only IBP or EOM, taken together the problem becomes considerably
complicated. We present a sum formula for the Hilbert series for general N , for which
we are able to perform the summation for relatively low values of N . Section 4 exploits
a connection with the representation theory of SL(2,C) that is present in this theory.
Using this formalism, we are able to obtain the closed form of the Hilbert series for
general N .

We go on to explore the analytic structure of the Hilbert series in Sect. 5. This reveals
interesting consistency conditions and recursion relations connecting different Hilbert
series. We conclude in Sect. 6 with a discussion aimed at highlighting the physical
aspects of this work and the nature of its generalizations to EFTs in higher space-time
dimensions.

We include a basic introduction to commutative algebra in Appendix A and a demon-
stration implementing our framework in the computer package Macaulay2 in Appen-
dix B.

2. Framework

In this section we provide a systematic framework for computing the Hilbert series,
i.e. counting operators modulo integration by parts and use of the equations of motion.
Throughout this section, we restrict the discussion to our one-dimensional QFT with N
flavors of real scalar fields φi , i = 1, . . . , N . We take the spacetime manifold to be the
circle S1 with coordinate θ ; the counting is the same here as for the real line.

We take the equations of motion from
∫
S1 dθ

∑
i (∂φi )

2/2, which gives ∂2φi = 0. In
one-dimension, terms of the form φ j∂φi , i �= j , are present in the action and could be
included in the EOM. However, they do not change the counting because ∂2φi is always
in the EOM as long as φi has a non-zero kinetic term.

Introducing a shorthand notation ur for ur11 · · · urNN and ck r = ck r1···rN , the Hilbert
series is written as

HN (t, {ui }) =
∞∑

k,r=0

ck rurtk . (2.1)

We recall that ck r is the number of independent operators which contain ri powers of φi
fields and k derivatives, i.e. operators schematically of the form φ

r1
1 · · · φrN

N ∂k where it
is to be understood that the k derivatives act in some unspecified way on the φ

r1
1 · · · φrN

N .
The approach we take to computing HN is as follows. We fix the number of φ fields

(i.e., fix r) and then count the number of derivatives we can add to form independent
operators, that is, we consider the sum over k in Eq. (2.1) first. For fixed r this is also a
Hilbert series, which we denote by Hr(t) = ∑∞

k=0 ck rt
k (where N is left implicit). The

full Hilbert series is regained by the sum over all Hr(t) weighted by ur:

HN (t, {ui }) =
∞∑
r=0

urHr(t). (2.2)
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A key advantage in fixing r is that IBP only relates operators of the same r. Moreover,
for fixed r it makes sense to pass to Fourier space where implementing the equivalence
under IBP and EOM becomes transparent.

We start by considering a single flavor and will then generalize the result to N flavors.
We perform a Fourier decomposition for the field φ, writing

φ(θ) =
∞∑

q=−∞
aqe

iqθ , (2.3)

where the aq are the Fourier coefficients. An operator composed of r powers of φ fields
and k derivatives decomposes as

φr∂k =
∞∑

q1,...,qr=−∞
w(q1, . . . , qr )aq1 · · · aqr ei(q1+···+qr )θ , (2.4)

wherew is a degree k polynomial in themomentaq1, . . . , qr . One can always symmetrize
w due to the permutation symmetry among the dummy indices qi—this is just the fact
that the φ’s are indistinguishable. Because a degree k symmetric polynomial uniquely
determines an operator with k derivatives, and vice-versa, we can translate the operator
counting to that of counting polynomials. This leads us to consider polynomial rings in
the momenta; we shall see that the IBPs and EOM imply polynomial constraints, the
consequences of which are embodied in ideals of the rings.4

Let Rr = R[q1, . . . , qr ] be the polynomial ring in the r momenta with real coef-
ficients. The symmetric polynomials form a subring RSr

r = R[q1, . . . , qr ]Sr ⊂ Rr . It
is a well known result, e.g. [9], that the ring RSr

r is freely generated by the power sum
symmetric polynomials P1, . . . , Pr defined as

Pn =
r∑

s=1

qns , (2.5)

and so we have RSr
r = R[P1, . . . , Pr ].

What happens when we consider IBP and EOM? In the above exposition, integration
by parts manifests as the statement of momentum conservation. When an operator in the
action,

∫
s1 dθφr∂k , is Fourier decomposed, integrating over θ forces P1 = q1 + · · · + qr

to vanish, ∫
S1
dθ ei P1θ = 2πδP1,0. (2.6)

From Eq. (2.4), it is clear that a total derivative brings down a factor of P1 = q1+ · · ·+qr .
An operator is therefore a total derivative if and only if the polynomial w(q1, . . . , qr ) is
proportional to P1; hence, the equivalence relation in Eq. (1.4) is translated to wa ∼ wb

if wa = wb + wc P1 for wa,b,c ∈ RSr
r . Algebraically, the statement of momentum

conservation, P1 = 0, defines an ideal 〈P1〉 of RSr
r . The set of operators containing r

powers of φ fields modulo IBP lie in the quotient ring RSr
r /〈P1〉.

4 Appendix A provides a brief introduction to the concepts from commutative algebra which we use here.
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In momentum space the EOM translates to q2 = 0, which implies that Pn = 0 for
n ≥ 2, as is obvious from Eq. (2.5). Additionally, the EOM imply Pr+1

1 = (q1 + · · · +
qr )r+1 = 0, since every term in the expansion necessarily involves a q2i . This embodies
the fact that EOM only allow r derivatives to be distributed onto φr ; application of a
further derivative necessarily requires a ∂2φ in the operator. To study the equivalence
under the EOMwe therefore examine the ideal of RSr

r generated by 〈Pr+1
1 , P2, . . . , Pr 〉.

Taken together, IBP and the EOM define the ideal Ir = 〈P1, Pr+1
1 , P2, . . . , Pr 〉 and

equivalence classes of operators lie in the quotient ring

RSr
r

/
Ir = R[P1, . . . , Pr ]

/
〈P1, Pr+1

1 , P2, . . . , Pr 〉 = R[P1]
/

〈P1, Pr+1
1 〉 . (2.7)

In the quotient ring, the EOM simply remove the generators P2, . . . , Pr . For the one
flavor case, momentum conservation also removes the generator P1 and the quotient
ring is trivial; it consists only of the identity element. The reason we do not indicate this
in the above equation is that the above form is well suited for generalization to the N
flavor case. For the single flavor case, RSr

r /Ir being trivial reflects the fact that we can
use integration by parts and equations of motion to remove all operators with derivatives
acting on φ—any term of the form φr−k(∂φ)k with k > 0 can be written as a total
derivative: ∂(φr−k+1(∂φ)k−1).

The generalization to N flavors is straightforward and follows the exact steps as the
one flavor case. Each field is Fourier decomposed with the i th flavor having Fourier
coefficients a(i)

q , i = 1, . . . , N . An operator composed of r powers of φ fields and k
derivatives is decomposed in the action as,

∫
S1
dθ φ

r1
1 · · ·φrN

N ∂k =
∞∑

{q(1)}···{q(N )}=−∞
w
({q(1)} · · · {q(N )})

×(
a(1)
1 · · · a(1)

r1

) · · · (a(N )
1 · · · a(N )

rN

)

×
∫
S1
dθ exp

⎛
⎝iθ

N∑
i=1

ri∑
j=1

q(i)
j

⎞
⎠ , (2.8)

where w is a degree k polynomial of the momenta, invariant under the symmetric group
Sri for each set ofmomenta {q(i)}.Wedenote this ring by RGr

r = R[{q(1)}, . . . , {q(N )}]Gr

where Gr = Sr1 × · · · × SrN . R
Gr
r is freely generated by the power sum symmetric

polynomials P(i)
1 , . . . , P(i)

ri : RGr
r = R[{P(1)}, . . . , {P(N )}].

As in Eq. (2.6), IBP is handled by momentum conservation, P(1)
1 + · · · + P(N )

1 = 0,

while the EOM imply P(i)
n = 0 for n ≥ 2 as well as

(
P(i)
1

)ri+1 = 0. Together, these

equations form an ideal of RGr
r . The quotient ring containing the equivalence classes of

operators is

RGr
r

/
Ir = R[P(1)

1 , . . . , P(N )
1 ]

/〈
P(1)
1 + · · · + P(N )

1 ,
(
P(1)
1

)r1+1, . . . , (P(N )
1

)rN+1 〉.
(2.9)

Questions about the EFT basis can now be studied by examining the structure of the
modules in Eq. (2.9). One of our main interests is determining the number of operators in
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the EFT basis, and this information is encoded in the Hilbert series Hr(R
Gr
r /Ir, t). Com-

puting Hr(R
Gr
r /Ir, t) for arbitrary r and N is fairly involved. However, Hr(R

Gr
r /Ir, t)

can be easily obtained for any specific value of r and N through the use of algebro-
geometric computer packages such as Macaulay2 [10] (see Appendix B for an
example).

Another important aspect of this framework that we wish to emphasize is the ability
to obtain an explicit basis of independent operators. This is simply the set of operators
corresponding to the basis elements of themodule, Eq. (2.9). These are also easily output
in a package such as Macaulay2—see Appendix B for an example.

In the next two sections we will proceed to address the specifics of computing
Hr(R

Gr
r /Ir, t) in general, and obtain summed formulas for the generalizedHilbert series,

Eq. (1.2), for our one-dimensional EFT.We end this section with some observations that
will be useful to keep in mind during the following. First, due to the equations of motion,
the quotient ring in Eq. (2.9) contains only a finite number of elements, and so the full
generalized Hilbert series will be finitely generated. This is because the EOM bound
the number of derivatives we can add to operator of the form φ

r1
1 · · · φrN

N —one obvious
consequence being ki ≤ ri , where ki denotes the number of derivatives acting on φi .
Second, it is useful to think of Hr(R

Gr
r /Ir, t) heuristically having the form

Hr(R
Gr
r /Ir, t) =

∞∑
k=0

tk
∑

k1+···+kN=k

{
conditions

}
, (2.10)

where {conditions} abstractly denotes the conditions for counting independent degree
k polynomials in the module. Such conditions are encoded in the specific form of the
ideal; for example, the consequence ki ≤ ri noted above is reflected by the equations(
P(i)
1

)ri+1 in the ideal of Eq. (2.9). Third, because we sum over r to get the full Hilbert
series, HN = ∑

r u
rHr, and because, in general, Hr is a piecewise function of r, it may

prove most prudent to leave Hr as a sum formula of the form in Eq. (2.10). We will
encounter such a situation when faced with the general formula for HN , Eq. (3.10), the
derivation of which we now turn to.

3. Computing the Hilbert Series HN (t, {ui})
The aim of this section is to obtain a formula for the generalized Hilbert series, Eq. (1.2),
for the one-dimensional EFT of N real scalars fields we have been considering. The
final result for general N , presented as a sum formula, is given in Eq. (3.10). Rather than
jumping straight from Eq. (2.9) to this result, we begin by considering three simpler
cases—no relations, relations only from IBP, and relations only from use of the EOM—
our aim being to show results which are intuitively easy to understand, as well as simple
to obtain from the framework of the previous section. In this section we also emphasize
the combinatorial interpretations of our results, which have a natural and well-studied
connection with Hilbert series.

No relations. In counting operators, the easiest place to begin is to not impose
any relations. How many operators can be formed from derivatives acting on the
φi , i = 1, . . . , N? In this case, the independent operators are monomials in
φi , ∂φi , ∂

2φi , ∂
3φi , . . ., i.e. every operator is obtained in the expansion of
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N∏
i=1

(
1 + φi + φ2

i + · · · )(1 + ∂φi + (∂φi )
2 + · · · )(1 + ∂2φi + (∂2φi )

2 + · · · ) · · ·

= 1∏N
i=1(1 − φi )(1 − ∂φi )(1 − ∂2φi ) · · · .

We say that the operator basis is freely generated by the set of operators {∂kφi }, k =
0, . . . ,∞.

The generating set of operators {∂kφi } have correspondingweights {tkui }. Since there
are no non-trivial relations among these generators, the Hilbert series is

HN ,free(t, {ui }) = 1∏N
i=1(1 − ui )(1 − tui )(1 − t2ui )(1 − t3ui ) · · · = 1∏N

i=1(ui ; t)∞
,

(3.1)

where (u; t)∞ = ∏∞
k=0(1− tku) is the q-Pochhammer symbol and the subscript “free”

denotes that we are not imposing any IBP or EOM relations in this counting. The q-
Pochhammer symbol gives us a clear interpretation of the series coefficients in terms of
partitions, which we return to at the end of this subsection.

Let us show how the above Hilbert series is obtained using the framework of Sect. 2.
For clarity, we consider the N = 1 case; generalization to arbitrary N is straightforward.
For fixed r , the module is RSr = R[P1, . . . , Pr ], where the Pn carry weight tn . The
number of degree k polynomials in RSr is number of points in the set {(k1, . . . , kr ) | k1 +
2k2 + · · · + rkr = k} so that the Hilbert series is

Hr,free(R
Sr , t) =

∞∑
k=0

tk
∑

k1+2k2+···+rkr=k

=
∞∑

k1=0

· · ·
∞∑

kr=0

tk1+2k2+···+rkr = 1∏r
n=1(1 − tn)

.

(3.2)

The above result is made transparent by recognizing that all independent monomials in
RSr are obtained in the expansion of (1 + P1 + P2

1 + · · · )(1 + P2 + P2
2 + · · · ) · · · (1 + Pr +

P2
r + · · · ); substituting Pn with its weight tn and geometrically summing produces the

above result. The full Hilbert series is

H1,free(t, u) =
∞∑
r=0

ur∏r
n=1(1 − tn)

= 1

(u; t)∞ ,

reproducing Eq. (3.1) for N = 1.
Let us now give an interpretation of the coefficients in the expansion of the Hilbert

series, HN ,free = ∑
k
∑

r ck r,freeu
rtk . The number of operators composed of k deriva-

tives acting on r powers of φ fields is the number of ways of partitioning the k derivatives
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onto φ
r1
1 · · · φrN

N . Specifically, for N = 1, ck r,free = p(k; r) is the number of (indistinct)
partitions of k into at most r parts.5 For general N ,

ckr1···rN ,free =
∑

k1+···+kN=k

p(k1; r1) · · · p(kN ; rN ),

i.e. ck r,free is the number of ways of distinctly partitioning k into N parts (k1 + · · ·+kN =
k) weighted by the number of indistinct partitions of the ki into at most ri parts.

Only relations from integration by parts. Operators which are total derivatives vanish in
the action, leading to relations from integration by parts. For simplicity, let us consider
the one flavor case and count the number of operators composed of r powers of φ fields
and k derivatives, modulo integration by parts. Per the discussion above, the number
of operators of the form φr∂k is the number of partitions of k into at most r parts,
p(k; r). Relations amongst the p(k; r) operators from IBP are formed from taking the
p(k−1; r) operatorswith one less derivative and applying a total derivative. For example,
(∂4φ)φr−1 and (∂3φ)(∂φ)φr−2 are related via ∂((∂3φ)φr−1) = 0.

The p(k − 1, r) relations obtained in the above manner are all independent6 and
therefore the number of independent of operators modulo integration by parts is7

ckr,IBP = p(k; r) − p(k − 1; r), (3.3)

and hence the Hilbert series is given by

H1,IBP(t, u) = 1

(u; t)∞ − t

(u; t)∞ + t. (3.4)

In the expansion of the second term above, the t in the numerator ensures that the
coefficient of ur tk is p(k − 1; r). The sole t in the above cancels the linear u0t1 piece
in the expansion of the second term. The straightforward generalization to N flavors is,

HN ,IBP(t, {ui }) = 1 − t∏N
i=1(ui ; t)∞

+ t. (3.5)

This result is also readily obtained using the formalism from Sect. 2. Let us consider
the general N flavor case. For fixed r1, . . . , rN , equivalence classes of operators related
by integration by parts lie in the quotient ring

RGr
r

/
Ir = R[{P(1)}, . . . , {P(N )}]

/
〈P(1)

1 + · · · + P(N )
1 〉 .

The ideal reflects the statement of momentum conservation and accounts for integration
by parts. In essence, this ideal removes one of the P(i)

1 generators from RGr
r when we

5 A partition of n is a sequence of integers λ(n) = (λ1, λ2, . . . , λl ) such that λ1 + · · · + λl = n and the
sequence weakly decreases, λi ≥ λi+1. The length of a partition is the number of non-zero λi , |λ(n)| = l. The

partitions of n into at mostm parts is the set L(n;m) = {λ(n)|∑|λ(n)|
i=1 λi = k, |λ(n)| ≤ m}; the cardinality of

this set is |L(n;m)| = p(n;m). For example, the partitions of 4 are {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}
so that, e.g., p(4; 2) = 3. Obviously, if m ≥ n then p(n;m) = p(n). By definition, p(0; 0) = 1 while
p(n; 0) = 0 for n ≥ 1.

6 One can see this by standing ordering scheme arguments, making use of the natural scheme induced by
the weakly decreasing condition on partitions.

7 Except in the case for k = 1, r = 0, where we have c1 0 = 0.
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construct the quotient ring. More precisely, when the ideal is defined by a single, homo-
geneous polynomial of degree j , I = 〈 f 〉 with deg( f ) = j , an elementary calculation
tells us that the number of independent degree k polynomials in R/I is equal to the
number at degree k in R minus the number at degree k − j in R (see Appendix A).
Therefore, since P(1)

1 + · · · + P(N )
1 is homogeneous and of degree one, the Hilbert series

of the quotient ring is given by

Hr,IBP(R
Sr
r /Ir; t) =

∞∑
k=0

tk

⎡
⎣ ∑
k1+···+kN=k

−
∑

k1+···+kN=k−1

⎤
⎦

= 1 − t∏N
i=1

∏ri
ni=1(1 − tni )

,

where the second equality holds for r �= 0 and is unity for r = 0. Each set {P(i)}
contributes to the above Hilbert series analogous to the single set in Eq. (3.2); the 1− t
in the numerator reflects the fact that the ideal essentially removes one of the P(i)

1 .
Summing

∑
r u

rHr(t) we obtain the full Hilbert series as in Eq. (3.5).

Only relations from equations of motion. The equations of motion are ∂2φi = 0; conse-
quently ∂kφi = 0 for k ≥ 2. Thus, when including only the relations from equations of
motion, all operators are generated by the set {φi , ∂φi }. Note that the EFT basis is finitely
generated. There are no non-trivial relations amongst the generators, and therefore the
Hilbert series is

HN ,EOM(t, {ui }) = 1∏N
i=1(1 − ui )(1 − tui )

. (3.6)

In the language of Sect. 2, at fixed r1, . . . , rN we study the module

RGr
r /Ir = R[P(1)

1 , . . . , P(N )
1 ]

/〈(
P(1)
1

)r1+1, . . . , (P(N )
1

)rN+1 〉,
whose Hilbert series is given by

Hr,EOM(RGr
r /Ir, t) =

∞∑
k=0

tk
∑

k1+···+kN=k

I{ki≤ri }. (3.7)

Here we have adopted a notation IA, whose value is 1 if the condition A is satisfied, and
0 otherwise. It is also understood that i runs through 1, . . . , N in the set of conditions
{ki ≤ ri }. TheEOMimply the constraints ki ≤ ri and are directly seen from the

(
P(i)
1

)ri+1
terms in the ideal. We can geometrically sum the above to obtain

Hr,EOM(RGr
r /Ir, t) =

r1∑
k1=0

· · ·
rN∑

kN=0

tk1+···+kN =
∏N

i=1(1 − tri+1)

(1 − t)N
. (3.8)

We note that the reason why this sum was simple is algebraically rooted in the fact that
each term in the ideal depends only on a single indeterminate P(i)

1 . Upon summing, we
reproduce Eq. (3.6):
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HN ,EOM(t, {ui }) =
∑
ri≥0

∑
k≥0

∑
k1+···+kN=k

ur11 · · · urNN tk I{ki≤ri }

=
∑
r ′
i≥0

u
r ′
1
1 · · · ur ′

N
N

∑
ki≥0

(tu1)
k1 · · · (tuN )kN

= 1∏N
i=1(1 − ui )(1 − tui )

, (3.9)

where in the first to second line we defined r ′
i = ri − ki . We have explicitly written out

this step to highlight a point made at the end of Sect. 2: in order to make use of sum
manipulations when computing the full Hilbert series, it is frequently simpler to leave
Hr as a sum formula—as in Eq. (3.7)—rather than first finding a closed form sum for
Hr—as in Eq. (3.8). While this distinction is mild for the present case, it is quite useful
for the sums considered in the next subsection.

Relations from both integration by parts and equations of motion. We now turn to the
task of computing the Hilbert series when we account for relations from both integration
by parts and the equations of motion. As we will see, the Hilbert series in this case is
much more interesting than when these relations are considered independently. Unlike
the three previous cases, the generators of the EFT basis are not so easy to guess and there
are non-trivial relations among them, leading to a rich structure in the Hilbert series.

Our launching point is the quotient ring of Eq. (2.9), reproduced here for convenience,
which describes equivalence classes of operators at fixed r

RGr
r

/
Ir = R[P(1)

1 , . . . , P(N )
1 ]

/〈
P(1)
1 + · · · + P(N )

1 ,
(
P(1)
1

)r1+1, . . . , (P(N )
1

)rN+1 〉.
We wish to find a sum formula for the Hilbert series of this module, schematically of
the form

H(RGr
r /Ir, t) =

∞∑
k=0

ck rt
k ∼

∞∑
k=0

tk
∑

k1+···+kN=k

{
conditions

}
.

Instead of resorting to involved mathematics, to obtain the coefficients ck r we build on
the experience gained from studying the previous simpler systems. Due to the EOM, the(
P(i)
1

)ri+1 terms in the ideal require ki ≤ ri , as in Eq. (3.7). As when we handled IBP
alone, an independent IBP relation among the φ

r1
1 · · · φrN

N ∂k operators is generated from
a total derivative acting on each of the operators with one less derivative. In this spirit,
it is very tempting to write

ck r ∼ ck r,EOM − ck−1 r,EOM =
∑

k1+···+kN=k

I{ki≤ri } −
∑

k1+···+kN=k−1

I{ki≤ri }.

However, it is almost immediately obvious that this expression cannot be correct, because
it will go negative when k is too large. When this happens, we should take ck r = 0. It
turns out that the correction condition to guarantee ck r be non-negative is 2k ≤ r ≡
r1 + · · · + rN . Therefore, we have

ck r ∝ I2k≤r
(
ck r,EOM − ck−1 r,EOM

)
.
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Additionally, there is another constraint coming from the interplay of IBP and EOM.
Using IBP, one can always get rid of all derivatives acting on a certainfieldφi , reallocating
all of the k derivatives onto the other fields. From the ideal, this is seen by using the
momentum conservation equation

∑N
i=1 P

(i)
1 = 0 to eliminate a chosen P(i)

1 .8 It is then
clear that if k is greater than r − ri for any i ∈ {1, · · · , N }, the operator would be zero.
Therefore, we also have

ck r ∝ I{k≤r−ri }.

Combining these constraints, the Hilbert series is given by

H =
∞∑
r=0

ur
∞∑
k=0

tk I{k≤r−ri } I2k≤r

⎡
⎣ ∑
k1+···+kN=k

I{ki≤ri } −
∑

k1+···+kN=k−1

I{ki≤ri }

⎤
⎦ .

(3.10)

Note that the conditions I{k≤r−ri } and I2k≤r have overlap—which one dominates depends
on r1, . . . , rN . Let r j be the maximum number in a given r1, . . . , rN , r j ≥ ri for all i .
The set of conditions {k ≤ r −ri } is then equivalent to the single condition k ≤ r −r j . If
r j ≥ ∑

i �= j ri , then the condition 2k ≤ r is unnecessary—in this situation Hr(R
Gr
r /Ir, t)

is relatively simple to compute. If r j <
∑

i �= j ri , then it is necessary to include I2k≤r
while the conditions {k ≤ r − ri } are automatically satisfied.

With Eq. (3.10), we can obtain the closed form of the Hilbert series for relatively low
numbers of flavors, N ≤ 3

H1 = 1

1 − u1
,

H2 = 1

(1 − u1) (1 − u2) (1 − tu1u2)
, (3.11)

H3 = 1 − tu1u2u3
(1 − u1) (1 − u2) (1 − u3) (1 − tu1u2) (1 − tu1u3) (1 − tu2u3)

.

For larger N , it becomes very laborious to directly sum up the expression Eq. (3.10).
Moreover, the formof theHilbert series becomes increasingly complicated. For example,
for N = 4, 5 we have

H4 = 1 − t (s3 − s4) − t2(s4 − s1s4) − t3s24∏
i (1 − ui )

∏
i< j (1 − tui u j )

,

H5 = 1∏
i (1 − ui )

∏
i< j (1 − tui u j )

[
1 − t (s3 − s4 + s5) − t2(s4 − s1s4 + s1s5)

− t3(s24 − s1s5 + s21s5 − s2s5 − s3s5 − s4s5) − t4(s4s5 − s1s4s5 + s1s
2
5 )

− t5(s25 − s1s
2
5 + s2s

2
5 ) + t6s35

]
, (3.12)

8 Another way to see this is that
∑N

i=1 P(i)
1 remains in the Gröbner basis of the ideal Ir . The Hilbert series

can be computed from the ideal generated by the initial monomials of the Gröbner basis. In a monomial order

where P(i)
1 > P( j)

1 for all j �= i , we have in (
∑N

i=1 P(i)
1 ) = P(i)

1 and hence all monomials involving P(i)
1

are eliminated from RGr
r /in(Ir). See Appendix A.
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where sm are the elementary symmetric polynomials in N variables u1, . . . , uN ,

sm =
∑

1≤i1<···<im≤N

ui1 · · · uim ,

(and where the value of N for sm is left implicit in Eq. (3.12)). These can be more
readily obtained via residues that the sum formula Eq. (3.10) can be shown to have (see
Sect. 5 for further discussion on this point), or through the connection with SL(2,C)

representation theory that this EFT enjoys, which is the subject to which we now turn.

4. The Result for General N from SL(2,C)

It turns out that our one-dimensional theory with scalars has an interesting connection
with SL(2,C) representation theory9 that allows us to obtain a closed form of the Hilbert
series relatively simply for an arbitrary number of flavors.As discussed in the last section,
when we only include relations from equations of motion, all operators are generated
by the set {φi , ∂φi }. Pairing φi and ∂φi together into a doublet, the derivative acts as a
lowering operator since ∂2φi = 0. This is the origin of an underlying SL(2,C) structure
which can be seen acting on the complex weights we use to construct the Hilbert series.

The SL(2,C) structure can be mademanifest in the Hilbert series by a simple change
of variables on the weights: rescale ui → αūi and t → 1/α2. For example, the single
flavor Hilbert series with just equations of motion, Eq. (3.6), becomes

1

(1 − u)(1 − tu)
→ 1

(1 − ūα)(1 − ūα−1)
(4.1a)

= 1 + ū(α + α−1) + ū2(α2 + 1 + α−2) + ū3(α3 + α + α−1 + α−3) + · · ·
(4.1b)

We immediately recognize the coefficient of ūr in the above expansion to be the char-
acter χr+1(α) of the r + 1 dimensional representation of SL(2,C): this Hilbert series
is the character generating function for SL(2,C), H1,EOM(α; ū) = ∑∞

r=0 ū
rχr+1(α).

The important observation is that for each irreducible representation of SL(2,C), the
terms not of highest weight (i.e. the coefficients of ūr other than αr ) can be obtained
via application of the lowering operator—the derivative. Thus, if we want to account
for IBPs, we simply disregard these terms in the series, since they correspond to total
derivatives. By inspection, we find H1(α, ū) = ∑∞

r=0 ū
rαr = 1/(1− ūα), reproducing

our previous result for the N = 1 Hilbert series (see Eq. (3.11)).
How does this picture generalize to arbitrary N?As is clear fromEq. (3.6), the Hilbert

series from just EOM for N flavors is simply N copies of the character generating
function,

HN ,EOM(α; {ūi }) = H1,EOM(α; ū1) · · · H1,EOM(α; ūN ) (4.2a)

=
∑

r1,...,rN

ūr11 · · · ūrNN χr1+1(α) · · · χrN+1(α). (4.2b)

We next perform a tensor decomposition, which expressed through the characters is
written as

χr1+1(α) · · · χrN+1(α) =
∞∑
k=0

Ck
rχk+1(α) , (4.3)

9 We are grateful to Yuji Tachikawa for pointing out this connection to us.
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(for N = 2 this is simply a Clebsch–Gordan decomposition), and we again make the
observation that to convert the Hilbert series of Eq. (4.2) into one taking IBPs into
account, we discard all but the highest weight of each irreducible representation on the
rhs of Eq. (4.3) (i.e. put χk+1(α) → αk). Thus we find

HN (α, {ūi }) =
∑

r1,...,rN ,k

ūr11 · · · ūrNN αk Ck
r , (4.4)

which can be compared to the formula Eq. (2.1) in the original variables (u, t), giving
an alternative interpretation of the coefficient ck r in terms of the tensor decomposition
of Eq. (4.3): ck r = C|r|−2k

r .
Let us summarize more precisely the above mapping onto SL(2,C) representation

theory. With just EOM, operators are formed from polynomials in the φi and ∂φi , i.e.
they lie in the polynomial ring FEOM = R[{φi }, {∂φi }]. Including integration by parts,
we wish to find operators that are equivalent up to a total derivative; such operators
lie in the space FEOM/∂FEOM. By SL(2,C) representation theory, this is equivalent to
enumerating the irreducible representations contained in N -fold tensor products Vr1+1⊗
· · · ⊗ VrN+1, where Vri+1 is the SL(2,C) irreducible representation of dimension ri + 1.

We now turn to computing the closed form of the Hilbert series for general N . This
treatment makes reference to Molien’s formula and the Haar integration measure, a
general discussion of which we refer the reader to, e.g., the physics papers [5,6]. For
the following analysis to apply, we restrict α to lie in the maximal compact subgroup of
SL(2,C), namely SU (2).

When converting the EOM result to include IBP, we discarded all termswhich did not
correspond to the highest weights in the SL(2,C) irreducible representations. We can
achieve this result directly by making use of the orthogonality of characters.10 Specifi-
cally, to determine the multiplicity Cr0

r for which the (r0 +1)-dimensional representation
of SU (2) appears in the tensor product Vr1+1 ⊗ · · · ⊗ VrN+1, we multiply Eq. (4.3)
by χr0+1(α) and integrate over dμSU (2)(α). To determine all such multiplicities in a
given tensor product, we sum over r0. Applying this to Eq. (4.2) and weighting the
multiplicities by ūr00 , which plays the role of the highest weight of Vr0+1, we obtain HN ,

HN (ū0, {ūi }) =
∫

dμSU (2)(α)

∞∑
r0=0

ūr00 χr0+1(α) HN ,EOM(α; {ūi }). (4.5)

Summing
∑∞

r0=0 ū
r0
0 χr0+1(α) = H1,EOM(α; ū0), we find

HN (ū0, {ūi }) =
∫

dμSU (2)(α) H1,EOM(α; ū0)HN ,EOM(α; {ūi })

=
∫

dμSU (2)(α)

N∏
i=0

H1,EOM(α; ūi ). (4.6)

10 For a Lie group G,
∫
dμG χ∗

r ′ (g)χr (g) = δr ′r where χr is the character in the r th representation and the
integration is over all elements g ∈ G with dμG the Haar measure. Since χr (g) = Trr (g) is a class function,

χr (g) = χr (h−1gh) for g, h ∈ G, the integration can be restricted to the maximal torus ofG. ForG = SU (2)
the maximal abelian subgroup is U (1), so the integral is over a single parameter α. In a somewhat sloppy
notation, we write the Haar measure as dμSU (2)(α). For further discussions see [5,6]. Finally, for SU (2) we

note that χ∗
r = χr since SU (2) is pseudo-real.
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The above is Molien’s formula applied to N + 1 SU (2) doublets, i.e. HN (ū0, . . . , ūN )

may also be interpreted as counting the number of independent SU (2) invariants formed
from N + 1 doublets! To make contact with the common notation for Molien’s formula,
as used in [2–6,9], note that

H1,EOM(α; ūi ) = 1

(1 − ūiα)(1 − ūiα−1)
= 1

det(1 − ūi g)
(4.7)

where g ∈ G is in the doublet representation of SU (2) and α = eiθ parameterizes the
U (1) subgroup whose two-dimensional representation is eiθσ3 with σ3 the Pauli matrix.
We note that the application of Molien’s formula to SU (2) invariants has also been
treated in [5].

To obtain the closed formof HN (ū0, {ūi }) one evaluatesMolien’s formula in Eq. (4.6)
by performing the contour integral specified by the Haar measure

∫
dμSU (2)(α) =∮

|α|=1
1

2π i
dα
α

1
2 (1 − α2)(1 − α−2). The pole structure is very simple, and the residue

theorem can be applied easily for general N , with the result for N ≥ 2

HN (ū0, ū1, . . . , ūN ) = −1

2

N∑
k=0

(
1 − ū2k

)
ūN−2
k∏

i �=k
[(1 − ūk ūi ) (ūk − ūi )]

= −1

2

1∏
i< j

(
1 − ūi ū j

) 1∏
i< j

(
ū j − ūi

)

×
N∑

k=0

⎧⎨
⎩(−1)N−k

(
1 − ū2k

)
ūN−2
k

∏
i< j �=k

[(
1 − ūi ū j

) (
ū j − ūi

)]
⎫⎬
⎭.

(4.8)

The term in curly brackets is an antisymmetric polynomial in the ūi (i = 0, . . . , N )

and therefore divisible by
∏

i< j

(
ū j − ūi

)
. Hence, the quotient is a fully symmetric

polynomial, as required by the symmetry of Eq. (4.6). A few explicit values for low N
are

H1(ū0, ū1) = 1

(1 − ū0ū1)
,

H2(ū0, ū1, ū2) = 1

(1 − ū0ū1)(1 − ū0ū2)(1 − ū1ū2)
, (4.9)

H3(ū0, ū1, ū2, ū3) = 1 − ū0ū1ū2ū3
(1 − ū0ū1)(1 − ū0ū2)(1 − ū0ū3)(1 − ū1ū2)(1 − ū1ū3)(1 − ū2ū3)

.

One can check that Eqs. (3.11)–(3.12) are reproduced when sending ū0 → t−1/2, ūi →
ui t1/2.

The terms occurring in the Hilbert series in Eqs. (4.8)–(4.9) have a simple inter-
pretation from our understanding that HN computes SU (2) invariants formed from
N + 1 doublets. Denote these doublets by Qiα with i = 0, . . . , N a flavor index and
α = 1, 2 a SU (2) index. The fundamental invariants are constructed from pairs of
the Qiα , Mi j = εαβQiαQ jβ . All other SU (2) invariants can be formed from products
of the Mi j . That the Mi j generate SU (2) invariants is reflected by

(N+1
2

)
terms of the

form (1 − ūi ū j ) in the denominator of the Hilbert series. As the (N + 1) × 2 matrix
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⎛
⎝ φ1

1

⎞
⎠ ⊗

⎛
⎝ φ2

2

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1φ2

φ1 2 + φ2 1

1 2

φ1 2 − φ2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

2 ⊗ 2 = 3 ⊕ 1

Highest weights

Vanish by IBP/EOM

φ φ

φ φ

φ φ

φ φ

Fig. 1. Decomposition of operator space into irreducible SL(2,C) representations

Qiα is at most rank two, the anti-symmetric matrix Mi j is at most rank two and there-
fore subject to relations among its components. These constraints take the explicit form
0 = M ∧ M = εi0,...,iN Mi0i1Mi2i3 .

11 These constraints, as well as the non-trivial rela-
tions among them (syzygies), govern the numerators of the Hilbert series. The simplest
example is H3, where the single constraint 0 = εi jkl Mi j Mkl is reflected by 1−ū0ū1ū2ū3
in the numerator.

The poles of Eq. (4.8) occur at ūi ū j = 1. The residues are easy to compute using the
first line of Eq. (4.8),

(1 − ūa ūb) HN |ūa ūb→1 = 1∏
i �=a,b

[(1 − ūa ūi ) (1 − ūbūi )]
. (4.10)

Upon relabelling ūa = 1/ūb = α, we see this residue is in fact HN−1,EOM. We will
return to discuss further the pole structure of the Hilbert series in the following section.

Finally we note that this picture also provides a constructive method for finding the
operators in the operator basis—they are the highest weight states of each irreducible
representation obtained from decomposing the tensor products. A simple example is
shown in Fig. 1, where one finds that the operator bases containing one power of φ1 and
one power of φ2 are {φ1φ2, φ1∂φ2} (for the second operator we have used equivalence
under IBP: φ1∂φ2 ∼ φ1∂φ2−φ2∂φ1). Other operators in the basis are clearly obtainable
following an iterative procedure.

5. Consistency Conditions and Relations Among Hilbert Series

In the previous section we presented a complementary method for studying operator
bases in our one-dimensional theory using SL(2,C) representation theory that allowed
us to obtain a closed form for the Hilbert series, with and without IBP, for general N . We
now turn to analyzing these Hilbert series. Their various limits and analytic properties
reveal interesting connections between the different Hilbert series, summarized in Fig. 2.
Weprimarilyworkwith the barredweights introduced inSect. 4,where these connections
become more transparent. For convenience, we reproduce here the Hilbert series when
only including relations from EOM (HN ,EOM) and including both EOM and IBP (HN ):

HN ,EOM(u0; u1, . . . , uN ) = 1∏N
i=1(1 − u0ui )(1 − ui/u0)

, (5.1)

11 Some readers may find these constraints more familiarly recognized as the Schouten identities, 0 =
〈i j〉〈kl〉 − 〈ik〉〈 jl〉 + 〈il〉〈 jk〉.
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HN,EOM HN+1,

HN HN+1

uN+1 = 0

HN, (α; u1, . . . , uN )H1, (α;uN+1)

uN+1 = 0

dx

2πi

1
x

HN (u0, . . . , uN−1, x)H2(x−1, uN , uN+1)

d
μ

α
H

N
,

(α
;u

1
,.

..
,u

N
)H

1,
(α

;u
0
)

u
iu

j →
1

EOM

residue:

EOM

EOM

E
O

M
E

O
M

Fig. 2. The analytic structure of the Hilbert series for the EFT of real scalar fields in d = 1

HN (u0, . . . , uN ) = f (u0, . . . , uN )∏
0≤i< j≤N

(1 − uiu j )
, (5.2)

where f (u0, . . . , uN ) is a symmetric polynomial in the {ui } that can be explicitly deter-
mined fromEq. (4.8).We note that HN is symmetric in the {ui }, while u0 plays a separate
role in HN ,EOM; as in Sect. 4, we occasionally use the notation u0 = α in HN ,EOM to
distinguish this role. Lastly, we recall that the original t and {ui }weights are re-expressed
in terms of the {ui } as t = 1/u20 and ui = u0ui .

We now examine various limits and residues of these Hilbert series. In the limit
uN → 0 of HN , we obtain the Hilbert series with one less flavor, HN−1. This clearly
applies to HN ,EOM as well. The poles of HN occur at uaub → 1 and their residues,
Eq. (4.10), reproduce HN−1,EOM. In terms of the (t, {ui }) variables, the poles occur at
ua → 1 and tuaub → 1 with residues

(1 − ua) HN |ua→1 = 1∏
i �=a

(1 − ui ) (1 − tui )
, (5.3)

(1 − tuaub) HN |tuaub→1 = 1

(1 − ua) (1 − ub)

1∏
i �=a,b

(1 − ui/ua) (1 − ui/ub)
,

(5.4)

where in the second equation we eliminated t in favor of 1/uaub. It is clear that the
ua → 1 residue coincides with HN−1,EOM (see Eq. (3.6)); to see this in Eq. (5.4), one
needs to rescale the variables ub → tua and ui → tui ua .

We can understand the above result for the ua → 1 limit in terms of the choice of
where we put derivatives in the operator basis. Specifically, we can choose to remove all
derivatives acting on φa whenever it appears in a term by using IBP and EOM identities;
doing so saturates their use so there is no further freedom. In terms of the module, this
is associated with an ordering scheme where P(a)

1 > P(i)
1 for all i �= a, cf. footnote 8



380 B. Henning, X. Lu, T. Melia, H. Murayama

and its preceding statement. We do not, however, have a simple understanding of the
tuaub → 1 limit in the EFT picture.

It is highly non-trivial that the residue of uaub → 1 gives HN−1,EOM. The polynomial
in the numerator of HN is quite involved—see Eqs. (4.8) and (3.12)—and reflects non-
trivial relations amongst the generators of the operator basis. In fact, the consistency
conditions implied by the pole information completely determines the numerator of
HN .12 Before our understanding of the connection to SL(2,C), we obtained the residues
of HN from the sum formula in Eq. (3.10). Analysis of the residues ua → 1 and, in
particular, tuaub → 1 allowed us to compute theHilbert series up to N = 7.We note that
extracting the residues from the sum in Eq. (3.10) is manageable, although performing
the full sum by brute force is quite difficult for N > 3.

Startingwith theHilbert series for N flavorswe canobtain theHilbert serieswith N−k
flavors by setting ūN−k+1 = · · · = ūN = 0. That we can pass to fewer flavors is not too
surprising; what’s more interesting is that we can also go the opposite direction! In other
words,we can compose HN fromHilbert serieswith fewerflavors. This recursion relation
can be seen as follows. The HN ,EOM satisfy a trivial recursion relation: HN+1,EOM =
HN ,EOM · H1,EOM. Since HN ,EOM appears in the integrand of Eq. (4.6), this induces a
recursion relation on HN . This recursion is easily proved and takes the form

HN+1 (ū0, ū1, · · · , ūN+1) =
∮

|x |=1

dx

2π i

1

x
HN (ū0, · · · , ūN−1, x) H2

(
x−1, ūN , ūN+1

)
.

(5.5)

More generally, HN+1 ∼ ∮ dx
x HkHk′ for any k, k′ such that k +k′ = N +2 and k, k′ ≥ 2.

We can give a graphical description of this composition rule as follows. The basic
building block is H2(ū0, ū1, ū2), to which we associate a trivalent vertex:

u0

u1u2

Each leg is associated to a weight ui with the direction of the arrow indicating whether
the weight is taken with a positive power (incoming, u+1i ) or a negative power (outgoing,
u−1
i ). Higher HN are formed by connecting the graphs in such a way that internal lines

have the same weight with arrow direction preserved, and then integrating over the
weights of the internal lines. For example we can compose two H2 to get H3,

u1

u0

u2

u3

x x−1
→

u1

u0

u2

u3

12 We thank Bernd Sturmfels and Yeping Zhang for correspondence over our initial conjecture on this point.
We are especially grateful to Bernd Sturmfels for proving the conjecture.
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Fig. 3. Hilbert series can be composed to build up HN for larger numbers of flavors

which reads H3(ū0, ū1, ū2, ū3) = ∮ dx
2π i

1
x H2(ū0, ū1, x)H2(x−1, ū2, ū3) and defines a

new, quartic vertex for H3. A more elaborate graph is shown in Fig. 3. It is quite clear
that all such tree graphs describe the various possible composition formulas for HN .

6. Discussion

In this work we have sketched a framework for studying operator bases in quantum
field theories and applied this to one-dimensional field theories with scalar degrees of
freedom. Our discussion thus far has been fairly mathematical and our one-dimensional
application seems rather distant from QFTs of phenomenological and/or theoretical
interest. In light of this, it seems prudent to understand what physics lies in our results
and what lessons we can extract as we look towards extensions to higher dimensions
and more involved QFTs.

Although we motivated our study of independent operators through the context of
effective field theory, our analysis more generally can be understood as classifying the
space of local operators subject to some (physically motivated) constraints. Accounting
for the equations of motion identifies operators that are equivalent when inserted into
correlation functions. The operator-state correspondence suggests a physical meaning
to this set for a CFT, although no clear interpretation is immediate for infrared trivial
theories. Including integration by parts further restricts to operators of zero momentum,
i.e., those operators that can contribute to scattering processes. As we review and dis-
cuss our results, this picture provides an intuitive understanding for the appearance of
mathematical similarities to scattering amplitudes and CFTs—particularly, the role of
kinematic equations in our analysis, the representation theoretic description of operators,
as well as recursion and composition formulas in the Hilbert series.

In Sect. 2, we showed how the language of commutative algebra provides a systematic
way to study operator baseswherein independent operators are understood as elements of
a quotient ring. Kinematic equations play an essential role in this framework:momentum
conservation and the equations of motion define the equivalence relations governing the
quotient space. While each kinematic constraint is separately easy to understand, they
have more subtle consequences when considered together. The language of rings and
ideals provides a well-defined and systematic way to study the non-trivial relations
among these constraints.

The basic details of this framework straightforwardly generalizes to d dimensions,
although explicit computationswill differ. Details of this generalizationwill be discussed
elsewhere; here we content ourselves with a few observations. Operationally, we replace
q by qμ in the ring of momenta and additionally impose invariance of the ring under
SO(d) symmetry.As in one dimension, kinematic equations define an ideal that accounts
for redundancies due to IBP and use of EOM.
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For simplicity, let us include parity and instead impose O(d) symmetry. Invari-
ance under O(d) implies that the quotient ring consists of polynomials in (symmetric
combinations of) the kinematic invariants qi · q j , subject to relations stemming from
momentum conservation and equations of motion. This is very similar to scattering
amplitudes, where Lorentz invariance implies the amplitude can only depend on the
invariants qi ·q j , subject to momentum conservation and on-shell conditions. With what
level of seriousness we should take this analogy with amplitudes is unclear to us. In
particular, the module contains polynomials of the qi · q j , while amplitudes are rational
functions in these invariants whose analytic structure carries deep physical significance.
However, there may be non-trivial analytic structure when considering the whole set of
polynomials, i.e. the entire module. For example, poles and residues lead to intricate
consistency conditions in our d = 1 Hilbert series, as discussed in Sect. 5.

To give an explicit example in d dimensions, take a single scalar and consider oper-
ators formed out of r powers of φ fields and an arbitrary number of derivatives. The
quotient ring is

R[q1μ, . . . , qrμ]O(d)×Sr
/〈{q1μ + · · · + qrμ}, q21 , . . . , q2r

〉
. (6.1)

For r = 3 and 4, the generators of this module are not too difficult to compute and the
result is simple to understand. One finds that, for r = 3, the module is trivial: all qi · q j

vanish as a consequence of q2i = 0 and
∑3

i=1 qiμ = 0. This is directly analogous to the
fact that the three-point amplitude for massless particles vanishes on shell.

For r = 4, momentum conservation and EOM reduce the qi ·q j to the usual Mandel-
stam variables s, t , and u, subject to s + t + u = 0. Again, the module reflects structure
reminiscent of scattering, this time the familiar kinematics of four-point amplitudes. To
complete the study of the r = 4 module, we need to impose invariance under S4 permu-
tations that act on the index i . S4 permutes the Mandelstam variables according to the
defining representation of S3 lifted to S4.13 Therefore, the S4 invariant polynomials are
those symmetric in s, t , and u; with the constraint s + t + u = 0, these polynomials are
freely generated by st + su + tu and stu. The Hilbert series is H4(t) = 1/(1− t4)(1− t6)
where t is theweight associated to the derivative (not to be confusedwith theMandelstam
variable).

In d-dimensions, for a fixed number of fields we can form an infinite number of
operators by application of derivatives. Therefore, unlike the case in one-dimension, we
expect the Hilbert series for the fixed number of fields, Hr (t), to be an infinite series
(e.g., H4(t) in the above paragraph). Moreover, we anticipate that the full Hilbert series
of the EFT will contain an infinite product, reflecting an infinite number of generators
in the operator basis. These results are to be anticipated physically as well; by passing
to d > 1 dimensions we move from quantum mechanics to quantum field theory.

Howmight the representation theory picture of Sect. 4 generalize tomore complicated
EFTs? For the EFT studied here, once equations of motion are included, the field φi
together with its descendant ∂φi , fill out a representation of SL(2,C). Once we further

13 This is a coincidence for r = 4. For general r , the r(r − 1)/2 kinematic invariants are si j = qi · q j
where i = 1, . . . , r and i �= j since q2i = 0 by EOM. Under the symmetric group Sr , the si j decompose as
s = (r) ⊕ (r − 1, 1) ⊕ (r − 2, 2) of dimension, 1, r − 1, and r(r − 3)/2, respectively. We have used the
standard notation for labeling irreducible representations of the symmetric group by the partition associated
to a specific Young diagram. (r) ⊕ (r − 1, 1) together form the defining, r -dimensional representation of
Sr . Momentum conservation removes this component: dotting

∑r
i=1 qiμ = 0 by each qiμ we get r Lorentz

invariant equations that are permuted under Sr . Therefore, EOM and IBP eliminate all but the components of
si j transforming in the (r − 2, 2) representation of Sr .
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impose IBP, we understand the basis to be constructed from the highest weight states in
the irreducible decomposition of SL(2,C) tensor products. In d dimensions, however,
the number of operators obtained through successive application of ∂μ to φi is infinite,
even when equations of motion are included—EOM only remove the trace components
of the derivatives. This whole picture is reminiscent of primary states in a CFT where
descendant states are obtained through application of the lowering operators in the
conformal algebra. Our one-dimensional experience and the analogy to CFTs suggests
looking for a representation theoretic understanding in d dimensions as well.

For this one-dimensional example, global group structure can be included straight-
forwardly, using the exposition of the Hilbert series in the form of Molien’s formula,
Eq. (4.7). Generalizing this formula when the fields are charged under additional global
symmetries proceeds along the lines presented in, e.g., [6].

The connections between HN ,EOM and HN that we have seen in Sect. 5 suggest
similar features will persist in more general EFTs and should be looked for; the same
can be said for the limits and composition formulas of the Hilbert series we found. For
example, the strategy of obtaining HN ,EOM and then searching for a relevant projection
to incorporate IBP equivalence may be useful when moving to more complicated EFTs.

To conclude, in this paper we have studied operator bases of EFTs, focussing on
one object—the Hilbert series—which encapsulates aspects of the entire operator basis.
Requesting a physical basis requires us to take into account EOM and IBP which shape
the Hilbert series. The picture that emerges is that the Hilbert series is an object much
akin to the partition function of the theory. As well as exploring the Hilbert series of
more complicated EFTs, it seems worthwhile to search for other objects that can provide
information about operator bases as a whole.
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Appendix A: A Primer on Commutative Algebra

In this appendix we review some basic definitions and results from commutative algebra
that we employ in the main text. Useful references include, for example, the introductory
text [11] as well as [12], which emphasizes computational aspects through the use of
the computer package Macaulay2. In this appendix, field takes the traditional mathe-
matical definition, i.e. a set that obeys notions of addition and multiplication and their
inverses, and has nothing to do with the fields of quantum field theory.

Informally, a commutative ring (herein, ring) is a field without the requirement of
a multiplicative inverse. Integers form a ring; rational numbers form a field. Obviously,
any field is also a ring. An ideal is a subset of a ring such that the result of multiplying
an element of the ideal by an element of the ring remains in the ideal. For example, the
even numbers form an ideal of the integers. More formally, let R be a ring. Then a subset
I ⊂ R is an ideal if it satisfies (i) 0 ∈ I , (ii) if a, b ∈ I then a + b ∈ I , and (iii) if a ∈ I
and b ∈ R then b · a ∈ I .

For our purposes, the most important example of a ring is the polynomial ring
K [x1, . . . , xn] consisting of polynomials in the x1, . . . , xn with coefficients in the ring
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K . In this work K is typically taken to be a field, such as the real numbers R. As the
addition and multiplication of two polynomials is still a polynomial, quite obviously the
polynomials form a ring. A monomial is a term of the form xα1

1 · · · xαn
n ; a polynomial is

a linear combination of monomials. Intuitively, monomials act like basis elements from
which we can build polynomials via addition.

The idea of counting elements in a ring is important to our work, and we anticipate
that this somehow reduces to counting monomials. To make this intuition precise, we
need the notion of grading. The polynomial ring R = K [x1, . . . , xn] is naturally graded
by degree, where the degree of a monomial is deg(xα1

1 · · · xαn
n ) = α1 + · · · + αn . A

polynomial is homogeneous if all of its constituent monomials are of the same degree.
Letting Rk be the set of all homogeneous, degree k polynomials, then the polynomial
ring has a direct sum decomposition R = ⊕

k∈N Rk . Mathematically, x1, . . . , xn are
said to form a N graded algebra.

The dimension of Rk is simply the number of degree k monomials. For example,
in R = R[x, y] any homogeneous, degree two polynomial can be written as a linear
combination of x2, y2, and xy, hence dim(R2) = 3. We define the Hilbert function to
be HF(R, k) = dim(Rk).14 The Hilbert series of the graded ring R is then defined as

H(R, t) =
∑
k

H F(R, k)tk . (A.1)

For R = K [x1, . . . , xn], the number of degree k monomials is simply the number of
ways of gathering k items out of n objects (multiples allowed), i.e.

HF
(
K [x1, . . . , xn], k

) =
∑

k1+···+kn=k

=
(
n + k − 1

k

)
,

and the Hilbert series is

H
(
K [x1, . . . , xn], k

) =
∞∑
k=0

(
n + k − 1

k

)
tk = 1

(1 − t)n
. (A.2)

This reflects the fact that there are n generators of this ring, all of degree one, with no
relations among them.

Let us now discuss ideals of the polynomial ring. Take s polynomials in the ring,
f1, . . . , fs ∈ K [x1, . . . , xn]. Then the ideal formed by these polynomials, 〈 f1, . . . , fs〉,
heuristically is the set of all polynomials obtained by taking the fi as basis vectors where
the coefficients hi are themselves polynomials in K [x1, . . . , xn]. In equations, this set
is

〈 f1, . . . , fs〉 =
{

s∑
i=1

hi fi : h1, . . . , hs ∈ K [x1, . . . , xn]
}

. (A.3)

Geometrically, if we imagine that the indeterminates x1, . . . , xn take values in the field
K , then the variety V defined by the fi are the points in Kn which are solutions to f1 =
· · · = fs = 0. The ideal 〈 f1, . . . , fs〉 is then the set of all “polynomial consequences” of
f1 = · · · = fs = 0, i.e. the set of all polynomials which vanish on V. This connection
between varieties and ideals is the starting point of the algebra-geometry dictionary.

14 The coefficients ck r and ck defined in the Hilbert series of the main text are Hilbert functions.We avoided
this language so as not to over burden those unfamiliar with commutative algebra with terminology.
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Let R = K [x1, . . . , xn] be a polynomial ring graded by degree and let I =
〈 f1, . . . , fs〉 be an ideal of R. We may quotient the ring by the ideal,

M = R
/
I . (A.4)

By definition, M consists of equivalence classes of polynomials, where two polynomials
are equivalent if they are related by a polynomial in the ideal, i.e. for h1, h2 ∈ R and
h3 ∈ I , h1 ∼ h2 if h1 = h2 + h3. In particular, elements of the ideal are equivalent
to the zero polynomial and are thus removed from M . The quotient preserves algebraic
structure; namely, M is also a ring.

In this appendix we will always assume that the polynomials fi which define the
ideal are homogeneous; in this case, it is clear that the ideal is also graded by degree.15

In this case, the quotient preserves the grading and M is said to be a graded module.
That is, M has a direct sum decomposition, M = ⊕

k Mk where Mk contains the degree
k homogeneous polynomials in M . We can also define a Hilbert function and Hilbert
series for the module M . Since Mk = Rk/Ik , the Hilbert function on Mk is

HF(M, k) = dim(Mk) = dim(Rk) − dim(Ik). (A.5)

TheHilbert series forM is defined analogously toEq. (A.1),H(M, t) = ∑
k H F(M, k)tk .

To study the quotient ring Eq. (A.4), wemust first determine properties of the ideal. In
a typical situation, we start with some polynomials f1, . . . , fs which generate an ideal.
Important questions include determining whether or not a polynomial is in the ideal
(ideal membership), possible non-trivial relations among the generators, computing the
Hilbert function, etc. Answering these inherently computational questions is, in general,
difficult.

A simple observation sets us on our way towards computationally probing
〈 f1, . . . , fs〉. As the fi can be thought of as basis vectors for the ideal, it is possible
to change bases. In other words, we can find another set of polynomials which generate
the same ideal. A particularly nice choice of basis is a Gröbner basis, which provides
an algorithmically “best” way of presenting the polynomial consequences of f1, . . . , fs .
We denote the set of polynomials in the Gröbner basis by g1, . . . , gr (note, r �= s in
general). By construction, 〈g1, . . . , gr 〉 = 〈 f1, . . . , fs〉. The algorithm for constructing
theGröbner basis is the polynomial generalization of Gaussian elimination familiar from
linear algebra. We make only a few statements pertaining to Gröbner bases; a thorough
treatment can be found in chapter 2 of [11].

To algorithmicallymanipulate polynomials, an ordering scheme formonomials needs
to be chosen. Given two monomials xα = xα1

1 · · · xαn
n and xβ = xβ1

1 · · · xβn
n , a mono-

mial order “>” determines whether xα > xβ , xα = xβ , or xα < xβ .16 Moreover,
a given monomial order allows us to specify the “largest” term for a polynomial
h ∈ K [x1, . . . , xn], which we call the initial monomial of h and denote by in(h).17

15 This is referred to as projective, since under a rescaling xi → λxi a homogeneous polynomial of degree
α is simply scaled by λα , f (x1, . . . , xn) → f (λx1, . . . , λxn) = λα f (x1, . . . , xn). The term affine is used
when one or more of the fi is not homogeneous. In this work we always are in the projective case, i.e. every
ideal in the main text is homogeneous in the grading.
16 There are many possible monomial orders. The three most common are lexographic, graded lexographic,

and graded reverse lexographic. For example, graded lexographic order is described as follows. Consider two

monomials xα = x
α1
1 · · · xαn

n and xβ = x
β1
1 · · · xβn

n of total degree α = α1 + · · · + αn and β = β1 + · · · + βn ,

respectively. We consider xα > xβ if α > β; if α = β, then xα > xβ if α1 > β1; if α = β and α1 = β1,
then xα > xβ if α2 > β2; and so on.
17 This is also commonly called the leading term of h and denoted by LT(h).
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For an ideal I = 〈 f1, . . . , fs〉, we take the initial monomials of every polynomial in I
and denote this set by in(I ). Note that, in general, in(I ) is not equal to the set generated
by the initial monomials of the fi . In fact, the defining property of a Gröbner basis is
that in(I ) = 〈in(g1), . . . , in(gr )〉.

The Hilbert series of quotient rings is one of the simpler objects one can compute—
as it counts independent monomials, it does not require knowing full information about
the elements in a module. In regards to computing the Hilbert series, one of the nice
properties of Gröbner bases is that we can compute the initial monomials of the ideal,
in(I ), from the initial monomials of the Gröbner basis.

Let us now give a few explicit examples to highlight some of the concepts introduced
in this appendix. We take the polynomial ring in two variables with coefficients in the
real numbers, R = R[x, y], and consider ideals that are similar to those of the main text.
Various computer packages can be used to calculate the Gröbner basis; the next appendix
gives an example using Macaulay2.18 For the monomial order, we use graded reverse
lexographic ordering, which is the default for the computer package Macaulay2.

Example 1. Let R = R[x, y] and I = 〈x + y〉. As the ideal consists of a single
polynomial, it is already a Gröbner basis. Hence, the initial ideal is generated by the
in(x+y) = x , in(I ) = 〈x〉. TheHilbert series of the quotient ringM = R/I is equivalent
to the Hilbert series of R/in(I ) = R[x, y]/〈x〉 = R[y]. Hence,

H(R[x, y]/〈x + y〉, t) = 1

1 − t
.

Example 2. Let R = R[x, y] and I = 〈x2, y3〉. A monomial xα yβ is quite clearly in the
ideal for α ≥ 2 or β ≥ 3. Then the monomials of the quotient ring are 1, x, y, xy, y2,
and xy2. The Hilbert series is then

H(R[x, y]/〈x2, y3〉, t) = 1 + 2t + 2t2 + t3.

It is perhaps illuminating to recognize that

H = (1 − t2)(1 − t3)

(1 − t)2
= 1 − t2 − t3 + t5

(1 − t)2
,

where 1/(1−t)2 is theHilbert series of the free ringR[x, y], while the numerator reflects
information about the generators of the ideal and the relations among them.

Example 3. Let R = R[x, y] and I = 〈x+ y, x2, y3〉. The Gröbner basis is given by x+ y
and y2, 〈x + y, x2, y3〉 = 〈x + y, y2〉. Restricting to the initial ideal, in(I ) = 〈x, y2〉. In
the quotient ring, the basis monomials are 1 and y and the Hilbert series is

H(R[x, y]/〈x + y, x2, y3〉, t) = 1 + t.

18 Mathematica computes a Gröbner basis via the command GroebnerBasis[{polynomials},
{variables}].
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Appendix B: Macaulay2 Demo: Enumerating and Constructing Operator Bases

This is a demonstration of how to calculate the Hilbert series (which enumerates the
independent operators), and an explicit realization of an independent set of operators,
using the program Macaulay2 [10].

We consider the (0 + 1) dimensional EFT of three flavors (N = 3) of real scalar
fields φi , and show how to enumerate and find an independent set of operators of the
form φ3

1 φ4
2 φ5

3 ∂k ; we consider the most general case by allowing for any number, k, of
derivatives in our counting.

FollowingSect. 2,wewish to compute theHilbert series of themoduleR[x, y, z]/〈x+
y + z, x4, y5, z6〉. This Hilbert series is obtained in Macaulay2 via the following
commands:
i1: R=QQ[x,y,z];
i2: I=ideal(x+y+z,xˆ4,yˆ5,zˆ6);
i3: hilbertSeries(R/I, Reduce=>true)
In the first line, QQ means that the ring is taken over the field of rational numbers.
The Reduce=>true option factors the Hilbert series. The output obtained from the
above is 1 + 2t + 3t2 + 4t3 + 4t4 + 3t5 + t6. The power of t in the output counts the
number of derivatives in the operator: one independent operator with no derivatives,
two independent operators with one derivative, three independent operators with two
derivatives, etc. No operators survive with more than six derivatives—the EOM render
the series finite.

We note in passing that a Gröbner basis for this ideal can be output with:
i4: gens gb I
o4 = x+y+z y4+4y3z+6y2z2+4yz3+z4 10y3z2+20y2z3+15yz4+4z5
z6 5y2z4+6yz5
where in the last line, 5y2z4+6yz5 is read as 5y2z4 + 6yz5 etc. There are five poly-
nomials in the Gröbner basis.

To further construct an explicit basis, we proceed via the following commands:
i5: T=R/I;
i6: sort basis T
o6= 1 z y z2 yz y2 z3 yz2 y2z y3 z4 yz3 y2z2 y3z z5 yz4
y2z3 yz5
where the last line is output. This output, translated back to the corresponding operators,
provides the set of independent operators (sorted by the number of derivatives they con-
tain):φ3

1 φ4
2 φ5

3 , φ3
1 φ4

2 φ4
3(∂φ3), φ3

1 φ3
2(∂φ2) φ5

3 , φ3
1 φ4

2 φ3
3(∂φ3)

2, φ3
1 φ3

2(∂φ2) φ4
3(∂φ3),

φ3
1 φ2

2(∂φ2)
2 φ5

3 , etc.
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